Excellent cns

106
TCNV 214 Slide 1 Badarul Zaman Hamidin Universiti Kuala Lumpur Malaysian Institute of Aviation Technology UniKL MIAT KP(JPS)5195/US/ 38 DCAM No. AO/0110/03

Transcript of Excellent cns

Page 1: Excellent  cns

TCNV 214 Slide 1 Badarul Zaman

Hamidin

Universiti Kuala Lumpur Malaysian Institute of Aviation Technology

UniKL MIAT

KP(JPS)5195/US/38

DCAM No. AO/0110/03

Page 2: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 2 Badarul Zaman

Hamidin

Instructor: Badarul Zaman Hamidin

Office: D-02-01

Office Hour: 0800 - 1715 Monday to Thursday

0800 – 1700 Friday

Page 3: Excellent  cns

TCNV 214 Slide 3 Badarul Zaman

Hamidin

Communication & Navigation

TCNV 214

Page 4: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 4 Badarul Zaman

Hamidin

TCNV 214

• Course Description– A study of communication and navigation related equipment that includes

identification of types, purposes, operations, requirements, and installations. Also includes basic understanding of radio signal generations.

• Schedule:Monday2.30pm – 4.30pm

• Textbook:A&P TechnicianAirframe (Jeppesen)

• Suggested Reading:1. Aircraft Radio Systems / by J. Powell ISBN 0-89100-356-82. Aircraft Electricity & Electronics / by Thomas K. Eismin - 5 th Ed.; Glencoe Series,

19953. Avionics Fundamentals / Jeppesen4. AC 43.13-1B Chapter 12

• Suggested Web:1. Howstuffworks.com

Page 5: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 5 Badarul Zaman

Hamidin

Syllabus

Week / Session

Topic

1 Radio Fundamentals / Project A-38

2 Communication 1

3 Communication 2 / Project A-39

4 Navigation 1

5 Navigation 2 / Project A-40

6 Review / Phase Test

7

8

9

10

Page 6: Excellent  cns

TCNV 214 Slide 6 Badarul Zaman

Hamidin

Radio Fundamentals

Day 1

Page 7: Excellent  cns

TCNV 214 Slide 7 Badarul Zaman

Hamidin

General“Radio” means wireless transmission of information from one point to another.

Radio wave technology provides:Communication

NavigationRadar

Enables aircraft to fly under IFRRequirement for two-way communication between air traffic controller and

aircraft.

TerminologyAVIONICS means Aviation Electronics

Radio wireless transmission of informationCommunication process of exchanging information

Navigation process of piloting an aircraft towards intended destination

Page 8: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 8 Badarul Zaman

Hamidin

Lesson Objective

• To understand the principle of radio waves and wave propagation.

• To understand the basic operation of radio transmission and reception.

• To identify components related to radio communications and navigations, installations and maintenance practice.

Page 9: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 9 Badarul Zaman

Hamidin

Introduction

• General– “Radio” means wireless transmission of information from one point to

another.– Radio wave technology provides:

• Communication• Navigation• Radar

– Enables aircraft to fly under IFR– Requirement for two-way communication between air traffic controller and

aircraft.

• Terminology– AVIONICS means Aviation Electronics– Radio wireless transmission of information– Communication process of exchanging information– Navigation process of piloting an aircraft towards intended destination

Page 10: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 10 Badarul Zaman

Hamidin

Radio Waves Utilizations

• Radio Waves Technology– Communications radios is the first avionics systems to utilize this

technology– Later, navigational radios were developed and continuously improved

• Communication– Radios, Phones, Intercom, and even Internet Access– Recently, Lufthansa airlines provide broadband communications for

customers to access during flight

• Navigation– ADF – Auto Directional Finder– ILS – Instrument Landing Systems– Collision Avoidance Systems– ELT – Emergency Locator Transmitter– Radar

Page 11: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 11 Badarul Zaman

Hamidin

Radio Fundamentals

• To understand the radio operating principles, it is essential for you to be familiar with related topics and terms that make up the radio technology possible.

– Principles of alternating current– Electromagnetic waves / radiations– Frequency / Frequency Spectrum / Frequency Bands– Wave propagation– Modulation– Radio Components

• Transmitters• Amplifiers• Modulators / Demodulators• Filters• Antennas• Receivers• Tuner• Microphones & Speakers

Page 12: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 12 Badarul Zaman

Hamidin

Alternating Current

• From basic electrics, when we consider DC current flows through a conductor:1. Magnetic builds up surround the conductor

2. Voltage will be dropped

3. Heat will produce (loss energy due to resistance)

• However, in AC systems, items 2 and 3 above can be reduced due to the behavior of AC which continuously changing the direction and magnitude of the current flow, while leaving item 1 to change proportionally with the magnitude, or strength, of the current flows.

• Although, in AC the resistance towards the changing current will be caused by the induced voltage results from the continuous build-up and collapse of the magnetic field. Hence, the conductor will have an inductance property.

Page 13: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 13 Badarul Zaman

Hamidin

Alternating Current

• Definition– Current that periodically changes direction and continuously changes in

magnitude.– Also known as “Sinusoidal Voltage”

• The behavior of the current is represented by Sine Wave • Cycle – one complete sine wave of 360°• Alternation is one half a cycle (½ Cycle)

Page 14: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 14 Badarul Zaman

Hamidin

Electromagnetic Waves

• Also refers to radio waves in radio transmission studies.

• Produced by synchronized oscillations of electric fields and magnetic fields.

• Both fields produced will be perpendicular (90°) towards each other.

• When wire is fed with Alternating Current, electromagnetic waves will be radiated in various patterns in an infinite frequencies to the space and if intercepted by parallel wire to it, the signal is transferred.

• This energy is assumed to travel at the speed of light, ‘C’ (3.0X108 meter/second or 186,300 mile/second )

• The strength depends on its frequency.

• The effective range of travel, or distance, will be determine by the wavelength of the signal.

Page 15: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 15 Badarul Zaman

Hamidin

Frequency

• One characteristics of a sine waves is the Frequency• Frequency = Cycle per second• In radio transmission, frequency refers to number of electromagnetic field

oscillations that take place in one second.• Measurement unit

– Cycle per second (cps)– Hertz (Hz)

• Electromagnetic spectrum (or Frequency Spectrum) classifies the characteristics of frequencies.

• The classification varies from higher frequency (Gamma Ray), visible light to the lower frequency, that is radio frequency.

Page 16: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 16 Badarul Zaman

Hamidin

Wavelength & Polarization

Wavelength• The distance from one crest of one wave

to another.

• Symbol is ‘Lambda’ ( λ )

• It is inversely proportional to the frequency of the signal, since:

λ = C / ƒ ; where ƒ = frequency

and C = speed of light

• Therefore, low frequency has greater wavelength, thus can travel further.

Polarization• Important to induce the maximum voltage

into the receiving antenna.• Antenna must be installed in such way

that it is perpendicular to the magnetic (H) field, and parallel to the electric (E) field.

