Exercícios resolvidos - Cap. 01-Atkins (a)

22
TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 1 — #1 PART 1 Equilibrium

Transcript of Exercícios resolvidos - Cap. 01-Atkins (a)

Page 1: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 1 — #1

PART 1 Equilibrium

Page 2: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 2 — #2

Page 3: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 3 — #3

1 The properties of gases

Answers to discussion questions

D1.1 An equation of state is an equation that relates the variables that define the state of a system to each other.Boyle, Charles, and Avogadro established these relations for gases at low pressures (perfect gases) byappropriate experiments. Boyle determined how volume varies with pressure (V ∝ 1/p), Charles howvolume varies with temperature (V ∝ T ), and Avogadro how volume varies with amount of gas (V ∝ n).Combining all of these proportionalities into one we find

AQ: Pleasecheck we havechange ‘P’ to‘p’.

V ∝ nT

p.

Inserting the constant of proportionality, R, yields the perfect gas equation

V = RnT

por pV = nRT .

D1.3 Consider three temperature regions:

(1) T < TB. At very low pressures, all gases show a compression factor, Z ≈ 1. At high pressures, allgases have Z > 1, signifying that they have a molar volume greater than a perfect gas, which impliesthat repulsive forces are dominant. At intermediate pressures, most gases show Z < 1, indicatingthat attractive forces reducing the molar volume below the perfect value are dominant.

(2) T ≈ TB. Z ≈ 1 at low pressures, slightly greater than 1 at intermediate pressures, and significantlygreater than 1 only at high pressures. There is a balance between the attractive and repulsive forcesat low to intermediate pressures, but the repulsive forces predominate at high pressures where themolecules are very close to each other.

(3) T > TB. Z > 1 at all pressures because the frequency of collisions between molecules increaseswith temperature.

D1.5 The van der Waals equation ‘corrects’ the perfect gas equation for both attractive and repulsiveinteractions between the molecules in a real gas. See Justification 1.1 for a fuller explanation.

The Bertholet equation accounts for the volume of the molecules in a manner similar to the van derWaals equation but the term representing molecular attractions is modified to account for the effect oftemperature. Experimentally one finds that the van der Waals a decreases with increasing temperature.Theory (see Chapter 18) also suggests that intermolecular attractions can decrease with temperature.

Page 4: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 4 — #4

4 SOLUTIONS MANUAL

This variation of the attractive interaction with temperature can be accounted for in the equation of stateby replacing the van der Waals a with a/T .

Solutions to exercises

E1.1(a) (a) The perfect gas equation [1.8] is: pV = nRT .

Solving for the pressure gives p = nRT

V.

The amount of xenon is n = 131 g

131 g mol−1= 1.00 mol.

p = (1.00 mol) × (0.0821 dm3 atm K−1 mol−1) × (298.15 K)

1.0 dm3= 24 atm .

That is, the sample would exert a pressure of 24 atm if it were a perfect gas, not 20 atm.

(b) The van der Waals equation [1.21a] for the pressure of a gas is p = nRT

V − nb− an2

V2.

For xenon, Table 1.6 gives a = 4.137 dm6 atm mol−2 and b = 5.16 × 10−2 dm3 mol−1.Inserting these constants, the terms in the equation for p become

nRT

V − nb= (1.00 mol) × (0.08206 dm3 atm K−1 mol−1) × (298.15 K)

1.0 dm3 − {(1.00 mol) × (5.16 × 10−2 dm3 mol−1)} = 25.8 atm,

an2

V2= (4.137 dm6 atm mol−2) × (1.00 mol)2

(1.0 dm3)2= 4.137 atm.

Therefore, p = 25.8 atm − 4.137 atm = 22 atm .

E1.2(a) Boyle’s law [1.5] in the form pfVf = piVi can be solved for either initial or final pressure, hence

pi = Vf

Vi× pf,

Vf = 4.65 dm3, Vi = 4.65 dm3 + 2.20 dm3 = 6.85 dm3, pf = 5.04 bar.

Therefore,

(a) pi =(

4.65 dm3

6.85 dm3

)× (5.04 bar) = 3.42 bar .

(b) Since 1 atm = 1.013 bar, pi = (3.42 bar) ×(

1 atm

1.013 bar

)= 3.38 atm .

E1.3(a) The perfect gas law, pV = nRT [1.8], can be rearranged top

T= nR

V= constant, if n and V are constant.

Hence,pf

Tf= pi

Tior, solving for pf, pf = Tf

Ti× pi.

Internal pressure = pump pressure + atmospheric pressure.

pi = 24 lb in−2 + 14.7 lb in−2 = 38.7 lb in−2, Ti = 268 K(−5◦C), Tf = 308 K(35◦C).

pf = 308 K

268 K× 38.7 lb in−2 = 44.5 lb in−2.

Therefore, p(pump) = 44.5 lb in−2 −14.7 lb in−2 = 30 lb in−2 .

Page 5: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 5 — #5

THE PROPERTIES OF GASES 5

Complications are those factors that destroy the constancy of V or n, such as the change in volume ofthe tire, the change in rigidity of the material from which it is made, and loss of pressure by leaks anddiffusion.

