Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration...

18
Exercise of mechanical vibration (Forced vibration) Q1 A frictionless cart is connected to the wall by way of a spring and damper as is shown in the figure. On the cart of mass , an eccentric motor is installed. The motor rotates at ฯ‰ rad/s with a weight of . The weight is supported by a weightless rod of length . is zero at เตŒ0. a) Answer the force generated by the motor along axis. b) Answer the equation of motion of the cart about . Basic Q2 Obtain the equation of motion for each system about with being a forced displacement. The equilibrium positon corresponds to เตŒ เตŒ0. a) b) Basic Q3 Obtain the equation motion for each system about . The equilibrium position corresponds to เตŒ เตŒ0. a) b) เฌต เฌถ Neglect the inertia of the gears. The numbers of gear teeth are เฌต and เฌถ . A torsional spring A torsional damper Basic Q4 Determine the equation of motion of the system shown in the figure with the force as a given function of time. Assume that the displacement is small. The inertia of the rod is . เฌต เฌถ Basic

Transcript of Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration...

Page 1: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Exercise of mechanical vibration (Forced vibration)

๐‘€

Q1 A frictionless cart is connected to the wall by way of a spring anddamper as is shown in the figure. On the cart of mass ๐‘€, aneccentric motor is installed. The motor rotates at ฯ‰ rad/s with aweight of ๐‘š. The weight is supported by a weightless rod of length๐‘™. ๐œƒ is zero at ๐‘ก 0.

a) Answer the force generated by the motor along ๐‘ฅ axis.

b) Answer the equation of motion of the cart about ๐‘ฅ.๐‘š๐‘˜ ๐‘๐‘™

๐œƒ ๐œ”๐‘ฅ

Basic

Q2  Obtain the equation of motion for each system about ๐‘ฅ with ๐‘ฅbeing a forced displacement. The equilibrium positon corresponds to ๐‘ฅ ๐‘ฅ 0.a) b)

Basic

Q3  Obtain the equation motion for each system about ๐œƒ. The equilibrium position corresponds to ๐œƒ ๐œƒ 0.a) b)

Neglect the inertia of the gears. The numbers of gear teeth are ๐‘› and ๐‘› .

A torsional spring

A torsional damper

Basic

Q4 Determine the equation of motion of the system shown in the figurewith the force ๐‘“ as a given function of time. Assume that thedisplacement is small. The inertia of the rod is ๐ผ.

๐‘˜๐‘™ ๐‘™ ๐œƒ ๐‘๐‘“

Basic

Page 2: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q5 Derive the equation of motion for ๐œƒ. The mass ๐‘š is attached to arigid rod having negligible mass and negligible pivot friction. Thedisplacement ๐‘ฅ is a given function of time. When ๐‘ฅ and ๐œƒ are zero,the spring is at its natural length. Assume that ๐œƒ is small.

๐‘”๐‘˜

๐‘™ ๐‘™๐‘™๐‘

๐œƒ๐‘ฅ

Basic

Q6  Answer the following problems about the equation of motion:๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐น sin ๐œ”๐‘ก.a) Derive the solution when ๐‘ฅ 0 ๐‘ฅ 0 0.b)   Derive the solution when ๐‘ฅ 0 0, ๐‘ฅ 0 ๐‘ฃ .

For the following questions, suppose the case where the system includes a small damping effect and we only consider the special solutions or steady state responses.c)   Answer ๐œ” with which the amplitude of the object is 2๐›ฟ, where ฮด ๐น ๐‘˜โ„ , the static deflection of the spring.d)   Answer ๐œ” with which the amplitude of the object is  ๐›ฟ.

Basic

Q7 Find the mass of ๐‘š when the system resonates.๐‘˜ 3 10 N/m, ๐‘˜ 1 10 N/m.๐‘“ 50 sin 20๐‘ก N.๐‘ฅ

๐‘˜ ๐‘˜Basic

๐‘ฅ๐‘˜

Q8  Find the range of angular velocity of ๐œ” when the amplitude of vibration is smaller than 2 mm. Suppose that the system has a small friction and the term of free vibration is negligible. In other words, we only consider the steady state of the system which is independent from the initial condition.๐‘š 100 kg, ๐‘˜ 3 10 N/m, ๐น 500 N.

Basic

Page 3: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q10 Consider a cart (๐‘š ) with another cart (๐‘š ) on it. They aresupported by springs as shown in the figure. ๐‘ฅ and ๐‘ฅ are theposition of two carts and ๐‘ฅ , 0 at the equilibrium state. Answerthe equation of motion about each of ๐‘š and ๐‘š .

๐‘ฅ๐‘˜ ๐‘˜

๐‘ฅ

Basic

Q11 Complete the rough sketch of the amplitudes and phases of theforced vibration of 1โ€D.O.F. system.

When the equation of motion of an undamped 1โ€D.O.F. system isgiven by ๐‘š๐‘ฅ ๐‘˜๐‘ฅ acos ๐œ”๐‘ก,its steady state response becomes๐‘ฅ ๐›ฟ1 ๐‘Ÿ cos ๐œ”๐‘กwhere ๐›ฟ ๐‘Ž/๐‘˜ (static deflection) and ๐‘Ÿ ๐œ”/๐‘. p is the naturalangular frequency of the system. Draw the amplitude and phasecurves (or lines) of x using the following form.

Note that the sketched curves do not need to be precise; however,consider what kind of characteristics should be captured.

Basic

Amplitu

de

0

ฮด

๐‘Ÿ ๐œ”๐‘1

0

-ฯ€/2

-ฯ€

Phase

2

Q12 When the forcing frequency is 20 rad/s, a certain massโ€spring system oscillates with an amplitude equal to 50% of the amplitude if the forcing frequency is 10 rad/s. Estimate the natural frequency of the system.

Basic

Page 4: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

๐‘˜

Q13  Consider the steady state response of the following 1โ€D.O.F. system with harmonic force applied. When ฮถ = 1/4, answer the range of ฯ‰/p at which the amplitude of the cart is smaller than 2๐›ฟ. ๐›ฟ ๐‘Ž/๐‘˜ . p is the natural angular frequency of the system, i.e. ๐‘ ๐‘˜/๐‘š.

๐‘Basic

Q14 Answer the problems about a cantilever which is composed of aweightless rod and a point mass m. It rotates around O with nofriction. The lever is supported by a couple of a spring (k) and adashpot (c). At the end of the lever, a harmonic force of frequency๐œ” is applied. The angle of the lever is denoted by ๐œƒ, and ๐œƒ 0 atthe equilibrium position.(1) Find the equation of motion about ๐œƒ.(2) Find the special solution of the equation acquired in (1).(3) Find the minimum value of damping coefficient c with which

the system does not resonate for any ๐œ” values.

Basic

๐‘™

๐œƒ m

๐‘™๐‘™๐นcos๐œ”๐‘ก

๐‘˜ ๐‘๐‘‚

Q15 Consider the following cart with a spring and damper. The cart is excited by a harmonic displacement through the damper.1) Answer the equation of motion of the cart about x.2) Answer the vibratory amplitude of the cart as a function of ฯ‰.3) Answer the angular frequency when the amplitude becomes

maximum.4) Describe how c value influences the maximum amplitude.