• Vertically polarized– Transmitting antenna is vertical– E field is vertical, H field is horizontal– Maximum reception by vertical antenna

• Horizontally polarized– Transmitting antenna is horizontal– E field is horizontal, H field is vertical– Maximum reception by horizontal antenna

Page 17: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 17 Badarul Zaman

Hamidin

Frequency Spectrum

• Radio Frequency Spectrum from 3 kHz to 300 GHz

• Radio frequency below 20,000 Hz or 20 kHz also known as audio frequency which can be understood by human.

• Above 20,000 Hz or 20 kHz range, human is not able to hear the sound and this range is used for radio transmission or Radio Waves.

• Radio waves are classified into frequency band, and divided into 8 bands.

• The bands are VLF, LF, MF, HF, VHF, UHF, SHF, and EHF

• SHF and EHF also known as Microwave Frequencies

Page 18: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 18 Badarul Zaman

Hamidin

Frequency Band

BAND & FUNCTION FREQUENCYVery Low Frequency (VLF) 3 – 30 kHz Omega 10 – 14 kHzLow Frequency (LF) 30 – 300 kHz Decca 70 – 130 kHz Loran C 100 kHz ADF 200 – 1700 kHzMedium Frequency (MF) 300 kHz – 3 MHz Commercial Broadcast 535 kHz – 1.6 MHzHigh Frequency (HF) 3 – 30 MHz HF Communications 2 – 25 MHzVery High Frequency (VHF) 30 – 300 MHz Marker Beacons 75 MHz ILS Localizer 108.1 – 111.95 MHz VOR 108.0 – 117.95 MHz VHF Communications 118.0 – 135.975 MHzUltrahigh Frequency (UHF) 300 MHz – 3 GHz ILS Glideslope 320 – 340 MHz DME 960 MHz – 1.215 MHz Secondary Surveillance Radar 1.03 GHz & 1.09 GHzSuperhigh Frequency 3 – 30 Ghz Radar Altimeter 2.2 – 2.4 GHz Weather Radar (C Band) 5.5 GHz Doppler Radar (X Band) 8.8 GHz Weather Radar (X Band) 9.4 GHz Doppler Radar (K Band) 13.3 GHzExtremely High Frequency (EHF) 30 – 300 GHz

Page 19: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 19 Badarul Zaman

Hamidin

United States Frequency Allocation

Page 20: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 20 Badarul Zaman

Hamidin

Carrier Waves

• To carry intelligence input signal from transmitter to the receiver.• Constant oscillation signal at selected transmission frequency.• The carrier wave frequency must be high enough to produce EM waves that

radiate from the antenna.• This frequency must be accurately controlled that it will be received by the

receiver or it will be rejected.• The carrier frequency will determine the length of transmitting and receiving

antenna required, that is normally ¼ to ½ the wavelength of the frequency.• Due to the higher the frequency, the shorter the wavelength will be.• LF radio waves can directly transmitted, but requires extremely large antenna.• However, higher frequency radio can employ a shorter wavelength.• The frequency of the transmission will be determine by the frequency of the

carrier waves. • Higher frequency offers more room / channels with lower interference for better

reception of the signal.

Page 21: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 21 Badarul Zaman

Hamidin

Modulation

• Modulation is the process of placing the intelligence input signal on a carrier waves and to be transmitted by an antenna.

• Several ways to achieve it, most common used are:

– Amplitude Modulation (AM)– Frequency Modulation (FM)

• The lower frequency information signal is superimposed on a higher carrier frequency for transmission.

Page 22: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 22 Badarul Zaman

Hamidin

Amplitude Modulation (AM)

• Amplitude of the carrier wave varies with the change in amplitude and frequency of the information signal.

• In other words, the voltage of the carrier is changed by the audio signal.

• Affect by interference:– Man-made electric motor, ignition systems– Natural lightning

Page 23: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 23 Badarul Zaman

Hamidin

Frequency Modulation (FM)

• The frequency of the carrier wave varies with the change in amplitude of the information signal.• In other words, the voltage of the carrier wave is held constant, but their frequency is

modulated by the information signal.• Interference-free communication.• The carrier frequency changed proportionately with the amplitude change of the information

signal.• Advantages:

– Less affected by electrostatic emissions (noise or static). thunderstorm– Noise (electrical) unwanted electrical signal within an electronic equipment.

• Due to constant amplitude controlled by limiter circuits, other interfering signals will be rejected.• The information will be recovered by the receiver and the signal is used to drive the speaker.

Page 24: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 24 Badarul Zaman

Hamidin

Single-Sideband (SSB)

• Both AM and FM require wider band and higher voltage for effective transmission over a great distance.

• Lower sideband – carrier frequency minus modulating frequency

• Upper sideband – carrier frequency plus modulating frequency

• SSB uses the one sideband for transmission

• In US, lower sideband is used, while other uses upper sideband.

• Using SSB receiver, a carrier of proper frequency will be inserted back to reproduced the information signal.

• SSB has become primary type of transmission for communication in HF band.

Page 25: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 25 Badarul Zaman

Hamidin

Radio Waves Propagation

• Radio wave is an electromagnetic wave propagated by an antenna

• When radio waves transmitted from an antenna, it will travels in the atmosphere in three (3) propagation paths.

1. Ground Waves 3 kHz – 3 MHz

2. Sky Waves 3 MHz – 30 MHz

3. Space Waves 30 MHz – 3 GHz

• Atmosphere act as a medium for waves travel.

Page 26: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 26 Badarul Zaman

Hamidin

Ground Waves

• Used by VLF and LF radio waves. ( 3 kHz to 300 kHz )• Low frequency, Longer Wavelength, thus travel great distance.• Waves travel along the curvature of the earth.• Application: Radio Broadcasting Station• Advantages

– Travel great distance.– Do not requires Carrier Wave.– Do not affected by weather condition.

• Disadvantages– Longer wavelength requires a very large antenna.– Energy absorbed by ground structure or curvature. (Hills and Mountains)

Page 27: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 27 Badarul Zaman

Hamidin

Sky Waves

• Use by HF radio waves. ( 3 MHz to 30 MHz )• Waves travel in straight line from the radio station which do not follow the earth

curvature• The waves bounces or refracted back to earth hundreds of miles away when it

hits the earth ionosphere at the right way. Known as SKIP or HOP.• Ionosphere is the layer of earth atmosphere from about 60 to 200 miles high,

made up of ionized particles.• Allow longer distance coverage of the radio signals transmission.• Major setback cause by electrostatic distortion or interference.

Page 28: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 28 Badarul Zaman

Hamidin

Space Waves

• Used by VHF and UHF radio waves. Also known as Direct Waves.• Due to high frequency, it has shorter wavelength which allows them to travel through the

ionosphere layer which does not follow earth curvature.• Travel in straight line of sight and do not bounce back by the ionosphere.• Transmission range is limited to the line of sight of the transmitting station.• Repeater stations or satellites will retransmit the signal at another frequency to extend the

line of sight, hence increase the transmission coverage.• Looking down from an aircraft at 10,000 ft, the line of sight coverage is approximately 260

miles. Therefore, to increase the coverage, the antenna should be built higher as possible.• Provides better and clear reception.• Transmission will be cut off if there is object between the transmitter and receiver. (Heavy

Clouds, Buildings)

Page 29: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 29 Badarul Zaman

Hamidin

Basic Radio Theory

• Method of transmitting intelligence from one location to another by means of electromagnetic radiation.• Basic radio communication device should have:

1. Transmitter Unit 5. Filters 9. Transmission Line2. Receiver Unit 6. Antennas3. Amplifiers 7. Tuning Circuits4. Modulators / Demodulators 8. Speakers / Microphones

• For some radio that has both components, known as Transceiver. Able to transmit and receive radio frequency signals.