E1.4(a) The perfect gas law in the form p = nRT

V[1.8] is appropriate. T and V are given; n needs to be calculated.

n = 0.255 g

20.18 g mol−1= 1.26 × 10−2 mol, T = 122 K, V = 3.00 dm3.

Therefore, upon substitution,

p = (1.26 × 10−2 mol) × (0.08206 dm3 atm K−1 mol−1) × (122 K)

3.00 dm3= 4.20 ×10−2 atm .

E1.5(a) Boyle’s law in the form pfVf = piVi is solved for Vf: Vf = pi

pf× Vi.

pi = 1.0 atm,

pf = pex + ρgh[1.3] = pi + ρgh = 1.0 atm + ρgh,

ρgh = (1.025 × 103 kg m−3) × (9.81 m s−2) × (50 m) = 5.03 × 105 Pa.

Hence, pf = (1.01 × 105 Pa) + (5.03 × 105 Pa) = 6.04 × 105 Pa.

Vf = 1.01 × 105 Pa

6.04 × 105 Pa× 3.0 m3 = 0.50 m3.

E1.6(a) The pressure in the apparatus is given by

p = patm + ρgh [1.3].

patm = 770 Torr ×(

1 atm

760 Torr

)×(

1.013 × 10−5 Pa

760 Torr

)= 1.026 × 10−5 Pa

ρgh = 0.99707 g cm−3 ×(

1 kg

103 g

)×(

106 cm3

m3

)× 9.806 m s−2 = 977 Pa

p = 1.026 × 105 Pa + 977 Pa = 1.036 × 105 Pa = 104 kPa .

E1.7(a) The gas pressure is calculated as the force per unit area that a column of water of height 206.402 cmexerts on the gas due to its weight. The manometer is assumed to have uniform cross-sectional area, A.

Then force, F = mg, where m is the mass of the column of water and g is the acceleration of free fall.As in Example 1.1, m = ρ × V = ρ × h × A where h = 206.402 cm and A is the cross-sectional area.

p = F

A= ρhAg

A= ρhg.

Page 6: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 6 — #6

6 SOLUTIONS MANUAL

p = (0.99707 g cm−3) ×(

1 kg

103 g

)×(

106 cm3

1 m3

)

× (206.402 cm) ×(

1 m

102 cm

)× (9.8067 m s−2)

= 2.0182 × 104 Pa.

V = (20.000 dm3) ×(

1 m3

103 dm3

)= 2.0000 × 10−2 m3.

n = m

M= 0.25132 g

4.00260 g mol−1= 0.062789 mol.

The perfect gas equation [1.8] can be rearranged to give R = pV

nT.

R = (2.0182 × 104 Pa) × (2.0000 × 10−2 m3)

(0.062789 mol) × (773.15 K)= 8.3147 JK−1mol−1 .

The accepted value is R = 8.3145 J K−1 mol−1.

Although gas volume data should be extrapolated to p = 0 for the best value of R, helium is closeto being a perfect gas under the conditions here, and thus a value of R close to the accepted value isobtained.

E1.8(a) Since p < 1 atm, the approximation that the vapor is a perfect gas is adequate. Then (as inExercise 1.7(b)),

pV = nRT = m

MRT .

Upon rearrangement,

M = ρ

(RT

p

)= (3.71 kg m−3) × (8.314 Pa m3 K−1 mol−1) × (773 K)

9.32 × 104 Pa

= 0.256 kg mol−1 = 256 g mol−1 .

This molar mass must be an integral multiple of the molar mass of atomic sulfur; hence

number of S atoms = 256 g mol−1

32.0 g mol−1= 8.

The formula of the vapor is then S8 .

E1.9(a) The partial pressure of the water vapor in the room is:

pH2O = (0.60) × (26.74 Torr) = 16 Torr.

Page 7: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 7 — #7

THE PROPERTIES OF GASES 7

Assuming that the perfect gas equation [1.8] applies, with n = m

M, pV = m

MRT or

m = pVM

RT=

(16 Torr) ×(

1 atm

760 Torr

)× (400 m3) ×

(103 dm3

m3

)× (18.02 g mol−1)

(0.0821 dm3 atm K−1 mol−1) × (300 K)

= 6.2 × 103 g = 6.2 kg .

E1.10(a) (a) For simplicity assume a container of volume 1 dm3. Then the total mass is

mT = nN2 MN2 + nO2 MO2 = 1.146 .g (1)

Assuming that air is a perfect gas, pTV = nTRT , where nT is the total amount of gas

nT = PTV

RT=

(0.987 bar) ×(

1 atm

1.013 bar

)× (1 dm3)

(0.08206 dm3 atm K−1 mol−1) × (300 K)= 0.03955 mol,

nT = nN2 + nO2 = 0.03955 mol. (2)

Equations (1) and (2) are simultaneous equations for the amounts of gas and may be solved for them.Inserting nO2 from (2) into (1) we get

(nN2) × (28.0136 g mol−1) + (0.03955 mol − nN2) × (31.9988 g mol−1) = 1.146 g.

(1.2655 − 1.1460) g = (3.9852 g mol−1) × (nN2).

nN2 = 0.02999 mol.

nO2 = nT − nN2 = (0.03955 − 0.02999) mol = 9.56 × 10−3 mol.

The mole fractions are

xN2 = 0.02999 mol

0.03955 mol= 0.7583 , xO2 = 9.56 × 10−3 mol

0.03955 mol= 0.2417 .