(3.3 a in p. 77 of the text book)

๐‘ฅ ๐‘Žcos ๐œ”๐‘กBasic

Page 5: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q16 A cantilever (็‰‡ๆŒใกๆข) of mass m is excited by a harmonic force offrequency ฯ‰. The lever rotates around O with no friction. ๐œƒ 0 atits equilibrium position. The rotation angle is small enough thatsin ๐œƒ โˆผ ๐œƒ.1) Answer the equation of motion about ฮธ.2) Answer the amplitude of the lever when it is at the steady state 

when l = 1 m, m = 2 kg, F0 = 100 N, k = 2ร—104 N/m, c = 30 N/m, and ฯ‰ = 100 rad/s.

(3.2 b in p. 78 of the text book)

๐‘™/2 ๐œƒk c

๐‘™/2 ๐น cos ๐œ”๐‘กBasic

Q17 The mass m is attached to the frame with a spring of stiffness k.The frame oscillates vertically with an amplitude of a at afrequency of ฯ‰.1) Answer the equation of motion about x.2) Compute the steadyโ€state amplitude of the mass when m = 0.5kg, k = 500 N/m, a = 4 mm, and ฯ‰ = 6ฯ€ rad/s.

๐‘ฆ ๐‘Žcos ๐œ”๐‘ก x

Basic

Q18 The equation of motion of a certain massโ€springโ€damper system is5๐‘ฅ ๐‘๐‘ฅ 10๐‘ฅ ๐‘“ ๐‘ก .Suppose that f(t) = Fsinฯ‰t. We define M = X/ฮด, ๐›ฟ ๐น/๐‘˜ .1) Determine the natural frequency ๐œ” .2) Determine the resonance frequency ๐œ” and peak magnification

ratio Mr for ฮถ = 0.1 and 0.3.3) How large must the damping coefficient be so that the

maximum steadyโ€state amplitude of x is not greater than 3, ifthe input is f(t) = 22sinฯ‰t, for an arbitrary value of ฯ‰?

Basic

Q19 A certain massโ€spring system oscillates with an amplitude of 5 mmwhen the forcing frequency is 20 Hz, and with an amplitude of 1mm when the forcing frequency is 40 Hz. Estimate the naturalfrequency of the system. Suppose that the resonance frequency ofthe system is greater than 40 Hz.

Basic

Page 6: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q20 Design an undamped isolator (็ตถ็ธๅ™จ) for a 20โ€kg mass subjectedto a harmonic forcing function whose frequency is 17 Hz. Theisolator should transmit to the base no more than 10% of theapplied force.

20 kg

๐‘“ ๐นcos ๐œ”๐‘ก1) Determine the maximum spring

coefficient.2) In practice, the vibration isolator

needs a damping element toreduce the vibration around theresonance point. Determine thedamping coefficient such that thetransmissibility is smaller than 3when p = ฯ‰. Use the springcoefficient acquired by 1).

Basic

Q21 Consider a machinery, of which mass is 120 kg, supported by aspring of coefficient 760 kN/m. The machine produces theharmonic force of 360 N at 3,600 rpm due to its imbalancedrotation. The damping ratio of this system is ฮถ = 0.18.1) Answer the amplitude of the vibration of the machinery.2) Answer the force transmissibility to the supporting base.3) Answer the amplitude of the force transmitted to the base.

Basic

Q22 Consider that a machine of mass m is supported by a spring ofcoefficient k. When the supporting base vibrates and itsdisplacement is Asinฯ‰t. Answer k when the amplitude of themachine becomes A/2.

m

๐ดsin ๐œ”๐‘กBasic

Q23 Consider a quarter model of automobile of which suspension iscomposed of a spring and damping element. The mass of the car ism. The car traverses a bumpy road whose surface is approximatedby a sinusoidal function of surface wavelength ฮป. Suppose that thecar resonates when the excitation frequency equals the naturalfrequency of the car. The wheel keeps its contact with the road.Answer the speed of the car v at which the car system getsresonated.

m

๐œ†a

v

kc

Basic

Page 7: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q24 Suppose that a car of mass m is supported by a shock absorber ofwhich stiffness and damping coefficient are k and c, respectively.The car runs on a sinusoidal surface at velocity v. The surfacewavelength of the road is ฮป. The position of the car from theaverage surface level is denoted by x. Answer the followingproblems.(1) Establish the equation of motion of the system about x.(2) Answer the natural frequency of the system given c = 0.(3) When ๐‘ 0, answer the vibratory amplitude of the car at the 

steady state.

m

๐œ†2ฮด

v

kcx(t)

Basic

Q25 Answer the steadyโ€state response of the system described by๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘“ ๐‘๐‘œ๐‘ ๐œ” ๐‘ก ๐‘“ sin ๐œ” ๐‘กwhere ๐‘˜ 10 N/m, ฮถ = 0.1, ๐‘Ÿ ๐œ” /๐‘ 1/2, ๐‘Ÿ ๐œ” /๐‘ 3/2,and f1 = f2 = 1 N.

Basic

Q26 Consider a massโ€spring system shown in the figure. The mass isvibrated by a harmonic displacement through a spring. m = 10 kg, k1= 3,000 N/m, k2 = 6,000 N/m, and c = 300 Nใƒปs/m. The harmonicdisplacement is ๐‘ฆ acos ๐œ”๐‘ก where ๐‘Ž 0.002 m and ๐œ” 8๐œ‹ rad/s.1) Answer the equation of motion of the system.2) Answer the motion of the mass.3) Answer the reaction force received by P.

m

๐‘ฆ ๐‘Žcos ๐œ”๐‘ก๐‘ฅ๐‘˜

๐‘˜ P

๐‘Basic

When the equation of motion of a damped 1โ€D.O.F. system isgiven by ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ acos ๐œ”๐‘ก,its steady state response becomes๐‘ฅ ๐›ฟ1 ๐‘Ÿ 2๐œ๐‘Ÿ cos ๐œ”๐‘ก ๐›ฝ๐›ฝ Tan ๐‘๐œ”๐‘˜ ๐‘š๐œ”where ๐œ is the damping ratio of the system: . Draw theamplitude and phase curves using the following form, providedthat 0 ๐œ 1/ 2.Note that the sketched curves do not need to be precise; however,consider what kind of characteristics should be captured.

Q27 Complete the rough sketch of the amplitudes and phases of theforced vibration of 1โ€D.O.F. system.