• Radio signals that carries the intelligence emanate from the transmitter antenna partly in the form of radiated electromagnetic waves.

• The receiver will receive the intelligence signals using the receiver antenna which has the same characteristics and polarization.

• Regardless the use of radio for communication or navigation, all radio must have the two major components.

Page 30: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 30 Badarul Zaman

Hamidin

Basic Radio Transmitter

• Accept information and converts it into radio frequency to be transmitted.

• 3 basic function:1. Generate signal of correct

frequency within EM spectrum. (Oscillator)

2. Provide form of modulation that cause signal to modify carrier signal. (Modulator)

3. Provide sufficient power amplification towards desired range. (Amplifier)

• Basic components:1. Microphone2. Oscillator3. Modulator4. Amplifier5. Antenna

Page 31: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 31 Badarul Zaman

Hamidin

Basic Radio Receiver

• Reproduces the information signal received by the antenna when the same frequency of signal is selected.

• Function:1. Have sensitivity to select desired

frequency of the signal. (Tuning Circuits)2. Provide demodulation to reproduce the

information signal. (Demodulator)3. Provide enough amplification to recover

the modulating signal. (Amplifier)

• 1920’s – Superheterodyne (Superhet) radio invented.

• Basic components:1. Antenna2. Amplifier3. Demodulator4. Tuner (Tuning Circuits)5. Speaker6. Local Oscillator & Mixer (for Superhet

Radio)

Page 32: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 32 Badarul Zaman

Hamidin

Oscillator

• Heart of the radio systems in high frequency wave known as carrier waves.

• Also known as Electronic Generator.

• Using electronics components like capacitor and inductor.

• Simple oscillator employs an LC parallel circuit.

• Type of oscillators:– Variable Frequency Oscillator.– Crystal Oscillator.– Phase Locked Loop Oscillator. (PLL)

Page 33: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 33 Badarul Zaman

Hamidin

Amplifiers

• Increases strength of the signal.• Found in both transmitters and receivers.• In transmitter increase the strength and sent to the antenna for transmission.• In Receivers Amplify weak signal received for reproduction of the information

signal.• Earlier amplifiers, before 1920’s, vacuum tubes is used in amplifiers.• Since invention of transistors, nowadays transistors and integrated circuits

replaced the bulky amplifiers and become smaller and lighter.• Basic types:

– Linear amplifiers• Classified as Class A, Class AB, or Class B.• Provide output directly proportional to the input at higher power level.• Mainly used in all audio amplifiers.• Class A & Class B – increase power level of changing amplitude RF (directly proportional).• Amplitude change as in AM signal.

– Class C amplifiers• Non-linear amplifiers.• More stable than linear amplifiers.• Used for FM signals.

– Switching amplifiers• Same as Class C amplifiers.

Page 34: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 34 Badarul Zaman

Hamidin

Modulator / Demodulator

• Electronic equipment which add or remove between the carrier wave and audio wave.

• Modulator– Add carrier wave into audio waves for signal transmission.– The output is called ‘Modulated Radio Frequency’ in AM or FM.

• Demodulator– Remove the carrier wave from the audio wave for reproduction of the audio signal.– Produces ‘Audio Frequency’.

• Proper relative modulation for maximum efficiency.

• Modulation rate – The amount of modulation– Low rate – AF signal is too weak compared to RF signal – Low efficiency.– If rate is over 100% (RF is weaker than AF) – distortion will occur to the output signal.– Most radio is 90% – 95% modulation rate for high efficiency and prevent distortion.– Example: Shouting at microphone causes over modulation.

Page 35: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 35 Badarul Zaman

Hamidin

Filters

• To remove or filter out unwanted frequencies.

• Using inductor and capacitor combination circuit. (LC circuit)

• Without filters, audio signal will be disturbed by ‘noise’.

• Types of filters:

– Low-Pass (LP) filter allows only low frequencies to pass thru.

– High-Pass (HP) filter allows only high frequencies to pass thru.

– Band-Pass filter allows only range of frequencies to pass thru between the selected high and low frequencies.

• Consist both LP filter and HP filter.

– Band-Reject filter blocked frequencies in between, but allows below or above the selected range frequencies (low and high) to pass thru.

Page 36: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 36 Badarul Zaman

Hamidin

Antennas• An electrical conductor that radiates or receives radio

waves (RF).• Protected and insulated by hard plastic material to give

mechanical strength.• Maybe use for transmit only, receive only, or both

depending on the type of radio systems.• Located on top or bottom of the fuselage depending of

their usage, and free from obstruction of airframe structure.

• Inspection and maintenance is responsibility of airframe and structure technician since they are attached to the airframe skin.

• Antenna length is determined by the wavelength (λ) of the transmit or to receive frequency. (¼ λ to ½ λ)

• Categories known by general name and described the characteristics.

– Hertz Antenna Hertz Dipole Antenna• Half wave dipole antenna.• Half wave – overall length is equal to one

half (½) the wavelength.• Polarization : Horizontal

– Marconi Antenna Marconi Monopole Antenna• Single metal with a length of ¼

wavelength.• Ground plane – metal surrounding the

mounting base for proper operations.• Polarization : Vertical

Page 37: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 37 Badarul Zaman

Hamidin

Antennas

– Wire Antenna (Whip Antenna)• Often on smaller and older aircraft.• Insulated to reduce noise caused by static electricity. (Some

are not insulated)• Example: ADF sense antenna (a wire from top of empenage to

forward of fuselage)• Modern aircraft combine loop and sense antenna in single ADF

antenna system.

– Loop Antenna (Sense Antenna)• Winding the antenna in the form of loop for directional

characteristics.• Voltage induced into the two sides is of equal magnitude but

opposite in polarity, causes signal to cancel each other.• At different angel of interception, directional finding is possible.

Page 38: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 38 Badarul Zaman

Hamidin

Tuning Circuits

• To isolate desired frequency to receive among various frequency.

• Other word, to tune or select the desired frequency.

• Simple circuit using variable capacitor and an inductor connected in parallel.

• Tuning knob changing the amount of capacitance in the circuit to match or resonant with transmitting frequency.

• Modern radios, uses frequency synthesizer.– Consists number of crystals.– Each crystals has a particular frequency.– Using switches, combine the crystals to produce additional frequencies.– The two new frequencies are combined, two new frequencies are produced.

(Sum and Difference of the two crystals frequency)– Hundreds of frequencies can be created.

Page 39: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 39 Badarul Zaman

Hamidin

Speakers / Microphones

• Speakers– Transform electrical signals into sound waves.– Aircraft speakers not the same as home and automotive speakers.– Use of large magnet will cause large magnetic field emissions which affects

aircraft instruments systems.– Types

• Permanent magnet speakers– It utilize a metal plate attached over the magnet to shield the flux for the.