The partial pressures are pN2 = (0.7583) × (0.987 bar) = 0.748 bar ,

pO2 = (0.2417) × (0.987 bar) = 0.239 bar .

The sum checks, (0.748 + 0.239) bar = 0.987 bar.(b) The simplest way to solve this part is to realize that nT, pT, and mT remain the same as in part (a)

as these are experimentally determined quantities. However, the simultaneous equations that needto be solved are modified as follows:

mT = nN2 MN2 + nO2 MO2 + nArMAr = 1.146 g,

nT = nN2 + nO2 + nAr = 0.03955 mol,

Since xAr = 0.0100, nAr = 0.0003955 mol.

Page 8: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 8 — #8

8 SOLUTIONS MANUAL

Solving the equations yields

nN2 = 0.03084, xN2 = 0.7798 ,

nO2 = 0.008314, xO2 = 0.2102 .

The partial pressures are:

pN2 = xN2 pT = 0.7798 × 0.987 bar = 0.770 bar ,

pO2 = xO2 pT = 0.2102 × 0.987 bar = 0.207 bar ,

pAr = xArpT = 0.0100 × 0.987 bar = 0.00987 bar .

E1.11(a) This exercise uses the formula, M = ρRT

p, which was developed and used in Exercises 1.7(b) and

1.8(a). Substituting the data,

M = (1.23 kg m−3) × (8.314 dm3 kPa K−1 mol−1) × (330 K)

20 kPa×(

103 g

kg

)×(

10−3 m3

dm3

)

= 169 g mol−1 .

E1.12(a) The easiest way to solve this exercise is to assume a sample of mass 1.000 g, then calculate the volumeat each temperature, plot the volume against the Celsius temperature, and extrapolate to V = 0.

Draw up the following table.

θ/◦C ρ/(g dm−3) V/(dm3g−1)

−85 1.877 0.53280 1.294 0.7728100 0.946 1.057

V versus θ is plotted in Fig. 1.1. The extrapolation gives a value for absolute zero close to −273◦C.Alternatively, one could use an equation for V as a linear function of θ , which is Charles’s law, and solvefor the value of absolute zero. V = V0 × (1 + αθ).

At absolute zero, V = 0, then θ (abs. zero) = − 1

α. The value of α can be obtained from any one of the

data points (except θ = 0) as follows.

From V = V0 × (1 + αθ),

α =

(V

V0− 1

=

(1.057

0.7728

)− 1

100◦C= 0.003678(◦C)−1

− 1

α= − 1

0.003678(◦C)−1= −272◦C .

which is close to the value obtained graphically.

Page 9: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 9 — #9

THE PROPERTIES OF GASES 9

V/(

dm3 g

–1)

u/ °C Figure 1.1

E1.13(a) (a) p = nRT

V[1.8].

n = 1.0 mol, T = 273.15 K (i) or 1000 K (ii).

V = 22.414 dm3(i) or 100 cm3(ii).

(i) p = (1.0 mol) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (273.15 K)

22.414 dm3= 1.0 atm .

(ii) p = (1.0 mol) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (1000 K)

0.100 dm3= 8.2 ×102 atm .

(b) p = nRT

V − nb− an2

V2[1.21a].

From Table 1.6, a = 5.507 dm6 atm mol−2 and b = 6.51 × 10−2 dm3 mol−1. Therefore,(i)

nRT

V − nb= (1.0 mol) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (273.15 K)

[22.414 − (1.0) × (6.51 × 10−2)] dm3= 1.003 atm,

an2

V2= (5.507 dm6 atm mol−2) × (1.0 mol)2

(22.414 dm3)2= 1.11 × 10−2 atm,

and p = 1.003 atm − 1.11 × 10−2 atm = 0.992 atm = 1.0 atm .

(ii) nRT

V − nb= (1.0 mol) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (1000 K)

(0.100 − 0.0651) dm3,

= 2.27 × 103 atm,

an2

V2= (5.507 dm6 atm mol−2) × (1.0 mol)2

(0.100 dm3)2= 5.51 × 102 atm,

and p = 2.27 × 103 atm − 5.51 × 102 atm = 1.7 ×103 atm .

Page 10: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 10 — #10

10 SOLUTIONS MANUAL

COMMENT. It is instructive to calculate the percentage deviation from perfect gas behaviour for (i) and (ii).

(i)0.992 − 1.000

1.000× 100% = 0.8%.

(ii)(17 × 102) − (8.2 × 102)

8.2 × 102× 100% = 107%.

Deviations from perfect gas behavior are not observed at p ≈ 1 atm except with very precise apparatus.

E1.14(a) The conversions needed are as follows:

1 atm = 1.013 × 105 Pa 1 Pa = 1 kg m−1 s−2 1 dm6 = 10−6 m6 1 dm3 = 10−3 m3.

Therefore,

a = 0.751 atm dm6mol−2 becomes, after substitution of the conversions,

a = 7.61 ×10−2 kg m5 s−2 mol−2 , and

b = 0.0226 dm3mol−1 becomes

b = 2.26 ×10−5 m3 mol−1 .

E1.15(a) The definition of Z is used Z = pVm

RT[1.17] = Vm

V◦m

.