Basic

Page 8: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Amplitu

de

0

ฮด

๐‘Ÿ ๐œ”๐‘10

-ฯ€/2

-ฯ€

Phase

2

R1 The figure shows a pendulum with a movable pivot. The weightlesspivot freely moves along the xโ€axis with no friction. The length ofthe rod is l and its weight is negligible. ฮธ = 0 at its equilibriumposition. The equation of motion for this system is obtained asfollow. The moment by the gravity and moving pivot is๐‘€ ๐‘š๐‘”๐‘™sin๐œƒ ๐‘š๐‘ฅ ๐‘™cos๐œƒ.From the law of motion, ๐‘€ ๐‘š๐‘™ ๐œƒ.Using the smallโ€angleโ€assumption, the equation is rewritten as๐‘š๐‘™ ๐œƒ ๐‘š๐‘”๐‘™๐œƒ ๐‘š๐‘ฅ ๐‘™.By removing ml, we obtain๐‘™๐œƒ ๐‘”๐œƒ ๐‘ฅ .Using the relation between ฮธ and x,๐œƒ ๐‘ฅ ๐‘ฅ๐‘™ ,

Intermediate

By removing ฮธ and using x, we obtain ๐‘ฅ ๐‘ฅ ๐‘ฅ .When the moving pivot is excitedas ๐‘ฅ ๐‘Žsin๐œ”๐‘ก , answer thefollowing problems.1) Answer the amplitude of this

system X using the naturalangular frequency p, ฯ‰, l, andg.

2) When ๐‘ฅ ๐‘‹sin๐œ”๐‘ก , themiddle point of the rod doesnot move. Find ฯ‰ for thiscondition.

m

x0

O

x

ฮธ

g

l

S1 Consider a vibration system shown in the figure. A point mass issupported by two wheels through pairs of a spring and dashpot.The mass vibrates along xโ€axis. The wheels run on the wavysurfaces of spatial periods ๐‘™ and ๐‘™ . At ๐‘ก 0 , the wheels pass bypoints A and B at which the surfaces are highest. The position ofthe mass is denoted by x, and ๐‘ฅ 0 at its static equilibrium onpoints A and B. We consider the steady state of vibration. Answerthe following problems.

(1) Find the displacement of wheel 1 along xโ€axis as a function of t.(2) Find the equation of motion of the system about x.(3) Find the velocity v at which the amplitude of the mass becomes

maximum when ๐‘˜ ๐‘˜ ๐‘˜, ๐‘ ๐‘ ๐‘, ๐‘Ž ๐‘Ž ๐‘Ž, and๐‘™ ๐‘™ ๐‘™.ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†๏ผŽ2016ๅนดๅบฆๆฑๅŒ—ๅคงๅญฆๅคงๅญฆ้™ข

Page 9: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

m

๐‘™a1

v

k1c1

A

B

๐‘ก 0

๐‘™k2c2x

S2 Consider a rigid rod of zero weight rotating around pivot O. Themass m is attached at each end. The rotation angle of the rod isdenoted by ฮธ, and ฮธ = 0 at the equilibrium position. As is shown inthe figure, one end is connected to the wall by way of a springโ€damper unit. A forced displacement is applied to the other endthrough a damper. You may use a small angle assumption: sin ๐œƒ ~๐œƒ.The gravity force does not act on the system. Answer the followingproblems.(1) Answer the mass moment of inertia of the rod about O.(2) Establish the equation of motion of the system about ฮธ.(3) Answer ฮธ as a function of t at the steady state.(4) At the steady state, find a condition under which the forced

displacement and the motion of mass 2 are synchronized withno phase difference.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†๏ผŽ2016ๅนดๅบฆๅๅคๅฑ‹ๅคงๅญฆ

k

c

m

m

O

ฮธ

l

l

๐‘ฅ ๐‘ก ๐‘‹sin๐œ”๐‘กtc

mass 2

mass 1

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†๏ผŽ2016ๅนดๅบฆๅๅคๅฑ‹ๅคงๅญฆ

A Translate the following paragraph about forced vibration intoJapanese.

Mechanical vibrations can transmit for long distances through thestructure of a building. A related problem is the isolation ofvibrationโ€sensitive machines from the normally occurringdisturbances in a building. Examples of sensitive machines includesurgical microscopes, electronic equipment, lasers, MRI units, andcomputer disk drives. For minimum transmissibility (maximumisolation), the excitation frequency should be as high above thenatural frequency of the isolation system as possible. The inclusionof damping has the greatest effect in the vicinity of resonance,decreasing the vibration amplitude. A curious effect of damping isthat it results in increased amplitude at frequencies greater than2๐‘.

Page 10: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

B Translate the following sentences about resonance into Japanese.

When vibrations of an undamped system are initiated, the motion issustained at the systemโ€™s natural frequency without additional energyinput. Thus, when the frequency of excitation is the same as thenatural frequency, the total energy increases because of the workdone by the external force and leads to a continual increase inamplitude. When the frequency of excitation is different from thenatural frequency, the work input is necessary to sustain motion atthe excitation frequency.

Modified from: G. Kelly, Mechanical vibrations, Cengage Learning

C  Translate the following paragraph about the resonance of undamped system.

When the system is undamped and the frequency of the excitationcoincides with the natural frequency of the system, resonance occurs.Below the resonance point, the object oscillates in phase with theexcitation. Above the resonance point, the oscillation lags behind theexcitation by ฯ€ rad. At the resonance point, the phase delay of theoscillation is ฯ€/2 rad. Resonance is a dangerous condition in amechanical system and will produce unwanted large displacements orlead to failure.

Excitation: application of harmonic force or displacement to the system, ๅŠฑๆŒฏ

D Translate into Japanese the following paragraph about the resonanceof an undamped singleโ€D.O.F. system.

When the forcing frequency ฯ‰ equals the natural frequency of anundamped vibration system, the amplitude of the steady stateresponse theoretically becomes infinite. This phenomenon is calledresonance. The frequency at which this occurs is called the resonancefrequency or resonant point. The phase difference between theharmonic force and the displacement of the system is exactly โ€90o atthis frequency.

E Translate the following paragraph about forced vibration intoJapanese.

The steadyโ€state response is the part of the response which does notdisappear as time goes on. The transient response is the part of theresponse which disappears. The general response of the dampedsingle DOF system is written by๐‘ฅ ๐ด๐‘’ cos ๐‘ ๐‘ก ๐œ™ cos ๐œ”๐‘ก ๐›ฝ .

This equation contains the exponential term ๐‘’ which disappears,and the steadyโ€state response is๐‘ฅ cos ๐œ”๐‘ก ๐›ฝ .