• Dynamic speaker– Do not produce large magnetic field disturbance.– Use electromagnetic that varies with the input audio frequency signal.– Expands and contracts to move the diaphragm at audio rate.

• Microphones– Transform sound waves into electrical signals to the transmitter.– Dynamic microphone is also available.– Types:

• Magnetic Type• Dynamic type

Page 40: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 40 Badarul Zaman

Hamidin

Transmission Lines

• Radio components which provide path for the frequency signals in radio systems.

• Special electrical cable to connect between the transmitter unit or receiver unit to the antenna.

• Coaxial cable– Insulated solid copper conductor for maximum efficiency in signal

transmission.

Page 41: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 41 Badarul Zaman

Hamidin

Inspection & Maintenance

• Responsibility of the technician involved.• Refer to AC 43.13-1B Chapter 12 for basic acceptable practice.• Proper handling, maintenance and inspection procedures must

be observed to ensure the airworthiness of the aircraft is maintained.

Page 42: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 42 Badarul Zaman

Hamidin

QUIZ 1

1. What is:1. Avionic = _________________________________2. Communication = _________________________________3. Navigation = _________________________________4. Radio = _________________________________

2. Radio wave is produced by synchronize operation of ____________ _________ and _____________ __________, and they are ______________ to each other.

3. Radio waves are classified by their _______________________.

4. Frequency below 20,000Hz is known as ____________ frequency, which we _______ (can/cannot) hear.

5. Frequency above 20,000Hz is known as ____________ frequency, which we _______ (can/cannot) hear.

Page 43: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 43 Badarul Zaman

Hamidin

QUIZ 1

6. The strength of radio wave is depends on _______________.

7. 2 frequencies that are known as microwave frequency are: ________________________ & ________________________.

8. Information signal is transmitted using a ________________ wave.

9. 2 kinds of microphone: a) ________________________

b) ________________________

10. Transmitter contains : a) __________________

b) __________________

c) _________________

Page 44: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 44 Badarul Zaman

Hamidin

QUIZ 1

11. 2 types of modulation: a) _________________________b) _________________________

12. Size or length of antenna is determined by ____________________.

13. Which component is considered the heart of radio system? ________________________________________________________.

14. Function of modulator ________________________________________________________________________________________________________________.

15. Which type of microphone that might interfere a/c system operation & need a shield cover?________________________________________________________.

Page 45: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 45 Badarul Zaman

Hamidin

QUIZ 1

16. The output of modulation is called _______________________.

17. 2 types of amplifier: a) _________________________b) _________________________

18. An electrical conductor that is used to convert electrical energy to EM waves is _____________.

19. Class A is _______________ amplifier which is used in _________ (radio/audio) system

20. Advantage of frequency modulation are: _______________________________________________________.

21. Simple oscillator uses __________________ circuit.

Page 46: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 46 Badarul Zaman

Hamidin

Project A-38Aircraft Antenna

• Title : Aircraft Antennas

• Objective : To identify type of antenna and their location on the aircraft.

• Project type: Group

• Work Performance: – Each group will select an aircraft type for the project.– All information must be refer to respective aircraft maintenance manual.– Identify the location of the antenna, their type, and their installation purposes on the aircraft.– Installation and maintenance requirements according to the maintenance manual.– Provide written explanation and presentation.– Determine the type of (communication radio) radio used inside the aircraft. Please provide the

manufacturer of the radio inclusive the part number.

• Aircrafts Selection:1. Boeing 777 / 747 / 7372. Airbus 300 Series (320 / 330)3. Hawker Siddeley – HS 1254. Hughes 5005. Fokker 506. Cessna 250

Page 47: Excellent  cns

TCNV 214 Slide 47 Badarul Zaman

Hamidin

Communication Systems

Day 3

Page 48: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 48 Badarul Zaman

Hamidin

HF Communication Systems• Provide long range (over ocean or overland) communication.• Frequency range : 2 – 30 MHz• Propagation : Ground Waves• Reception range : 1500 to 2000 miles• Transmitter output : 80 – 200 watts high to achieve long distance. (Trans-Atlantic or Pacific)• Generally referred to as ‘short wave’ communication.• Provides two way communication or digitally coded signals (data-link).• System components

– HF transceiver – located at the electronic equipment rack.– HF radio control unit – remotely control the transceiver from the pilot/co-pilot instrument panels.– Antenna

• Probe/Flush Mounted – Large Aircraft– Requires antenna coupler.– Covered by plastic type shield. (fiberglass or similar)

• Wire / Extended Wire – Small Aircraft– Wing-tip to Vertical Fin / Vertical Fin to Top Forward Fuselage– Long-wire-trailing antenna – extended from aft fuselage with adjustable length. Not

suitable for high-speed aircraft.– Antenna Coupler

• Frequency selector unit.• Automatically reposition the antenna to selected new frequency.

• Disadvantage – affected by atmospheric interference– Communication loss by thunderstorm or atmospheric disturbances.

• Being replaced and improved by SATCOM

Page 49: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 49 Badarul Zaman

Hamidin

VHF Communication Systems

• Provide short range communication. (Air Traffic Controller)• Frequency Range : 118 – 135.975 MHz• International Operations Frequency : extends up to 151.975 MHz• Propagation: Space Wave / Direct Wave• Reception Range : Limited to Line-Of-Sight ( ≈ 20 – 39 miles / 48 km at 1,000 ft / 305 m)• Transmitter output : 5 – 20 watts (lesser than HF power)• Channels available

– 360 (50 kHz spacing) – 720 (25 kHz spacing)– 760 (25 kHz spacing extended to 151.975 MHz)

• Standard communication systems approved by ICAO• Advantages:

– Not often distorted by atmospheric/static noise interference.– Provide clearer receptions.

• VHF radio display.– Two frequency display – Active & Standby Frequency– Switching in between using Transfer Button on the radio panel.

• Antennas– Bent Whip Rod / Plastic-Encapsulated Blade Type– Mounted on top or bottom or both aircraft centerline.– Used for both transmit and receive.

• Some systems, combined with VHF navigation systems.• Built-In Test Equipment (BITE) systems – easier maintenance and fault detection.

Page 50: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 50 Badarul Zaman

Hamidin

VHF Radio

Page 51: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 51 Badarul Zaman

Hamidin

Intercom & Interphone Systems

• Not truly radio systems, but an avionic equipment providing communication onboard.

• Do not use RF signals, ONLY audio signals.• Located at various point on the aircraft to provide aircraft crew

communication.• Intercom Systems

– Allows pilot communications internally• Captain to First Officer (Pilot to Co-pilot)• Pilot to Cabin Crew (Flight Attendant)• Pilot to Passenger ( Passenger Address (PA) Systems)

• Interphone Systems– Allows pilot to communicate externally

• Pilot to Maintenance Crew

– Jack-point available for maintenance crew to communicate with the pilot during ground operations using headset.