Vmis the actual molar volume, V◦m is the perfect gas molar volume. V◦

m = RT

p. Since Vm is 12 per cent

smaller than that of a perfect gas, Vm = 0.88V◦m, and

(a) Z = 0.88V◦m

V◦m

= 0.88 .

(b) Vm = ZRT

p= (0.88) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (250 K)

15 atm= 1.2 dm3 mol−1 .

Since Vm < V◦m attractive forces dominate.

E1.16(a) The amount of gas is first determined from its mass; then the van der Waals equation is used to determineits pressure at the working temperature. The initial conditions of 300 K and 100 atm are in a sensesuperfluous information.

n = 92.4 kg

28.02 × 10−3kg mol−1= 3.30 × 103mol

V = 1.000 m3 = 1.000 × 103 dm3

p = nRT

V − nb− an2

V2[1.21a] = (3.30 × 103 mol) × (0.08206 dm3atm K−1 mol−1) × (500 K)

(1.000 × 103 dm3) − (3.30 × 103mol) × (0.0387 dm3 mol−1)

− (1.352 dm6 atm mol−2) × (3.30 × 103 mol)2

(1.000 × 103 dm3)2

= (155 − 14.8) atm = 140 atm .

E1.17(a) (a) p = nRT

V[1.8] = (10.0 mol) × (0.08206 dm3 atm K−1 mol−1) × (300 K)

4.860 dm3= 50.7 atm .

Page 11: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 11 — #11

THE PROPERTIES OF GASES 11

(b) p = nRT

V − nb− a

( n

V

)2 [1.21a]

= (10.0 mol) × (0.08206 dm3 atm K−1 mol−1) × (300 K)

(4.860 dm3) − (10.0 mol) × (0.0651 dm3 mol−1)

− (5.507 dm6atm mol−2) ×(

10.0 mol

4.860 dm3

)2

= 58.49 − 23.32 = 35.2 atm .

The compression factor is calculated from its definition [1.17] after inserting Vm = V

n.

To complete the calculation of Z , a value for the pressure, p, is required. The implication in the definition[1.17] is that p is the actual pressure as determined experimentally. This pressure is neither the perfectgas pressure nor the van der Waals pressure. However, on the assumption that the van der Waals equationprovides a value for the pressure close to the experimental value, we can calculate the compression factoras follows

Z = pV

nRT= (35.2 atm) × (4.860 dm3)

(10.0 mol) × (0.08206 dm3 atm K−1 mol−1) × (300 K)= 0.695 .

COMMENT. If the perfect gas pressure had been used, Z would have been 1, the perfect gas value.

E1.18(a) n = n(H2) + n(N2) = 2.0 mol + 1.0 mol = 3.0 mol, xJ = nJ

n[1.14].

(a) x(H2) = 2.0 mol

3.0 mol= 0.67 , x(N2) = 1.0 mol

3.0 mol= 0.33 .

(b) The perfect gas law is assumed to hold for each component individually as well as for the mixture

as a whole. Hence, pJ = nJRT

V.

RT

V= (8.206 × 10−2 dm3 atm K−1 mol−1) × (273.15 K)

22.4 dm3= 1.00 atm mol−1.

p(H2) = (2.0 mol) × (1.00 atm mol−1) = 2.0 atm .

p(N2) = (1.0 mol) × (1.00 atm mol−1) = 1.0 atm .

(c) p = p(H2) + p(N2)[1.15] = 2.0 atm + 1.0 atm = 3.0 atm .

Question. Does Dalton’s law hold for a mixture of van der Waals gases?

E1.19(a) Equations [1.22] are solved for b and a, respectively, and yield b = Vc

3and a = 27b2pc = 3V2

c pc.

Substituting the critical constants,

b = 1

3× (98.7 cm3 mol−1) = 32.9 cm3 mol−1 ,

a = 3 × (98.7 × 10−3 dm3 mol−1)2 × (45.6 atm) = 1.33 dm6 atm mol−2 .

Note that knowledge of the critical temperature, Tc, is not required.

Page 12: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 12 — #12

12 SOLUTIONS MANUAL

As b is approximately the volume occupied per mole of particles

vmol ≈ b

NA= 32.9 × 10−6 m3 mol−1

6.022 × 1023 mol−1= 5.46 × 10−29 m3.

Then, with vmol = 4

3πr3, r ≈

(3

4π× (5.46 × 10−29 m3)

)1/3

= 0.24 nm .

E1.20(a) The Boyle temperature, TB, is the temperature at which B = 0. In order to express TB in terms of a andb, the van der Waals equation must be recast into the form of the virial equation.

p = RT

Vm − b− a

V2m

[1.21b].

Factoring outRT

Vmyields p = RT

Vm

{1

1 − b/Vm− a

RTVm

}.

So long as b/Vm < 1, the first term inside the brackets can be expanded using (1−x)−1 = 1+x+x2+ · · · ,which gives

p = RT

Vm

{1 +

(b − a

RT

)×(

1

Vm

)+ · · ·

}

We can now identify the second virial coefficient as B = b − a

RT.

Since at the Boyle temperature B = 0, TB = a

bR= 27Tc

8.