Page 11: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

COLUMN: 1ๅ˜ไฝๅ–ๅพ—ใซๅฟ…่ฆใชๅญฆ็ฟ’ๆ™‚้–“ใฏ1้€ฑ้–“+ฮฑ

ๅคงๅญฆ่จญ็ฝฎๅŸบๆบ–ใซใ‚ˆใ‚‹ใจ1ๅ˜ไฝใฎๅ–ๅพ—ใซๅฟ…่ฆใชๅญฆ็ฟ’ๆ™‚้–“ใฏ45ๆ™‚้–“ใจใ•ใ‚Œใฆใ„ใพใ™๏ผŽ1้€ฑ้–“ใฎๅŠดๅƒๆ™‚้–“ใฎ็›ฎๅฎ‰ใŒ40ๆ™‚้–“ใงใ™ใฎใง๏ผŒ45ๆ™‚้–“ใฏ1้€ฑ้–“ใฎๅŠดๅƒๆ™‚้–“ใซ1ๆ—ฅใ‚ใŸใ‚Š1ๆ™‚้–“ใ‚’ๅŠ ใˆใŸๆ™‚้–“ใซ็›ธๅฝ“ใ—ใพใ™๏ผŽ้€šๅธธ๏ผŒ่ฌ›็พฉ็ง‘็›ฎใฏ2ๅ˜ไฝใจใชใฃใฆใ„ใพใ™ใฎใง๏ผŒไธ€ใคใฎ่ฌ›็พฉใ‚’ไฟฎๅพ—ใ™ใ‚‹ใŸใ‚ใซใฏ2้€ฑ้–“็›ฎใ„ใฃใฑใ„ใฎๅญฆ็ฟ’ใŒๅฟ…่ฆใงใ™๏ผŽใ“ใฎๅŽŸ็†ใ‹ใ‚‰่€ƒใˆใ‚‹ใจ๏ผŒ1ใ‚ปใƒกใ‚นใ‚ฟใƒผ๏ผˆ4ใ‚ซๆœˆ๏ผ‰ใงๅ–ๅพ—ๅฏ่ƒฝใชๅ˜ไฝใฏ๏ผŒ16ๅ˜ไฝใจใ„ใ†ใ“ใจใซใชใ‚Šใพใ™๏ผŽ่ฌ›็พฉใฎๆ•ฐใงใฏ๏ผŒ8็ง‘็›ฎใซใชใ‚Šใพใ™๏ผŽ็š†ใ•ใ‚“ใฎๅญฆ็ฟ’ๆ™‚้–“ใฏใฉใ†ใชใฃใฆใ„ใพใ™ใ‹๏ผŸ

โ€ข ใ“ใฎๆผ”็ฟ’ๅ•้กŒใซใฏ่งฃ็ญ”ไพ‹ใซ่ชคใ‚ŠใŒๅซใพใ‚Œใฆใ„ใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™๏ผŽๅˆใ‚ใซ๏ผŒ่ชคใ‚Šใ‚’่ฆ‹ใคใ‘ใฆใใ‚ŒใŸไบบใซใฏ๏ผŒๆœ€็ต‚ๆˆ็ธพใซ2็‚นใ‚’ๅŠ ็‚นใ—ใพใ™๏ผŽ2ๅ•็›ฎไปฅ้™ใฏ1็‚นใšใคใ‚’ๅŠ ็‚นใ—ใพใ™๏ผŽ

COLUMN: ๆŒฏๅ‹•ใฎๆ˜ ๅƒใ‚’่ฆ‹ใ‚ˆใ†

ใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใซใฏ็„กๆ–™ใง้–ฒ่ฆงใงใ๏ผŒๆŒฏๅ‹•ๅทฅๅญฆใฎ็†่งฃใซๅฝน็ซ‹ใคๅ‹•็”ปใŸใใ•ใ‚“ใ‚ใ‚Šใพใ™๏ผŽ่ฌ›็พฉใงใฏ๏ผŒใฉใ†ใ‚‚ใ—ใฆใ‚‚ๅŽŸ็†ใƒปๅŽŸๅ‰‡ใฎ่ชฌๆ˜Žใซ็ต‚ๅง‹ใ—ใฆใ—ใพใ„ใพใ™ใŒ๏ผŒ็š†ใ•ใ‚“ใซๆŒฏๅ‹•ๅทฅๅญฆใฎ้ข็™ฝใ•ใจ้‡่ฆใ•ใ‚’็†่งฃใ—ใฆใ‚‚ใ‚‰ใ†ใŸใ‚ใซใ“ใ‚Œใ‚‰ใฎๅ‹•็”ปใ‚’่ฆ‹ใฆๆฌฒใ—ใ„ใงใ™๏ผŽ

ๆŒฏๅ‹•ใฎไธ–็•Œ http://www.kagakueizo.org/movie/industrial/333/Youtubeๆคœ็ดขใ‚ญใƒผใƒฏใƒผใƒ‰ [ๅ…ฑๆŒฏ, Tacoma bridge, ๆธ›่กฐๆŒฏๅ‹•, Mass damper]

Answer:

๐‘“ ๐‘ก ๐‘š๐‘™ ๐œ” sin ๐œ”๐‘กQ1.a) ๐‘€ ๐‘š ๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘š๐‘™๐œ” sin ๐œ”๐‘กb)

๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘ฅ 0Q2.a) ๐‘š๐‘ฅ ๐‘ ๐‘ฅ ๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘ฅ 0b)

Q3. ๐ผ๐œƒ ๐‘๐œƒ ๐‘˜ ๐œƒ ๐œƒ 0a) ๐ผ๐œƒ ๐‘ ๐œƒ ๐‘›๐‘› ๐œƒ ๐‘˜๐œƒ 0b)

Q4. ๐ผ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘˜๐‘™ ๐œƒ ๐‘“๐‘™

๐‘ฅ ๐น๐œ”๐‘˜ ๐‘š๐œ” 1๐‘ sin ๐‘๐‘ก ๐น๐‘˜ ๐‘š๐œ” sin ๐œ”๐‘ก

Q5.

a)

b)

๐œ” 12 ๐‘, 32 ๐‘c) d)

๐‘š๐‘™ ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ ๐‘˜๐‘™ ๐‘ฅQ6.

๐‘ฅ ๐‘ฃ ๐น๐œ”๐‘˜ ๐‘š๐œ” 1๐‘ sin ๐‘๐‘ก ๐น๐‘˜ ๐‘š๐œ” sin ๐œ”๐‘ก๐œ” 11๐‘

(๐‘ )

(๐‘ )

Page 12: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q7. ๐‘š 1,000kg Q8.

A. ๐œ” 500,   ๐œ” 5500

้‹ๅ‹•ๆ–น็จ‹ๅผใฏ๐‘š๐‘ฅ ๐น cos ๐œ”๐‘ก ๐‘˜๐‘ฅ ๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐น cos ๐œ”๐‘ก่งฃใ‚’ ๐‘ฅ ๐‘‹cos๐œ”๐‘ก ใจไปฎๅฎšใ™ใ‚‹ใจ๐‘š๐œ” ๐‘‹ ๐‘˜๐‘‹ cos๐œ”๐‘ก ๐น cos ๐œ”๐‘ก

๐‘š๐œ” ๐‘˜ ๐‘‹ ๐นไธก่พบใฎไฟ‚ๆ•ฐใ‚’ๆฏ”่ผƒ ๐‘‹ ๐น๐‘š๐œ” ๐‘˜ๆŒฏๅน…ใŒ2 mmใ‚ˆใ‚Šๅฐใ•ใ„๐œ”ใ‚’ๆฑ‚ใ‚ใ‚‹ใซใฏ๐‘‹ ๐น๐‘š๐œ” ๐‘˜ 2 10 m๐‘š 100 kg, ๐‘˜ 3 10 N/m, ๐น 500 N ใ‚’ไปฃๅ…ฅ๐น๐‘š๐œ” ๐‘˜ 2 10 ๐น๐‘š๐œ” ๐‘˜ 2 10

ใŒๆˆ็ซ‹ใ™ใ‚‹

Q10 ๐‘š ๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘ฅ๐‘š ๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘ฅ 0

Amplitu

de

0

ฮด

๐‘Ÿ ๐œ”๐‘10

-ฯ€/2

-ฯ€Ph

ase

2

ๅ‘จๆณขๆ•ฐใŒๅฐใ•ใ„ใจใใฏ๏ผŒๆŒฏๅน…ใฏใปใจใ‚“ใฉ้™ใŸใ‚ใฟใซ็ญ‰ใ—ใ„

r = 1 ใฎใจใ๏ผŒๆŒฏๅน…ใฏ็™บๆ•ฃใ™ใ‚‹

ๅ‘จๆณขๆ•ฐใŒๅคงใใใชใ‚‹ใจ๏ผŒๆŒฏๅน…ใฏใฉใ‚“ใฉใ‚“ๅฐใ•ใใชใ‚‹

r > 1 ใฎใจใ

ใฏ๏ผŒไฝ็›ธๅทฎใฏฯ€ ใซใชใ‚‹

r = 1 ใฎใจใ

ใฏ๏ผŒไฝ็›ธๅทฎใฏฯ€/2 ใซใชใ‚‹

r < 1 ใฎใจใใฏ๏ผŒไฝ็›ธๅทฎใชใ„

Q11

Page 13: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q12 10 2 rad/s

Q13

rad/s rad/s

Q14(1) ๐‘š๐‘™ ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘˜๐‘™ ๐œƒ 2๐‘™๐นcos๐œ”๐‘ก(2) ๐œƒ 2๐‘™๐น๐‘˜๐‘™ ๐‘š๐‘™ ๐œ” ๐‘๐‘™ ๐œ” cos ๐œ”๐‘ก ๐œ™2๐น๐‘™ ๐‘˜ ๐‘š๐œ” ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™ ๐œ™ Tan ๐‘๐œ”๐‘˜ ๐‘š๐œ”

Q14(3)

๐‘˜๐‘š 1 2๐œ 0ๅ…ฑๆŒฏใ™ใ‚‹ๆกไปถใฏ๏ผŒๅ…ฑๆŒฏๅ‘จๆณขๆ•ฐใŒ 0 ใ‚ˆใ‚Šๅคงใใ„ใ“ใจใงใ‚ใ‚‹ใ‹ใ‚‰๏ผŒ

๐œ 12ใŒ๏ผŒๅ…ฑๆŒฏใŒ็”Ÿใ˜ใ‚‹ใŸใ‚ใฎๆธ›่กฐ็Ž‡ใฎๆœ€ๅฐๅ€คใจใชใ‚‹๏ผŽใ—ใŸใŒใฃใฆ๏ผŒ๐œ ๐‘2 ๐‘š๐‘˜ 12 ๐‘ 2๐‘š๐‘˜

Q151) ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘๐‘Ž๐œ”sin ๐œ”๐‘ก2) ๐‘‹ ๐‘๐‘Ž๐œ”๐‘˜ ๐‘š๐œ” ๐‘๐œ”3) ๐œ” ๐‘˜๐‘š4) ๐‘‹ ๐‘Ž with no respect to c value.

Q16

1) 13 ๐‘š๐‘™ ๐œƒ ๐‘™ ๐‘๐œƒ ๐‘™2 ๐‘˜๐œƒ ๐น ๐‘™cos ๐œ”๐‘ก2) 0.029 rad

๐‘ฅ ๐‘‹ cos ๐œ”๐‘ก ๐‘‹ sin ๐œ”๐‘ก ใจใ—ใฆ

1)ใซไปฃๅ…ฅใ—๏ผŒ๐‘‹ ๐‘‹ ๐‘‹ ใจใ›ใ‚ˆ๏ผŽ

2)ใ‚’ฯ‰2ใงๅพฎๅˆ†ใ—๏ผŒใใฎๅพฎๅˆ†ๅ€คใŒ0ใจใชใ‚‹ใ‚ˆใ†ใชฯ‰ใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ

Page 14: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q171) ๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐‘Ž๐‘˜cos ๐œ”๐‘ก2) ๐‘‹ ๐‘Ž1 ๐œ”๐‘ 0.0062 6.2 mm

Q181) ๐‘ 2 rad/s

2)

๐‘€ 11 ๐œ”๐‘ 2๐œ๐œ”๐‘

11 ๐‘Ÿ 2๐œ๐‘Ÿ๐œ” ๐‘ 1 2๐œ ๐œ” | . 1.4 rad/s ๐œ” | . 1.28 rad/s

๐‘€ 12๐œ 1 ๐œ ๐‘€ . 5.0 ๐‘€ , . 1.74

Q183) ๐‘€ ๐‘‹๐›ฟ 32210 12๐œ 1 ๐œ ๐œ 0.4

๐œ 0.4ไปฅไธŠใจใชใ‚‹ใŸใ‚ใซใฏ c > 5.6 Ns/m

Q19 ๐‘‹ ๐น|๐‘˜ ๐‘š๐œ” |ใ‚’ไฝฟใ†๏ผŽ

๐‘š 2.533 โ€ฆ kg๐‘˜ 42,000 N/m๐‘ 128.77.. rad/s20.494. . Hz

Q201) ๐‘˜~2.0 10 N/m

็„กๆธ›่กฐ็ณปใงใฎๅŠ›ไผ้”็Ž‡ ๐‘‡ 11 ๐œ”๐œ” ๐‘‡ 0.1ไผ้”็Ž‡ใŒ10%ๆœชๆบ€ใซใชใ‚‹ใจใ„ใ†ใ“ใจใฏ๏ผŒฯ‰ใŒๅ›บๆœ‰ๆŒฏๅ‹•ๆ•ฐใ‚ˆใ‚Šใ‚‚ๅคงใใ„ใจใใงใ‚ใ‚‹

ใฎใง๏ผŒ1 0 ใงใ‚ใ‚‹๏ผˆไฝ็›ธใŒๅ่ปขใ™ใ‚‹๏ผ‰ใ“ใจใซ็•™ๆ„ใ—ใฆ๏ผŒ11 ๐œ”๐œ” 0.1 11 ๐œ”๐œ” 11 2๐œ‹ ยท 17๐‘˜/20๐‘˜ 2.0744 10 N/m

2) ฮถ > 0.177, c > 227 Nใƒปs/m

ๆธ›่กฐ็ณปใงใฎๅŠ›ไผ้”็Ž‡ ๐‘‡ 1 4๐œ ๐œ”๐œ”1 ๐œ”๐œ” 4๐œ ๐œ”๐œ” 3

ไปŠ๏ผŒ๐œ” ๐œ” ใชใฎใง๏ผŒ1 4๐œ4๐œ 3 132 ๐œ 0.17678 ๐œ

Page 15: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q211) 2)22.1 ๐œ‡m 0.092 3) 33.12 N

1) ๐‘‹ ๐น/๐‘˜1 ๐œ”๐‘ 2๐œ ๐œ”๐‘

360/7600001 4.73 2 ยท 0.18 ยท 4.73

๐‘ ๐‘˜๐‘š 760000120 79.58 โ€ฆ ๐œ” 2๐œ‹ 360060 376.99 โ€ฆ๐œ”๐‘ 376.9979.58 4.73 โ€ฆ