Page 52: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 52 Badarul Zaman

Hamidin

Radio Telephone

• Provide Air to Ground communication for passenger.• Similar to cell-phone function to allows phone calls made during

flight to ground phone systems.• Operating Frequency : 450 – 500 MHz (UHF)• Control by ground station and relay to ground communication

systems.• Antenna

– Marconi Type

– Similar look to VHF antenna with difference in size and shape

Page 53: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 53 Badarul Zaman

Hamidin

SATCOM

• Satellite Communication.• Provides voice communication and data link.• Replacing HF communication. (*large aircraft)• Consists three segments:

1. Satellite– Geostationary positioned at 10,900 miles high.– Also refers as Repeater Station– Duplication of ground station

2. Ground / Earth Station3. Aircraft

• Frequency Range – using Microwave Frequency– L Band ( 1 – 2 GHz ) Aircraft – Satellite– C Band ( 4 – 6 GHz ) Ground - Satellite

• One satellite can provide approximately 11,000 audio/digital communication links.

• User congestion – AIRCOM and ACARS helps provide digital communication systems.

Page 54: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 54 Badarul Zaman

Hamidin

SATCOM

Page 55: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 55 Badarul Zaman

Hamidin

AIRCOM

• Air Communication

• Also known as – Digital Air / Ground Communication Services

• Uses VHF comm. systems of existing VHF radio.

• Provided by SITA (Société Internationale de Telecommunitions Aeronautique)

• Purpose:– To reduce amount of voice communication on existing congested comm. frequencies.– Allows ground to aircraft comm. for operational flight information.

• Flight delays• Departure time• Estimated Time Arrived (ETA)

• AIRCOM is widely used in Europe and Australia

Page 56: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 56 Badarul Zaman

Hamidin

ACARS

• ARINC Communication Addressing and Reporting System• ARINC – Aeronautical Radio Incorporated

– Corporation established by foreign and domestic airline, manufacturers, and transport companies.

– To set standard in radio telecommunication in aviation industry.• Uses VHF radio waves (131.55 MHz) or SATCOM.• Normally, the third VHF radio is reserved for ACARS systems.• If failure condition – interfere VHF comm. systems. *Prohibited ATC to operate

VHF comm. on the third radio.• Purpose : Same as AIRCOM• ACARS is the United States counterpart of AIRCOM systems.• Operation: 2 Modes

– Demand Mode• To transmit message from aircraft to ground.• Airborne Management Unit (MU) determine if the channel is free for communication.• If clear – message transmitted• If busy – MU waits until free

– Polled Mode• Request by ground station.

Page 57: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 57 Badarul Zaman

Hamidin

SELCAL

• Selective Calling• Purposes:

– To prevent interruption of the pilot concentration from unwanted communications.

– To relieve pilot from continuously monitoring the receivers.• Connected to the HF or VHF radios.• SELCAL unit consists of a decoder with aircraft assigned code number.• The code

– 4 tones transmitted in series.– Each tone has 12 possible frequencies.– 20,000 combination codes available.– Transmitted in UHF.

• When selected code match the assigned aircraft code, SELCAL decoder will activate aural or visual indication of incoming call to the pilot

• Ground station is able to select the aircraft they wish to call.• Same principle with telephone number.

Page 58: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 58 Badarul Zaman

Hamidin

Audio Control Panel

Page 59: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 59 Badarul Zaman

Hamidin

Project A-39Communication Systems

• Objective : To identify type and understand available aircraft communication systems, and their components location onboard the aircraft.

• Project type: Group

• Work Performance: – Each group will select an aircraft type for the project.– All information must be refer to respective aircraft maintenance manual.– List available communication systems onboard the aircraft.– Identify the location of the communication components and equipments– Installation and maintenance requirements according to the maintenance manual.– Provide written explanation and presentation.

• Aircrafts Selection:1. Boeing 7772. Boeing 7473. Boeing 7374. Airbus 3305. Airbus 3206. Hawker Siddeley – HS 125

Page 60: Excellent  cns

TCNV 214 Slide 60 Badarul Zaman

Hamidin

Navigation Systems

Day 4

Page 61: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 61 Badarul Zaman

Hamidin

ADFAuto Directional Finder

• Purpose: To assist the pilot in determining the direction of the airport or the position of the aircraft.

• Modern navigation systems taking over the function. • However, widely used in GA and smaller airports with no other radio

aids for navigations.• The systems terms:

– ADF refers to aircraft equipment.– NDB (Non-Directional Beacon), refers to ground-based equipment.

• ADF Systems – refers to both ADF and NDB• Normally installed in remote airport or less developed country where no

possibility of having update in navigation facility.• Operating Frequency

– ADF receiver 190 – 1,800 kHz• 190 – 500 kHz used for aircraft navigation (NDB)• 550 – 1,800 kHz band used for commercial AM broadcast station• Therefore, AM broadcast station may and can be used for navigation.• Noted on the navigation chart.

• Propagation: Ground Wave – reliable at low altitude

Page 62: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 62 Badarul Zaman

Hamidin

ADF Components

Ground Transmitter

1. Non-Directional Beacon (NDB) transmits 190 – 500 kHz

2. Broadcasting Stations transmit 550 – 1,800 kHz

• Min. two stations as an alternate to NDB

Airborne Equipment

1. ADF receivers– Receives 190 – 1,800 kHz

2. ADF control panels

3. ADF antennas – 2 antennas– Directional/Loop Antenna– Sense Antenna

4. ADF Indicator– 3 types

• Fixed Card Indicator• Movable Card Indicator• Radio Magnetic Indicator (RMI)

– Magnetic heading of aircraft– Magnetic bearing of two stations

– Provides visual information.– Easier navigation thru graphical.

Page 63: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 63 Badarul Zaman

Hamidin

ADF Operation

Using NDBTo determine the heading of the airport, the pilot tuned the ADF to NDB frequency of the airport and manually rotate the loop antenna until the NULL or ZERO position is determined.NULL position indicates the airport’s NDB. However, there will be two NULL positions in 360° rotation. Flying towards or away.To offset the ambiguity, Sense antenna will generate antiphase / out of phase to eliminate the other NULL position.This will cause the RMI pointer to stop moving and pointing towards the airport/airfield.

Alternate NDB using two broadcast stations.Tune to two radio station frequencies. Thus, will move two RMI pointers.Two pointers provide bearings of two radio stations read from the compass card and gives magnetic bearings of the stations on the navigation chart.Location of the aircraft is determined by the intersection point of the two bearings and gives the aircraft coordinate / angular position.

In new generation aircraft, ADF is used to align aircraft to the runway in ILS.Located between Outer Marker (OM) and Middle Marker (MM).This NDB is also called ‘Compass Locator’.

Page 64: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 64 Badarul Zaman

Hamidin

ADF Antenna

Requires two antennas• Directional/Loop Antenna

– Determine aircraft heading towards/away from station.

– Strength of received signal depends on angle between plane of the loop and direction of EM wave.

– Minimum (null) when perpendicular to show station direction of either direction at 180° each.

– Maximum when parallel.

• Sense Antenna– Determine direction of the station.– Solve the true direction of the

station.

Modern aircraft, both antennas in one unit.

• Flat oval / Teardrop shape

Page 65: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 65 Badarul Zaman

Hamidin

ADF Indicators

Page 66: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 66 Badarul Zaman

Hamidin

ADF Bearing

Definition of Relative and Magnetic Bearing

Page 67: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 67 Badarul Zaman

Hamidin

VORVHF Omni Range

• Purpose : Provide course guidance to the aircraft• Operating Frequency : 108.0 – 117.95 MHz (VHF)• Propagation : Space Wave – Limited to line-of-sight• Advantages :

– Provides an infinite number of radials or course indications.– Reduces the amount of indication errors from adverse atmospheric

conditions.– Accurately provides directional information.