(a) From Table 1.6, a = 6.260 dm6 atm mol−2, b = 5.42 × 10−2 dm3 mol−1. Therefore,

TB = 6.260 dm6 atm mol−2

(5.42 × 10−2 dm3 mol−1) × (8.206 × 10−2 dm3 atm K−1 mol−1)= 1.41 ×103 K .

(b) As in Exercise 1.19(a), vmol ≈ b

NA= 5.42 × 10−5 m3 mol−1

6.022 × 1023 mol−1= 9.00 × 10−29 m3

r ≈(

3

4π× (9.00 × 10−29 m3)

)1/3

= 0.59 nm .

E1.21(a) The reduced temperature and pressure of hydrogen are calculated from the relations

Tr = T

Tcand pr = p

pc[1.24].

Tr = 298 K

33.23 K= 8.968 [Tc = 33.23 K, Table 1.5],

pr = 1.0 atm

12.8 atm= 0.0781 [pc = 12.8 atm, Table 1.5].

Hence, the gases named will be in corresponding states at T = 8.968 × Tc and at p = 0.0781 × pc.

Page 13: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 13 — #13

THE PROPERTIES OF GASES 13

(a) For ammonia, Tc = 405.5 K and pc = 111.3 atm (Table 1.5), so

T = (8.968) × (405.5 K) = 3.64 ×103 K ,

p = (0.0781) × (111.3 atm) = 8.7 atm .

(b) For xenon, Tc = 289.75 K and pc = 58.0 atm, so

T = (8.968) × (289.75 K) = 2.60 ×103 K ,

p = 0.0781) × (58.0 atm) = 4.5 atm .

(c) For helium, Tc = 5.21 K and pc = 2.26 atm, so

T = (8.968) × (5.21 K) = 46.7 K ,

p = (0.0781) × (2.26 atm) = 0.18 atm .

E1.22(a) The van der Waals equation [1.21b] is solved for b, which yields

b = Vm − RT(p + a

V2m

) .

Substituting the data

b = 5.00 × 10−4 m3 mol−1 − (8.314 J K−1 mol−1) × (273 K){(3.0 × 106 Pa) +

(0.50 m6 Pa mol−2

(5.00 × 10−4 m3 mol−1)2

)}

= 0.46 × 10−4m3mol−1.

Z = pVm

RT[1.17] = (3.0 × 106 Pa) × (5.00 × 10−4 m3)

(8.314 J K−1 mol−1) × (273 K)= 0.66.

COMMENT. The definition of Z involves the actual pressure, volume, and temperature and does not dependupon the equation of state used to relate these variables.

Solutions to problems

Solutions to numerical problems

P1.1 Since the Neptunians know about perfect gas behavior, we may assume that they will write pV = nRTat both temperatures. We may also assume that they will establish the size of their absolute unit to bethe same as the ◦N, just as we write 1K = 1◦C. Thus

pV(T1) = 28.0 dm3 atm = nRT1 = nR × (T1 + 0◦N),

pV(T2) = 40.0 dm3 atm = nRT2 = nR × (T1 + 100◦N),

or T1 = 28.0 dm3 atm

nR, T1 + 100◦N = 40.0 dm3 atm

nR.

Page 14: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 14 — #14

14 SOLUTIONS MANUAL

Dividing,T1 + 100◦N

T1= 40.0 dm3 atm

28.0 dm3 atm= 1.429 or T1 + 100◦N = 1.429T1, T1 = 233 absolute units.

As in the relationship between our Kelvin scale and Celsius scale T = θ− absolute zero(◦N) so absolutezero(◦N) = −233◦N .

COMMENT. To facilitate communication with Earth students we have converted the Neptunians’ units ofthe pV product to units familiar to humans, which are dm3 atm. However, we see from the solution that onlythe ratio of pV products is required, and that will be the same in any civilization.

Question. If the Neptunians’ unit of volume is the lagoon (L), their unit of pressure is the poseidon (P),their unit of amount is the nereid (n), and their unit of absolute temperature is the titan (T), what is thevalue of the Neptunians’ gas constant (R) in units of L, P, n, and T?

P1.3 The value of absolute zero can be expressed in terms of α by using the requirement that the volume ofa perfect gas becomes zero at the absolute zero of temperature. Hence

0 = V0[1 + αθ(abs. zero)].

Then θ (abs. zero) = − 1

α.

All gases become perfect in the limit of zero pressure, so the best value of α and, hence, θ (abs. zero)is obtained by extrapolating α to zero pressure. This is done in Fig. 1.2. Using the extrapolated value,α = 3.6637 × 10−3◦C−1, or

θ(abs. zero) = − 1

3.6637 × 10−3◦C−1= −272.95◦C ,

which is close to the accepted value of −273.15◦C.

3.662

3.664

3.666

3.668

3.670

3.672

0 800200 400 600p / Torr Figure 1.2

Page 15: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 15 — #15

THE PROPERTIES OF GASES 15

P1.5p

T= nR

V= constant, if n and V are constant. Hence,

p

T= p3

T3, where p is the measured pressure at

temperature, T , and p3 and T3 are the triple point pressure and temperature, respectively. Rearranging,

p =(

p3

T3

)T .

The ratiop3

T3is a constant = 6.69 kPa

273.16 K= 0.0245 kPa K−1. Thus the change in p, p, is proportional to

the change in temperature, T : p = (0.0245 kPa K−1) × (T).