360/7600001 4.73 2 ยท 0.18 ยท 4.73 2.209 10

Q212) ๐‘‡ ๐น๐น ๐‘˜ ๐‘ ๐œ” ๐‘‹๐น ๐‘˜ ๐‘ ๐œ” ๐‘‹๐‘˜๐›ฟ1 2๐œ 1 2 ยท 0.18 ยท 4.73 0.092 โ€ฆ

๐‘‹ 2.209 10๐›ฟ ๐น๐‘˜ 4.74 โ€ฆ 103) 360 N 0.092 33.12 N

Q22 ๐‘˜ ๐‘š๐œ”3Q23 ๐‘ฃ ๐œ†2๐œ‹ ๐‘˜๐‘š

Q24(1)

๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘๐œ”๐›ฟ cos ๐œ”๐‘ก ๐‘˜๐›ฟ sin ๐œ”๐‘ก๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘๐œ”๐›ฟ sin ๐œ”๐‘ก ๐‘˜๐›ฟ cos ๐œ”๐‘ก๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐›ฟ ๐‘˜ ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™๐œ” 2๐œ‹๐‘ฃ๐œ†

๐œ™ Tan ๐‘๐œ”๐›ฟ๐‘˜๐›ฟไธŠ่จ˜ใฎ3ๅฝขๆ…‹ใฎใ„ใšใ‚Œใ‚‚ๆญฃ่งฃใงใ‚ใ‚‹๏ผŽ(3)ใฎๅ›ž็ญ”ใซใ‚‚ใฃใจใ‚‚ๅฎนๆ˜“ใซใŸใฉใ‚Š็€ใใฎใฏ๏ผŒ3็•ช็›ฎใฎๅฝขๆ…‹ใงใ‚ใ‚‹๏ผŽ

(2) ๐œ” ๐‘˜๐‘š(3) ๐›ฟ ๐‘˜ ๐‘๐œ”๐‘˜ ๐‘š๐œ” ๐‘๐œ”

Page 16: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Q24(1)

๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐‘๐œ”๐›ฟ sin ๐œ”๐‘ก ๐‘˜๐›ฟ cos ๐œ”๐‘ก๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐›ฟ ๐‘˜ ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™

T 2๐œ‹๐œ” ๐œ†๐‘ฃ

โˆต ๐œ™ Tan ๐‘๐œ”๐‘˜

่ง’ๅ‘จๆณขๆ•ฐ๐œ” โ‡’ 1ๅ‘จๆœŸใซใ‹ใ‹ใ‚‹ๆ™‚้–“Tใซใคใ„ใฆ็ญ‰ๅผใ‚’็ซ‹ใฆใ‚‹๐œ” 2๐œ‹๐‘ฃ๐œ†

่ฉณ่งฃ

ๅŸบ็คŽใฎ่ชฟๅ’Œๅค‰ไฝใ‚’ใ€ y ๐›ฟcos๐œ”๐‘ก ใจใ™ใ‚‹

๐‘š๐‘ฅ ๐‘ ๐‘ฅ ๐‘ฆ ๐‘˜ ๐‘ฅ ๐‘ฆใฐใญใฎไผธใณใฏ๐‘ฅ ๐‘ฆใ€ใƒ€ใƒณใƒ‘ใฎไธก็ซฏใฎ็›ธๅฏพ้€Ÿๅบฆใฏ๐‘ฅ ๐‘ฆใชใฎใง

๐‘š๐‘ฅ ๐‘ ๐‘ฅ ๐œ”๐›ฟ sin ๐œ”๐‘ก ๐‘˜ ๐‘ฅ ๐›ฟ cos ๐œ”๐‘ก(2) c 0ใชใฎใง้‹ๅ‹•ๆ–น็จ‹ๅผใฏ ๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐‘˜๐›ฟ cos ๐œ”๐‘ก

ๅ›บๆœ‰่ง’ๆŒฏๅ‹•ๆ•ฐ๐‘ใฏ ๐‘ ๐‘š๐‘˜

Q24(3)

๐›ฟ ๐‘˜ ๐‘๐œ”๐‘˜ ๐‘š๐œ” ๐‘๐œ”

่งฃใ‚’ ๐‘ฅ ๐‘‹ cos ๐œ”๐‘ก ๐œ™ ๐‘‹ sin ๐œ”๐‘ก ๐œ™ ใจไปฎๅฎšใ™ใ‚‹

้‹ๅ‹•ๆ–น็จ‹ๅผ

๐‘˜ ๐‘š๐œ” ๐‘‹ ๐‘๐œ”๐‘‹ cos ๐œ”๐‘ก ๐œ™ ๐‘๐œ”๐‘‹ ๐‘˜ ๐‘š๐œ” ๐‘‹ sin ๐œ”๐‘ก ๐œ™๐›ฟ ๐‘˜ ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™ไธก่พบใฎไฟ‚ๆ•ฐใ‚’ๆฏ”่ผƒใ™ใ‚‹ใจ๐‘˜ ๐‘š๐œ” ๐‘‹ ๐‘๐œ”๐‘‹ ๐›ฟ ๐‘˜ ๐‘๐œ” ๐‘๐œ”๐‘‹ ๐‘˜ ๐‘š๐œ” ๐‘‹ 0

๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ ๐›ฟ ๐‘˜ ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™

๐‘‹ , ๐‘‹ ใ‚’ๆฑ‚ใ‚ใ€่งฃ ๐‘ฅ ใซไปฃๅ…ฅ

๐‘ฅ ๐‘˜ ๐‘š๐œ” ๐›ฟ ๐‘˜ ๐‘๐œ”๐‘˜ ๐‘š๐œ” ๐‘๐œ” cos ๐œ”๐‘ก ๐œ™ ๐‘๐œ”๐›ฟ ๐‘˜ ๐‘๐œ”๐‘˜ ๐‘š๐œ” ๐‘๐œ” sin ๐œ”๐‘ก ๐œ™ใ‚ˆใฃใฆๆฑ‚ใ‚ใ‚‹ๆŒฏๅน…ใฏ

Q25 0.132 cos ๐œ” ๐‘ก 0.132 0.075 sin ๐œ” ๐‘ก 0.235 Q26

1) ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘˜ ๐‘ฅ ๐‘ฆ 0 ใ‚‚ใ—ใใฏ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜ ๐‘˜ ๐‘ฅ ๐‘Ž๐‘˜ cos ๐œ”๐‘ก2) ๐‘ 30 rad/s, ๐œ 0.5, ๐›ฟ 10 m๐‘ฅ 1.5 10 cos 8๐œ‹๐‘ก 1.233) ๐น ๐‘˜ ๐‘ฆ ๐‘ฅ6000 2 10 cos 8๐œ‹๐‘ก 1.5 10 cos 8๐œ‹๐‘ก 1.2312.4 cos 8๐œ‹๐‘ก 0.76 N

