Experience in mathematical optimization

26
IHS-Präsentation, 2008 Ruprecht University of Stuttgart Institute of Fluid Mechanics and Hydraulic Machinery, IHS Experience in mathematical optimization Automatic shape optimisation parameterized geometry Wells- Tool

description

Wells-Tool. Experience in mathematical optimization. Automatic shape optimisation. parameterized geometry. Directe optimisation “Response Surface” method Estimation of an continous approximate function by Neuronal net Polynomial approach Spline - PowerPoint PPT Presentation

Transcript of Experience in mathematical optimization

Page 1: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Experience in mathematical optimization

Automatic shape optimisation

parameterized geometry

Wells-Tool

Page 2: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Optimisation Methods

• Directe optimisation• “Response Surface” method

– Estimation of an continous approximate function by• Neuronal net• Polynomial approach• Spline

– Search for the optimum of the approximate function

Page 3: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Parameter

Qu

alit

äts

fun

ktio

nberechnete Werte

Optimierung an der Response Surface

Response Surface Methode

Page 4: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

1

2

3

assumed optimum

search direction

cost

fu

nct

ion

relaxation

• Gradient type algorithmus, with search direction• Opjective funktion is locally approximated and the minimum is

calculated along the search direction

EXTREME

Page 5: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Self Adaptive Evolution (SAE)

• Start with a randomly chosen population

• New population is obtained by

– Mutation

– Crossover

– Survival of the fittest– Live time of each individual is exactly 1 generation

(Comma Strategie)

Evolution methode

Page 6: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Parallel Optimisation

simultaneous simulation on different resources

each simulation is run in parallel

Research: Asynchronous, parallel optimisation

Page 7: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Parallel OptimisationGrid Compting

Page 8: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Applied Algorithm

randomly choseninitial parameter sets

CFD

CFD

CFD

CFD

CFD

survival of the fittest

new sets by discrete operation, e. g. mirror

new sets randomlywith weighting

CFD

CFD

CFD

CFD

gri

d p

ort

al

Page 9: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Example Guide vane shape

Page 10: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Guide vane geometry

Inlet angle, Outlet angle,

chamber line angle, Weighting factor inlet,

Weighting factor outlet,Overlapping,

Profile a, Profile b,

Trailing edge thickness

Geometry Parameterisation

Page 11: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Automatic block structured mesh

Automatic Grid Generation

Page 12: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Simulation

Results:

Flow patterns (e. g pressure distribution)

Overall quantities (e. g. efficiency, losses)

Restrictions (e. g. cavitation)

Typical computational time for one geometry: 1-4 hon a Cluster of HPC

Page 13: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

     

  9 free parameters:

-         45 different designs (individuals) per generation

-         8 generations-         in total 360 calculations

Guide vane shape

optimized with evolution strategy

Page 14: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Convergence

Page 15: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Optimised Geometrie

Page 16: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Test example: Draft tube cone

Assumption:Cone length

Optimisation: Outlet diameter

L

Din

Dout

Page 17: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dra

ft tu

be e

ffici

ency

D_out/D_in

Test example: Draft tube cone

randomly chosen starting points

Cone length: 6 D_in

Page 18: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dra

ft tu

be e

ffici

ency

D_out/D_in

Test example: Draft tube cone

survivors of the first generation

Page 19: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dra

ft tu

be e

ffici

ency

D_out/D_in

Test example: Draft tube cone

survivors of the second generation

Page 20: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dra

ft tu

be e

ffici

ency

D_out/D_in

Test example: Draft tube cone

survivors of the third generation

Page 21: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dra

ft tu

be e

ffici

ency

D_out/D_in

Test example: Draft tube cone

computed pointssurvivors of the seventh generation

Page 22: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

The draft tube contour can only be changed slightly.

Optimization of the area distribution

Draft tube area distribution

Application: Refurbishment of an existing power plant

Page 23: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Area

Draft tube length length

area distribution

• Area distribution represented by B-Spline curves • Inlet and outlet kept constant• other cross sections scaled up

Draft tube area distribution

Page 24: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Draft tube area distribution

Investigated area distribution during the optimisation

Design point

Page 25: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

Draft tube area distribution

Design point

Obtained area distribution

original draft tube

maximum efficiency

minimum efficiency

draft tube efficiency increase: 8%overall efficiency increase: 0.4%

Page 26: Experience in mathematical optimization

IHS-Präsentation, 2008Ruprecht

University of StuttgartInstitute of Fluid Mechanics and Hydraulic Machinery, GermanyIHS

minimum efficiency

Overload

design point

part load

original draft tube

Draft tube area distribution