(a) p = (0.0245 kPa K−1) × (1.00 K) = 0.0245 kPa .

(b) Rearranging, p =(

T

T3

)p3 =

(373.16 K

273.16 K

)× (6.69 kPa) = 9.14 kPa .

(c) Sincep

Tis a constant at constant n and V , it always has the value 0.0245 kPa K−1; hence

p = p374.15 K − p373.15 K = (0.0245 kPa K−1) × (1.00 K) = 0.0245 kPa .

P1.7 (a) Vm = RT

p= (8.206 × 10−2 dm3 atm K−1 mol−1) × (350 K)

2.30 atm= 12.5 dm3 mol−1 .

(b) From p = RT

Vm − b− a

V2m

[1.21b], we obtain Vm = RT(p + a

V2m

) + b[rearrange1.21b]

Then, with a and b from Table 1.16,

Vm ≈(8.206 × 10−2 dm3 atm K−1 mol−1)× (350 K)

(2.30 atm) +((6.260 dm6 atm mol−2)/

(12.5 dm3 mol−1)2) + (5.42 × 100−2 dm3 mol−1)

≈ 28.72̄ dm3 mol−1

2.34+(

5.42 × 10−2 dm3 mol−1)

≈ 12.3 dm3 mol−1 .

Substitution of 12.3 dm3 mol−1 into the denominator of the first expression again results inVm = 12.3 dm3 mol−1, so the cycle of approximation may be terminated.

P1.9 As indicated by eqns 1.18 and 1.19 the compression factor of a gas may be expressed as either a virial

expansion in p or in

(1

Vm

). The virial form of the van der Waals equation is derived in Exercise 1.20(a)

and is p = RT

Vm

{1 +

(b − a

RT

)×(

1

Vm

)+ · · ·

}

Rearranging, Z = pVm

RT= 1 +

(b − a

RT

)×(

1

Vm

)+ · · ·

On the assumption that the perfect gas expression for Vm is adequate for the second term in this expansion,we can readily obtain Z as a function of p.

Z = 1 +(

1

RT

)×(

b − a

RT

)p + · · ·

Page 16: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 16 — #16

16 SOLUTIONS MANUAL

(a) Tc = 126.3 K.

Vm =(

RT

p

)× Z = RT

p+(

b − a

RT

)+ · · ·

= (0.08206 dm3 atm K−1 mol−1) × (126.3 K)

10.0 atm

+{

(0.0387 dm3 mol−1) −(

1.352 dm6 atm mol−2

(0.08206 dm3 atm K−1mol−1) × (126.3 K)

)}

= (1.036 − 0.092) dm3 mol−1 = 0.944 dm3 mol−1 .

Z =( p

RT

)× (Vm) = (10.0 atm) × (0.944 dm3 mol−1)

(0.08206 dm3 atm K−1 mol−1) × (126.3 K)= 0.911.

(b) The Boyle temperature corresponds to the temperature at which the second virial coefficient is zero,hence correct to the first power in p, Z = 1, and the gas is close to perfect. However, if we assumethat N2 is a van der Waals gas, when the second virial coefficient is zero,

(b − a

RTB

)= 0, or TB = a

bR.

TB = 1.352 dm6 atm mol−2

(0.0387 dm3 mol−1) × (0.08206 dm3 atm K−1 mol−1)= 426 K.

The experimental value (Table 1.5) is 327.2 K. The discrepancy may be explained by twoconsiderations.1. Terms beyond the first power in p should not be dropped in the expansion for Z .2. Nitrogen is only approximately a van der Waals gas.

When Z = 1, Vm = RT

p, and using TB = 327.2 K

= (0.08206 dm3 atm K−1mol−1) × 327.2 K

10.0 atm

= 2.69 dm3 mol−1

and this is the ideal value of Vm. Using the experimental value of TB and inserting this value intothe expansion for Vm above, we have

Vm = 0.08206 dm3 atm K−1mol−1 × 327.2 K

10.0 atm

+{

0.0387 dm3mol−1 −(

1.352 dm6atm mol−2

0.08206 dm3 atm K−1mol−1 × 327.2 K

)}

= (2.685 − 0.012) dm3mol−1 = 2.67 dm3 mol−1

and Z = Vm

V◦m

= 2.67 dm3 mol−1

2.69 dm3 mol−1= 0.992 ≈ 1.

Page 17: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 17 — #17

THE PROPERTIES OF GASES 17

(c) TI = 621 K [Table 2.9].

Vm = 0.08206 dm3atm K−1mol−1 × 621 K

10.0 atm

+{

0.0387 dm3 mol−1 −(

1.352 dm6atm mol−2

0.08206 dm3 atm K−1mol−1 × 621 K

)}

= (5.096 + 0.012) dm3 mol−1 = 5.11 dm3 mol−1

and Z = 5.11 dm3mol−1

5.10 dm3 mol−1= 1.002 ≈ 1.

Based on the values of TB and TI given in Tables 1.4 and 2.9 and assuming that N2 is a van der Waalsgas, the calculated value of Z is closest to 1 at TI, but the difference from the value at TB is less thanthe accuracy of the method.

P1.11 (a) Vm = molar mass

density= M

ρ= 18.02 g mol−1

1.332 × 102 g dm−3= 0.1353 dm3 mol−1 .