• Systems Components :1. VOR Ground Station2. VOR Airborne Equipment

When combined as VOR/DME provides course and distance information.

Page 68: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 68 Badarul Zaman

Hamidin

VOR Ground Station

• Located along the airways at the highest ground level.• Components :

– 2 VOR Transmitter (Tx)

– 2 DME Transmitter (Tx)

• Transmits two types of VHF radio signal :– A fix / reference signal

• Constant FM pulse signal

– A rotating / variable signal.• AM signal which electronically rotated at 1800 rpm.

• VOR station signal is called ‘Radials’ or ‘Radio Beams’ transmit 360° radials with 1° sensitivity.

Page 69: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 69 Badarul Zaman

Hamidin

VOR Airborne EquipmentVOR Receiver / Control Panel• Located in cockpit instrument panel.• Allow tuning in even tenth at VHF• Measures phase difference for direction.• In-phase due north.

VOR Antenna (VHF)• Horn Type Antenna

– Located on vertical stabilizer• Flush Metallic Antenna

VOR Indicator• Located in cockpit instrument panel.• Horizontal Situation Indicator (HSI) Man• Radio Magnetic Indicator (RMI) Auto

VOR operation terms• Inboard toward / to• Outboard fromVOR will be activated by the pilot when aircraft at cruising speed.

Page 70: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 70 Badarul Zaman

Hamidin

VOR Equipment Check

• FAR’s– VOR equipment must be routinely check if flown under IFR.

• FAR Part 91 – VOR equipment check– No person may operate civil aircraft under IFR conditions using VOR

systems unless VOR equipment of that aircraft:• Is maintained, checked and inspected under approved procedure; or• Has been operationally checked within preceding 30 days and was found within

the limits of bearing error set forth below.• The check must use one of followings:

– An approved FAA or Repair Station ground test signal – ± 4°– Designated VOR checkpoint on the airport surface – ± 4°– Designated airborne checkpoint – ± 6°– An airborne check using a VOR radial and prominent ground point that can be seen

from the air as established by the person doing the check – ± 6°– If two separate VOR receivers are installed, they may be checked against each other –

± 4°

– Maintained record entry in aircraft log and sign it.• Enter Date• Place• Bearing Error

– Or, Repair Station Certificate bearing transmitted and date into aircraft log.

Page 71: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 71 Badarul Zaman

Hamidin

DMEDistance Measuring Equipment

• Purposes are to provide:– Slant range distance in nautical miles (n.m.).– Associated with VOR/DME or VORTAC to provide groundspeed, time enroute to the

station and course guidance.

• Operating Frequency : 960 – 1,215 MHz (UHF)• DME frequencies are paired with VOR frequencies – Frequency Pairing• Tuning VOR frequencies will automatically tuned DME frequencies.

– VOR identifier is repeated three or four times.– Followed by single-coded DME identifier every 30 seconds indicates DME is

functioning.

• DME components :1. Interrogator Unit – Airborne Unit (Transceiver)

– Transmit interrogator signal– Measure total time taken for the signal to transmit and receive/replied back to the aircraft.– Convert the total time into slant range distance in nautical miles.

2. Transponder Unit – Ground Unit– Inside VOR ground station.– Measure the time of interrogator signal reach the station.– Reply signal to the airborne unit.

Page 72: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 72 Badarul Zaman

Hamidin

DME Operation• Operations

– Airborne transceiver sent interrogator signal to tuned station.

– Transponder measure time taken and reply signal.– Transceiver receive signal and measure the round

trip time taken, and compute distance in nautical miles for display digitally.

– Upon altitude and line-of-sight, reliable for 200 n.m.

• Slant Range Distance– Not measure horizontal distance.– Difference not significant if at least 1 mile from

station for every 1000 feet altitude.– Results of 2 components, horizontal and vertical

distance.– Accurate within ½ mile or 3% of actual distance.

• Angle between slant range distance and VOR/DME stations – called Bearing

• When directly above the station, DME indicates altitude in nautical miles on HSI.

Page 73: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 73 Badarul Zaman

Hamidin

RNAVARea NAVigation

• Allows pilot to fly direct to destination without need to overfly VOR or ground based facilities.

• Achieve shorter fly distance and travel time.• Limited to overland, cannot be applied for over ocean navigation.• Also known as Direct Navigation Systems.• Other available systems

– VORTAC based– LORAN– INS– GPS– FMS

• In RNAV, courses are defined by waypoints.• Waypoints – predetermined geographical positions used for route and

instrument approach for reporting purposes.• Related to VOR/DME or VORTAC stations in terms of latitude/longitude

coordinates.• RNAV inputs requirements :

– Course guidance from VOR/DME station.– Barometric altitude from Air Data Computer (ADC)– Slant Range Distance from DME– Bearing of aircraft from VOR

Page 74: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 74 Badarul Zaman

Hamidin

RNAVExample Flight Plan

Page 75: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 75 Badarul Zaman

Hamidin

RNAV Operating Mode

• Mode terms1. Rho Distance (Slant Range)2. Theta Bearing3. Phantom route Planned route deviates from VOR/DME or ground based

station/s.

• RNAV can operates under 3 mode :1. Rho – Theta Mode

– Requires only ONE VOR/DME station.– Three inputs to determine the waypoint are :

– Rho– Theta– Barometric Altitude

2. Rho – Rho Mode– Requires TWO VOR/DME stations.– Two DME distance inputs to compute the waypoint.

3. Theta – Theta Mode– Requires TWO VOR/DME stations.– Two VOR bearing inputs to compute the waypoint.

Page 76: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 76 Badarul Zaman

Hamidin

TACANTACtical Air Navigation

• Military version of DME.

• More advance than DME.

• Purpose :– Provide distance information.

• Widely used in United States.

Page 77: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 77 Badarul Zaman

Hamidin

VORTAC

• A combination of VOR and TACAN facility.• Provide distance and course guidance for area navigation (RNAV).• Using course-line computer (CLC) that creates phantom waypoints for

direct route of flight.• CLC requirements :

– DME to calculate the location of the waypoint.– VOR/DME or VORTAC tuned frequency.

• CLC established waypoint as a direction and distance from a VOR or DME sites.

– Example: Waypoint OMN 240/25 25 n.m. southwest (240°) of OMN sites.• Pilot designed a flight plan by selecting number of waypoints along

desired path.• Aircraft must be able to receive usable signal from VORTAC sites.• Waypoint is limited to line-of-sight of VOR facility or must fly direct route

within VOR or VORTAC sites.• Other limitations, the direct routes must be approved by ATC due

congested air traffic areas.

Page 78: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 78 Badarul Zaman

Hamidin

RNAVExample Flight Plan

Page 79: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 79 Badarul Zaman

Hamidin

LORANLOng RAnge Navigation

• Uses land-based radio transmitters originally provide weather navigation for mariners.