Page 17: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

Amplitu

de

0

ฮด

๐‘Ÿ ๐œ”๐‘10

-ฯ€/2

-ฯ€

Phase

2

ๅ‘จๆณขๆ•ฐใŒๅฐใ•ใ„ใจใใฏ๏ผŒๆŒฏๅน…ใฏใปใจใ‚“ใฉ้™ใŸใ‚ใฟใซ็ญ‰ใ—ใ„

r ~ 1 ใฎใจใ๏ผŒๆŒฏๅน…

ใฏๆœ€ๅคงใซใชใ‚‹๏ผˆ็™บๆ•ฃใฏใ—ใชใ„๏ผ‰

ๅ‘จๆณขๆ•ฐใŒๅคงใใใชใ‚‹ใจ๏ผŒๆŒฏๅน…ใฏใฉใ‚“ใฉใ‚“ๅฐใ•ใใชใ‚‹

r > 1 ใฎใจใ

ใฏ๏ผŒไฝ็›ธๅทฎใฏฯ€ ใซ่ฟ‘ไป˜ใ

r = 1 ใฎใจใ

ใฏ๏ผŒไฝ็›ธๅทฎใฏฯ€/2 ใซใชใ‚‹

Q27 R11) ๐‘‹ ๐‘Ž ๐‘”๐‘™๐‘”๐‘™ ๐œ” 2) ๐œ” 2 ๐‘”๐‘™

S1

(1) ๐‘Ž cos2๐œ‹ ๐‘ฃ๐‘ก๐‘™(2) ๐‘ฆ ๐‘Ž cos2๐œ‹ ๐‘ฃ๐‘ก๐‘™๐‘ฆ ๐‘Ž cos2๐œ‹ ๐‘ฃ๐‘ก๐‘™ ใจใŠใ„ใฆ๏ผŒ

๐‘š๐‘ฅ ๐‘ ๐‘ฆ ๐‘ฅ ๐‘ ๐‘ฆ ๐‘ฅ ๐‘˜ ๐‘ฆ ๐‘ฅ ๐‘˜ ๐‘ฆ ๐‘ฅใ‚‚ใ—ใใฏ๐‘š๐‘ฅ ๐‘ ๐‘ ๐‘ฅ ๐‘˜ ๐‘˜ ๐‘ฅ ๐‘ ๐‘ฆ ๐‘ ๐‘ฆ ๐‘˜ ๐‘ฆ ๐‘˜ ๐‘ฆ

(3)

๐‘š๐‘ฅ 2๐‘๐‘ฅ 2๐‘˜๐‘ฅ 2๐‘๐‘ฆ 2๐‘˜๐‘ฆ๐‘ฆ ๐‘Žcos2๐œ‹ ๐‘ฃ๐‘ก๐‘™ ๐‘Žcos๐œ”๐‘ก ใจใŠใใจ๏ผŒ้‹ๅ‹•ๆ–น็จ‹ๅผใฏ๏ผŒ

ใจใชใ‚‹๏ผŽๅณ่พบใ‚’ๅค‰ๆ›ใ—๏ผŒ๐‘š๐‘ฅ 2๐‘๐‘ฅ 2๐‘˜๐‘ฅ 2๐‘๐‘Ž๐œ”sin๐œ”๐‘ก 2๐‘˜๐‘Žcos๐œ”๐‘ก2๐‘Ž ๐‘˜ ๐‘ ๐œ” cos ๐œ”๐‘ก ๐œ™ใ‚’ๅพ—ใ‚‹๏ผŽ๐‘€๐‘ฅ ๐ถ๐‘ฅ ๐พ๐‘ฅ ๐นcos๐œ”๐‘ก ใŒไธŽใˆใ‚‰ใ‚Œใฆใ„ใ‚‹ๆ™‚๏ผŒxใฎๆŒฏๅน…ใฏ๐น๐พ ๐‘€๐œ” ๐‘๐œ” ใงใ‚ใ‚Š๏ผŒๅ…ฑๆŒฏ็‚นใฏ

๐พ๐‘€ 1 2๐œใงใ‚ใ‚‹๏ผŽใ—ใŸใŒใฃใฆ ๐œ” 2๐œ‹ ๐‘ฃ๐‘™ 2๐‘˜๐‘š 1 ๐‘๐‘š๐‘˜ ใ‹ใ‚‰

Page 18: Exercise of mechanical vibration (Forced vibration) Q2 Obtain ...Exercise of mechanical vibration (Forced vibration) ๐‘€ Q1Africtionlesscartisconnectedtothewallbywayofaspringand damperasisshowninthefigure.Onthecartofmass๐‘€,an

๐‘ฃ 1๐œ‹ ๐‘˜2๐‘š ๐‘š๐‘˜ ๐‘๐‘š๐‘˜ ๐‘™ S2(1) ๐ผ 2๐‘š๐‘™(2) ๐ผ๐œƒ ๐‘๐‘™ ๐‘™๐œƒ ๐‘ฅ ๐‘๐‘™ ๐œƒ ๐‘™ ๐‘˜๐œƒ 0๐ผ๐œƒ 2๐‘๐‘™ ๐œƒ ๐‘™ ๐‘˜๐œƒ ๐‘™๐‘๐‘‹๐œ” cos ๐œ”๐‘ก(3) c 2๐‘๐‘™ ๐‘˜โ€ฒ ๐‘™ ๐‘˜ ๐น ๐‘™๐‘๐‘‹๐œ” ใจใ—ใฆ๐œƒ ๐น๐‘˜ ๐ผ๐œ” ๐‘โ€ฒ๐œ” cos ๐œ”๐‘ก ๐œ™(4)

๐œ™ tan ๐‘ ๐œ”๐‘˜ ๐ผ๐œ”๐œ™ ๐œ‹/2 ใฎใจใใงใ‚ใ‚Š๏ผŒ๐‘˜ ๐ผ๐œ” ใŒๆกไปถ

B  ๆธ›่กฐใฎ็„กใ„็ณปใงๆŒฏๅ‹•ใŒๅง‹ใพใ‚‹ใจ๏ผŒใ•ใ‚‰ใชใ‚‹ใ‚จใƒใƒซใ‚ฎใƒผๅ…ฅๅŠ›ใŒใชใ„้™

ใ‚Šใฏ๏ผŒใใฎ้‹ๅ‹•ใฏ็ณปใฎๅ›บๆœ‰ๆŒฏๅ‹•ใง็ถญๆŒใ•ใ‚Œใ‚‹๏ผŽๅŠ ๆŒฏใฎๅ‘จๆณขๆ•ฐใŒๅ›บๆœ‰ๆŒฏๅ‹•ใจๅŒใ˜ใจใ๏ผŒ็ณปใฎใ‚จใƒใƒซใ‚ฎใƒผใฎๅˆ่จˆใฏๅค–ๅŠ›ใŒๆˆใ™ไป•ไบ‹ใซใ‚ˆใฃใฆๅข—ใˆ๏ผŒๆŒฏๅน…ใฎ้€ฃ็ถš็š„ใชๅข—ๅŠ ใซใคใชใŒใ‚‹๏ผŽๅŠ ๆŒฏๅ‘จๆณขๆ•ฐใŒๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใจ็•ฐใชใ‚‹ใจใ๏ผŒๅŠ ๆŒฏๅ‘จๆณขๆ•ฐใงใฎ้‹ๅ‹•ใ‚’็ถญๆŒใ™ใ‚‹ใŸใ‚ใซใฏไป•ไบ‹ใฎๅ…ฅๅŠ›ใŒๅฟ…่ฆใงใ‚ใ‚‹๏ผŽ