(b) Z = pVm

RT[1.17b] = (327.6 atm) × (0.1353 dm3 mol−1)

(0.08206 dm3 atm K−1 mol−1) × (776.4 K)= 0.6957 .

(c) Two expansions for Z based on the van der Waals equation are given in Problem 1.9. They are

Z = 1 +(

b − a

RT

)×(

1

Vm

)+ · · ·

= 1 +{

(0.0305 dm3 mol−1) −(

5.464 dm6 atm mol−2

(0.08206 dm3 atm K−1 mol−1) × (776.4 K)

)}

× 1

0.1353 dm3 mol−1= 1 − 0.4084 = 0.5916 ≈ 0.59.

Z = 1 +(

1

RT

)×(

b − a

RT

)× (p) + · · ·

= 1 + 1

(0.08206 dm3 atm K−1 mol−1) × (776.4 K)

×{

(0.0305 dm3 mol−1) −(

5.464 dm6 atm mol−2

(0.08206 dm3 atm K−1 mol−1) × (776.4 K)

)}× 327.6 atm

= 1 − 0.2842 ≈ 0.72 .

In this case the expansion in p gives a value close to the experimental value; the expansion in1

Vmis not as good. However, when terms beyond the second are included the results from the twoexpansions for Z converge.

P1.13 Vc = 2b, Tc = a

4bR[Table 1.7]

Page 18: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 18 — #18

18 SOLUTIONS MANUAL

Hence, with Vc and Tc from Table 1.5, b = 1

2Vc = 1

2× (118.8 cm3 mol−1) = 59.4 cm3 mol−1 .

a = 4bRTc = 2RTcVc

= (2) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (289.75 K) × (118.8 × 10−3 dm3 mol−1)

= 5.649 dm6 atm mol−2 .

Hence

p = RT

Vm − be−a/RTVm = nRT

V − nbe−na/RTV

= (1.0 mol) × (8.206 × 10−2 dm3 atm K−1 mol−1) × (298 K)

(1.0 dm3) − (1.0 mol) × (59.4 × 10−3 dm3 mol−1)

× exp

(−(1.0 mol) × (5.649 dm6 atm mol−2)

(8.206 × 10−2 dm3 atm K−1 mol−1) × (298 K) × (1.0 dm6 atm mol−1)

)

= 26.0 atm × e−0.231 = 21 atm .

Solutions to theoretical problems

P1.15 This expansion has already been given in the solutions to Exercise 1.20(a) and Problem 1.14; theresult is

p = RT

Vm

(1 +

[b − a

RT

] 1

Vm+ b2

V2m

+ · · ·)

.

Compare this expansion with p = RT

Vm

(1 + B

Vm+ C

Vm2+ · · ·

)[1.19]

and hence find B = b − a

RTand C = b2 .

Since C = 1200 cm6 mol−2, b = C1/2 = 34.6 cm3 mol−1

a = RT(b − B) = (8.206 × 10−2) × (273 dm3 atm mol−1) × (34.6 + 21.7) cm3 mol−1

= (22.40 dm3 atm mol−1) × (56.3 × 10−3 dm3 mol−1) = 1.26 dm6 atm mol−2 .

P1.17 The critical point corresponds to a point of zero slope that is simultaneously a point of inflection in aplot of pressure versus molar volume. A critical point exists if there are values of p, V , and T that resultin a point that satisfies these conditions.

p = RT

Vm− B

V2m

+ C

V3m

.

Page 19: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 19 — #19

THE PROPERTIES OF GASES 19

(∂p

∂Vm

)T

= −RT

V2m

+ 2B

V3m

− 3C

V4m

= 0(∂2p

∂V2m

)T

= 2RT

V3m

− 6B

V4m

+ 12C

V5m

= 0

at the critical point.

That is,−RTcV2

c + 2BVc − 3C = 0RTcV2

c − 3BVc + 6C = 0

}

which solve to Vc = 3C

B, Tc = B2

3RC.

Now use the equation of state to find pc

pc = RTc

Vc− B

V2c

+ C

V3c

=(

RB2

3RC

)×(

B

3C

)− B

(B

3C

)2

+ C

(B

3C

)3

= B3

27C2.

It follows that Zc = pcVc

RTc=(

B3

27C2

)×(

3C

B

)×(

1

R

)×(

3RC

B2

)= 1

3.

P1.19 For a real gas we may use the virial expansion in terms of p [1.18]

p = nRT

V(1 + B′p + · · · ) = ρ

RT

M(1 + B′p + · · · )

which rearranges top

ρ= RT

M+ RT B′

Mp + · · · .

Therefore, the limiting slope of a plot ofp

ρagainst p is

B′RT

M. From Fig. 1.3 the limiting slope is

B′RT

M= (5.84 − 5.44) × 104 m2 s−2

(10.132 − 1.223) × 104 Pa= 4.4 × 10−2 kg−1 m3.

From Fig. 1.2,RT

M= 5.40 × 104 m2 s−2; hence

B′ = 4.4 × 10−2 kg−1 m3

5.40 × 104 m2 s−2= 0.81 × 10−6 Pa−1,

B′ = (0.81 × 10−6 Pa−1) × (1.0133 × 105 Pa atm−1) = 0.082 atm−1 .