• Along U.S. coast and Great Lakes• For use in aviation, LORAN coastal facilities extended across U.S. continent.• LORAN – C

– Used for IFR navigation.– Accurate within 0.25 nautical mile.– Define aircraft position in terms latitude and longitude.– GPS is overtaking LORAN function.– Ground transmitter

• Operates at 100 kHz. (Ground Wave)• 1000 ft high• Power of 4,000,000 watts

– Chain consist of ONE master station and TWO slave stations of hundred miles apart.– Sequenced signal from master follows by slaves.– Aircraft LORAN-C receivers measure time separation to compute aircraft location

relative to transmission sites– Accuracy of 400 – 1000 ft.– Advantage – signals can be received at any altitude even on ground and does not

required tuning since operates at 100 kHz at all time.

Page 80: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 80 Badarul Zaman

Hamidin

INSInertial Navigation Systems

• Self-contained system developed by MIT based on Newton’s Law of motion.• Does not rely on external radio inputs.• Generates its own inputs to navigate from waypoint to waypoint.• Starting point is determined by latitude and longitude and INS computer unit will determine

new position by measuring the inertial forces acting on aircraft.• Accelerometer to measure the continuous acceleration in flight.• When accelerates, the signal is amplified to increase the sensitivity of the system and fed

the time integer to change to VELOCITY and get the DISTANCE.• From DISTANCE, the pilot can plot the location of the aircraft.• In INS, 3 accelerometers are required.

– Longitudinal– Lateral– Vertical

• False acceleration cause by flitting a ‘nose-up’ attitude.• Gyroscope stable platform to mount the accelerometers to avoid false acceleration.• False acceleration signal is fed back to torque/spin the gyro. Movement of gyro will produce

electrical signal to drive the gyro motor platform proportionately to the false signal to level state.

• Components:1. A stable element – Gyro2. 3 Accelerometers3. Analog and Digital Computer

• Also fed information for Autopilot systems• Drift error accumulations after usage – Updating process using other navigation source.

(VOR)

Page 81: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 81 Badarul Zaman

Hamidin

INS Mode of operationINS operates in 5 Modes.

1. OFF – No power supply to INS components.2. STANDBY – Power supply is supplied to heat up the navigation unit and allow

gyro to spin.3. ALIGN

• Aircraft must be stationary.• Performs system leveling and orientation. (10 minutes)• INS align to True North (TN).• Pilot inputs the initial position of aircraft in Latitude / Longitude.• True North – between Magnetic North and Geographical North.

4. NAVIGATION• Green Light illumination indicator.• Inputs of 8 waypoints is allowed.

5. ATTITUDE• When any INS components failed.• Digital computer is de-activated

Generated Output : POSITION, GROUND SPEED, DISTANCE & HEADING, TIME to destination

Page 82: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 82 Badarul Zaman

Hamidin

IRSInertial Reference Signal

• Improved INS systems using Ring-Laser Gyro (Strap-down Gyro) as stable element.

• Laser gyro advantage is that the gyro has no moving parts.– Uses pair of white light as a transmitting medium.

• LASER stand for– L Light– A Amplification by– S Simulated– E Emissions of – R Radiation

• IRS or INS also referred as ‘Reference Computer’ for other systems. (Autopilot, HSI)

Page 83: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 83 Badarul Zaman

Hamidin

GPSGlobal Positioning System

• Indicates aircraft position globally using NAVSTAR satellite using ranging and triangulation method.

• GPS systems consists of three segments:– Space

• 24 geostatically satellite at 10,900 miles high.• 21 is operational, and 3 for back up purpose.• At any point on earth, only 5 satellites is visible.• Navigation purpose requires 4 satellites for accuracy.• Transmit radio signals which controlled by atomic clock for accuracy.• Frequency range in 1.6 GHz.• Provide position and time signals

– Control• One master control and monitoring stations.• Master control at Falcon Air Force Base in Colorado Springs, Colorado.• Control, update and maintain GPS constellation.

– User• 1. Antenna 2. Receivers 3. Processors• Received 4 satellite signals.• Calculate aircraft Position, Speed, Altitude, Heading, Time for pilot/s.• GPS receivers calculates its own position, distance, bearing and estimated time enroute to the

next waypoint.

• Extremely accurate system for 100 m (328 ft) to 20 m (65 ft) without Selective Availability.

• Selective Availability introduced by Department of Defense for national security reason. Removed as of May 1, 2000.

Page 84: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 84 Badarul Zaman

Hamidin

GPS

Page 85: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 85 Badarul Zaman

Hamidin

Transponders

• Transponder is a secondary radar equipment on the aircraft.• Aircraft transponder using two different frequencies

– Transmit at 1090 MHz– Receive at 1030 MHz

• Useful for air traffic controller to identify the aircraft to prevent mid-air collision and provide guidance for aircraft.

• Related to radar operation :– RADAR – radio detection and ranging– Transmit synchronized radio wave and process their reflections for display.– Primary Radar – sends out EM wave pulse travel outward and bounce off

metal parts (aircraft). This reflected echo produces spot on radarscope. Range is by total time taken to travel and back. Angle is by position of rotating antenna.

– Secondary Radar – able to determine the aircraft. When radar pulse interrogator hit aircraft, airborne secondary equipment will sends coded signal for identification

– After World War II, primary and secondary used by ATC facilities.

Page 86: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 86 Badarul Zaman

Hamidin

ATC Transponder

• Radar systems used by Air Traffic Controller

• Operating Frequency : 2.7 GHz

• Operation:– ATC send interrogator code signal in digital (binary)– Airborne equipment (transponder) answer/reply proper reply signal.– Transponder control allows pilot to select among 4906 numerical codes in

octal coding. ( 0000 to 7777 )– Computer on ground radar identify the aircraft by their flight assigned code.

• Transponder Code0000 – Military

1200 – Operating under VFR (not in ATC control)

7500, 7600, 7700 – Emergency situation

7700 – Hijacked situation

Page 87: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 87 Badarul Zaman

Hamidin

Transponder Operations

Transponder Control• Four Knobs – To select code• Selector Switch• IDT (IDENT) Button• Code Display (Numerical)

Operation Mode• MODE 3/A – Basic transponder• MODE C – plus coded message

(aircraft pressure altitude)• MODE S – able sent additional

messages on CRT or printed.– ATC instructions

– Weather Reports

– Increase identification code > 1 mill.

– TCAS info

Transponder Test• Avoid accidental activation the

transponder during maintenance unless for transponder test purposes.

• Tested and inspected every 24 calendar months

Page 88: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 88 Badarul Zaman

Hamidin

ILSInstrument Landing System

• Assist the pilot by providing guidance during landing approach.

• System components are:– Localizer Tx– Glide Slope Tx– Compass Locator (NDB)– Marker Beacon– Indicator– Runway Lights

• Provide visibility to pilot.

• Located surround the airways.

• Visible in night/fog/rain

Page 89: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 89 Badarul Zaman

Hamidin

ILS Localizer

• Consists of transmitter unit.• Located 1000 ft from end of runway.• Radio signal transmit at 108.1 MHz to 111.9 MHz. (VHF)• Transmits horizontal signals in two lobes.