A ๆฉŸๆขฐๆŒฏๅ‹•ใฏๅปบ็‰ฉใฎๆง‹้€ ใ‚’้€šใ˜ใฆ้•ท่ท้›ขใ‚’ไผๆ’ญใ—ๅพ—ใ‚‹๏ผŽใ“ใ‚Œใซ้–ขใ™ใ‚‹ไธ€ใค

ใฎๅ•้กŒใฏ๏ผŒๆŒฏๅ‹•ใซๅผฑใ„ๆฉŸๆขฐใ‚’ๅปบ็‰ฉใฎไธญใง้€šๅธธ็”Ÿใ˜ใ‚‹ๅค–ไนฑใ‹ใ‚‰็ตถ็ธใ™ใ‚‹ใ“ใจใงใ‚ใ‚‹๏ผŽๆŒฏๅ‹•ใซๅผฑใ„ๆฉŸๆขฐใฎไพ‹ใฏ๏ผŒๆ‰‹่ก“็”จ้ก•ๅพฎ้ก๏ผŒ้›ปๅญๆฉŸๅ™จ๏ผŒใƒฌใƒผใ‚ถใƒผ๏ผŒMRI่ฃ…็ฝฎ๏ผŒใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใฎ่จ˜ๆ†ถใƒ‡ใ‚ฃใ‚นใ‚ฏใชใฉใงใ‚ใ‚‹๏ผŽไผ้”็Ž‡ใ‚’ๆœ€ๅฐๅŒ–ใ™ใ‚‹

๏ผˆ็ตถ็ธๅŠนๆžœใ‚’ๆœ€ๅคงๅŒ–ใ™ใ‚‹๏ผ‰ใŸใ‚ใซใฏ๏ผŒๅŠฑๆŒฏๅ‘จๆณขๆ•ฐใŒ็ตถ็ธ็ณปใฎๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใ‚ˆใ‚Šใ‚‚ใงใใ‚‹ใ ใ‘ๅคงใใ„ๅฟ…่ฆใŒใ‚ใ‚‹๏ผŽๆธ›่กฐใฏๅ…ฑๆŒฏ็‚นไป˜่ฟ‘ใง็ตถๅคงใชๅŠนๆžœใ‚’็™บๆฎใ—๏ผŒๆŒฏๅน…ใ‚’ๆธ›ใ˜ใ‚‹๏ผŽๆธ›่กฐใฎ่ˆˆๅ‘ณๆทฑใ„ๅŠนๆžœใฏ๏ผŒๅŠฑๆŒฏๅ‘จๆณขๆ•ฐใŒ 2๐‘ใ‚ˆใ‚Šๅคงใใ„ๅ ดๅˆใฏๆŒฏๅน…ใŒๅข—ใˆใ‚‹ใจใ„ใ†็‚นใงใ‚ใ‚‹๏ผŽ

C ็ณปใซๆธ›่กฐใŒ็„กใ๏ผŒๅŠฑๆŒฏใฎๅ‘จๆณขๆ•ฐใŒ็ณปใฎๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใจไธ€่‡ดใ™ใ‚‹ใจใ๏ผŒๅ…ฑๆŒฏใŒ็”Ÿใ˜ใ‚‹๏ผŽๅ…ฑๆŒฏ็‚นไปฅไธ‹ใงใฏ๏ผŒ็‰ฉไฝ“ใฏๅŠฑๆŒฏใจๅŒ็›ธใงๆŒฏๅ‹•ใ™ใ‚‹๏ผŽๅ…ฑๆŒฏ็‚นไปฅไธŠใงใฏ๏ผŒ็‰ฉไฝ“ใฎๆŒฏๅ‹•ใฏๅŠฑๆŒฏใซ ฯ€ rad ้…ใ‚Œใ‚‹๏ผŽๅ…ฑๆŒฏ็‚นใงใฏ๏ผŒๆŒฏๅ‹•ใฏไฝ็›ธ้…ใ‚Œใฏ ฯ€/2 rad ใงใ‚ใ‚‹๏ผŽๅ…ฑๆŒฏใฏๆฉŸๆขฐ็ณปใซใจใฃใฆๅฑ้™บใช็Šถๆ…‹ใงใ‚ใ‚Š๏ผŒๅฅฝใพใ—ใใชใ„ๅคงใใชๅค‰ไฝใ‚’็”Ÿใ˜ใŸใ‚Š๏ผŒ็ ดๅฃŠใซใคใชใŒใ‚‹๏ผŽ

D ๅผทๅˆถๆŒฏๅ‹•ใฎๅ‘จๆณขๆ•ฐฯ‰ใŒ๏ผŒๆธ›่กฐใฎ็„กใ„ๆŒฏๅ‹•็ณปใฎๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใซ็ญ‰ใ—ใ„ๆ™‚๏ผŒๅฎšๅธธ็Šถๆ…‹ใงใฎๅฟœ็ญ”ใฏ็†่ซ–ไธŠ๏ผŒ็„ก้™ใซใชใ‚‹๏ผŽใ“ใฎ็พ่ฑกใฏๅ…ฑๆŒฏใจๅ‘ผใฐใ‚Œใ‚‹๏ผŽใ“ใ‚ŒใŒ็”Ÿใ˜ใ‚‹ๅ‘จๆณขๆ•ฐใ‚’ๅ…ฑๆŒฏๅ‘จๆณขๆ•ฐใพใŸใฏๅ…ฑๆŒฏ็‚นใจใ„ใ†๏ผŽใ“ใฎๅ‘จๆณขๆ•ฐใงใฏ๏ผŒ่ชฟๅ’Œๅค–ๅŠ›ใจๆŒฏๅ‹•ๆŒฏๅน…ใฎไฝ็›ธๅทฎใฏ่ชฟๅบฆโ€90oใจใชใ‚‹๏ผŽ

E  ๅฎšๅธธๅฟœ็ญ”ใจใฏ๏ผŒๅฟœ็ญ”ใฎไธญใงใ‚‚ๆ™‚้–“ใŒ็ตŒใฃใฆใ‚‚ๆถˆๅคฑใ—ใชใ„้ƒจๅˆ†ใฎใ“ใจ

ใงใ‚ใ‚‹๏ผŽ้Žๆธกๅฟœ็ญ”ใจใฏ๏ผŒๆถˆๅคฑใ™ใ‚‹้ƒจๅˆ†ใฎใ“ใจใงใ‚ใ‚‹๏ผŽไธ€่ˆฌ็š„ใชๆธ›่กฐใฎใ‚ใ‚‹ไธ€่‡ช็”ฑๅบฆใฎ็ณปใฎๅฟœ็ญ”ใฏ ๏ผˆๅผ1๏ผ‰ ใจๆ›ธใ‘ใ‚‹๏ผŽใ“ใฎๅผใฏ๏ผŒๆถˆๅคฑใ™ใ‚‹่‡ช็„ถๅฏพๆ•ฐใฎๅบ•ใฎ้ … ๐‘’ ใ‚’ๅซใฟ๏ผŒๅฎšๅธธๅฟœ็ญ”ใฏ ๏ผˆๅผ2๏ผ‰ ใจใชใ‚‹๏ผŽ