B = RTB′[Problem 1.18]= (8.206 × 10−2 dm3 atm K−1 mol−1) × (298 K) × (0.082 atm−1)

= 2.0 dm3 mol−1 .

P1.21 The critical temperature is that temperature above which the gas cannot be liquefied by the applicationof pressure alone. Below the critical temperature two phases, liquid and gas, may coexist at equilibrium,and in the two-phase region there is more than one molar volume corresponding to the same conditions

Page 20: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 20 — #20

20 SOLUTIONS MANUAL

5.9

5.8

5.7

5.6

5.5

5.40 2 4 6

p/(104 Pa)

(p/r

)/(1

04 m

2 s–1

)

8 10 12

y = 5.3963 + 0.046074x R = 0.99549

Figure 1.3

of temperature and pressure. Therefore, any equation of state that can even approximately describe thissituation must allow for more than one real root for the molar volume at some values of T and p, butas the temperature is increased above Tc, allows only one real root. Thus, appropriate equations of statemust be equations of odd degree in Vm.

The equation of state for gas A may be rewritten V2m − (RT/p)Vm − (RTb/p) = 0, which is a quadratic

and never has just one real root. Thus, this equation can never model critical behavior. It could possiblymodel in a very crude manner a two-phase situation, since there are some conditions under which aquadratic has two real positive roots, but not the process of liquefaction.

The equation of state of gas B is a first-degree equation in Vm and therefore can never model criticalbehavior, the process of liquefaction, or the existence of a two-phase region.

A cubic equation is the equation of lowest degree that can show a cross-over from more than one realroot to just one real root as the temperature increases. The van der Waals equation is a cubic equationin Vm.

P1.23 The two masses represent the same volume of gas under identical conditions, and therefore, the samenumber of molecules (Avogadro’s principle) and moles, n. Thus, the masses can be expressed as

nMN = 2.2990 g

for ‘chemical nitrogen’ and

nArMAr + nNMN = n[xArMAr + (1 − xAr)MN] = 2.3102 g

for ‘atmospheric nitrogen’. Dividing the latter expression by the former yields

xArMAr

MN+ (1 − xAr) = 2.3102

2.2990so xAr

(MAr

MN− 1

)= 2.3102

2.2990− 1

and xAr = (2.3102/2.2990) − 1

(MAr/MN) − 1= (2.3102/2.2990) − 1

(39.95 g mol−1)/(28.013 g mol−1 − 1)= 0.011 .

COMMENT. This value for the mole fraction of argon in air is close to the modern value.

Page 21: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 21 — #21

THE PROPERTIES OF GASES 21

Solutions to applications

P1.25 1 t = 103 kg. Assume 300 t per day.

n(SO2) = 300 × 103 kg

64 × 10−3 kg mol−1= 4.7 × 106mol.

V = nRT

p= (4.7 × 106 mol) × (0.082 dm3atm K−1mol−1) × 1073 K

1.0 atm= 4.1 × 108 dm3 .

P1.27 The pressure at the base of a column of height H is p = ρgH (Example 1.1). But the pressure at anyaltitude h within the atmospheric column of height H depends only on the air above it; therefore

p = ρg(H − h) and dp = −ρg dh.

Since ρ = pM

RT[Problem 1.2], dp = −pMgdh

RT, implying that

dp

p= −Mg dh

RT

This relation integrates to p = p0e−Mgh/RT

For air M ≈ 29 g mol−1 and at 298 K

Mg

RT≈ (29 × 10−3 kg mol−1) × (9.81 m s−2)

2.48 × 103 J mol−1= 1.15̄ × 10−4m−1[1 J = 1 kg m2 s−2].

(a) h = 15 cm.

p = p0 × e(−0.15 m)×(1.15̄×10−4 m−1) = 0.99998 p0;p − p0

p0= 0.00 .

(b) h = 11 km = 1.1 × 104 m.

p = p0 × e(−1.1×10−4)×(1.15×10−4m−1) = 0.28 p0;p − p0

p0= −0.72 .

P1.29 Refer to Fig. 1.3.

h

Ground

Air(environment)

Figure 1.4

Page 22: Exercícios resolvidos - Cap. 01-Atkins (a)

TRAPP: “CHAP01” — 2006/3/8 — 18:03 — PAGE 22 — #22

22 SOLUTIONS MANUAL

The buoyant force on the cylinder is

Fbuoy = Fbottom − Ftop

= A(pbottom − ptop)

according to the barometric formula.

ptop = pbottome−Mgh/RT

where M is the molar mass of the environment (air). Since h is small, the exponential can be expanded

in a Taylor series around h = 0

(e−x = 1 − x + 1

2!x2 + · · ·)

. Keeping the first-order term only yields

ptop = pbottom

(1 − Mgh

RT

).

The buoyant force becomes

Fbuoy = Apbottom

(1 − 1 + Mgh

RT

)= Ah

(pbottomM

RT

)g

=(

pbottomVM

RT

)g = nMg

[n = pbottomV

RT

]

n is the number of moles of the environment (air) displaced by the balloon, and nM = m, the mass ofthe displaced environment. Thus Fbuoy = mg. The net force is the difference between the buoyant forceand the weight of the balloon. Thus

Fnet = mg − mballoon g = (m − mballoon)g

This is Archimedes’ principle.