– Right Lobe 150 Hz

– Left Lobe 90 Hz

• Provide horizontal approach guidance towards the runway.• Beams coverage

– Forward 27 miles

– Aft / Back 17 miles

Page 90: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 90 Badarul Zaman

Hamidin

ILSGlide Slope

• Consists of transmitter unit.• Located at 15 % of the runway length at threshold center.• Operates at 329 MHz to 339 MHz (UHF)• Provide vertical guidance to pilot to prevent overshooting or

undershooting the landing runway.• Provide vertical approach guidance

in two lobes.– Bottom Lobe 150 Hz

– Top Lobe 90 Hz

• Coverage up to vertical distance

of 10 miles.

Page 91: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 91 Badarul Zaman

Hamidin

ILSNDB – Compass Locator

• The same NDB of ADF.• Provide signal to the aircraft to align themselves with the

runway.• Operates at radio frequency range of 190 – 500 kHz.• Located between Outer Marker and Middle Marker of the

approach path.

Page 92: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 92 Badarul Zaman

Hamidin

ILSMarker Beacons

• Provides distance of aircraft from the runway.• Located along the approach path.• Beacons transmit vertical radio signal.• Visual and Aural indicator to pilot.• Consist three (3) marker position.

– Outer Marker (OM)• 4 to 5 nm. from runway edge• Produce 400 Hz audio tone• Indefinite 2 dashes• Illuminates BLUE light

– Middle Marker (MM)• 3000 ft from runway edge• Produce 1300 Hz audio tone• Alternate dots and dashes• Illuminates AMBER light

– Inner Marker (IM)• 1300 ft from runway edge• Produce 3000 Hz audio tone• Identified by 6 dots per second• Illuminate WHITE light• Known as Frequency Modulator / Z marker

• All beacons transmit at 75 MHz vertically

Page 93: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 93 Badarul Zaman

Hamidin

ILSIndicator

• Use to assist pilot during landing by giving information of the location and approach status of the aircraft towards the runway.

• Using aural and visual indication• Glide Slope Indicator

– Combine both vertical and horizontal

approach attitude.

• Marker Indicator– Aural and Visual

– OM – BLUE – 2 Dashes

– MM – AMBER – Dot and Dash

– IM – WHITE – 6 dots per second

Page 94: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 94 Badarul Zaman

Hamidin

MLSMicrowave Landing System

• Option of ILS using microwave frequency.– 5031 MHz to 5091 MHz

• Provide precision approach guidance• Gives

– Azimuth (left/right)– Elevation (glide slope)– Range

• Requires separate airborne equipment.• Airport upgrades to have Azimuth Station

at 100 ft beyond stop end– Data transmission capability– Elevation station– Range station– Back Azimuth Station

• Approach Azimuth Station ±40°• Elevation Guidance Station up to 30°• Range Guidance Station Normal / Precision DME station

Page 95: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 95 Badarul Zaman

Hamidin

ELTEmergency Locator Transmitter

• Help to locate a crashed aircraft in remote or mountainous area.• Self contained unit with own battery.• Components

– Transmitter – dual frequency stress signal at 121.5 MHz (civil) or 243.0 MHz (military).– Whip type antenna with coaxial cable.– Battery for power supply.

• Located at the tail structure where minimal crash damage area.• Activated by longitudinal impact of 5 G’s or more.• Transmit swept tone stress signal for 48 hours for range of 100 miles, 10,000 ft

using power output of 75 mW• ELT signal can be received by radio tuned to 121.5 MHz 0r 243.0 MHz. Omni

direction.• Installation is mandatory for Airworthiness compliance.• Test and Inspection

– Test can only be carry out for the first 5 minutes of every hour. Maximum 3 beeps and tuned the radio to ELT frequency.

– Inspect battery by expiry date on battery data plate. Fully charged at all time. If used more than 20 minutes, replacement is required.

Page 96: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 96 Badarul Zaman

Hamidin

Cockpit Voice Recorders (CVR)

• Record all sounds/communications and activities inside the cockpit.• Useful information for accident investigation when occur.• Components:

– Hot Microphone – inside the cockpit• Records voices, warning sound, engine noise, etc.• Connected to intercom, radio.

– CVR Unit – tail section of the aircraft. • Use magnetic tape for continuous recording for 30 minutes. • Tape is 4 channel tape• Waterproof, Impact and Fire Resistant

• Operation Mode– Record – using 4 channel– Test – test switch– Monitoring– Erase – on ground and parking brake is ON

• During crash, squat switch disconnect the power supply.

Page 97: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 97 Badarul Zaman

Hamidin

Flight Data Recorders (FDR)• Records parameters of aircraft systems for accident investigation when

occur.• Installed at the tail section in famously known as Black Box that can

withstand:– 1 ton crushing load– Acceleration force for 100 G’s– Soaked in fluid– Temperature of 800°C for 15 minutes

• Components1. Recorder 3. Trip and Date encoder2. Power Supply 4. Accelerometer

• Recorder Type– The recorder is 6” stainless steel metal foiled tape for 400 hours recording

time.– Magnetic tape for last 25 flight hours– Semiconductor memory chip

• RED light indicates FDR fail.

Page 98: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 98 Badarul Zaman

Hamidin

FDR Parameters

1. Indicated Speed

2. Altitude

3. Magnetic Heading

4. Vertical Acceleration

5. Pitch Attitude

6. Roll Attitude

7. Stabilizer Trim Position

8. Pitch Control Position

9. Roll Attitude

10. N1, EPR or Prop RPM and Torque

11. Vertical Speed

12. Angle of Attack

13. Autopilot Engagement

14. TE Flap Position

15. LE Flap Position

16. Thrust Reverser Position

17. Spoiler/Speedbrake Position

Page 99: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 99 Badarul Zaman

Hamidin

Radar Altimeter

• Display aircraft’s absolute altitude above ground level (AGL)• Operating frequency : 4.3 GHz• Using radio signal to measure absolute altitude rather than

using atmospheric pressure.• Absolute Altitude : Total altitude measured with reference to

vacuum.• Usable range is up to 2500 ft, mainly used during instrument

approach during bad weather.• Also refer as ‘Radio Altimeters’• Components:

– 2 Antennas – receive and transmit at bottom of aircraft.– Transceiver – measure total time signal travel back to aircraft and

translate into altitude distance.– Radio Altimeter Indicator – display altitude above ground

Page 100: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 100 Badarul Zaman

Hamidin

GPWSGround Proximity Warning System

• Provide warning of dangerous terrain during approach to land.• Components:

– Radio Altimeter (RA)– Air Data Computer (ADC)– ILS– GPWC– Monitors landing gear and flap position

• GPWC – Ground Proximity Warning Computer– Provides visual warning (Lights) and Aural Audible Warning (8 Voices)– Inputs from RA, Glide Slope, ADC (barometric altitude)– 5 Modes Operation

MODE 1 – excessive sink rateMODE 2 – excessive terrain closure rateMODE 3 – descent after take-offMODE 4 – wrong LG (A) or Flaps (B)MODE 5 – inadvertent descent below glide slope

Page 101: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 101 Badarul Zaman

Hamidin

• 8 Audio Message output based on priority and operation modes• Visual indication when Light illuminates in MODE 1, 2,3, and 4.• “Whoop Whoop Pull Up” message supercedes other messages.• In MODE 5, tones will increase as approach closer to runway.• GPWS only operates when aircraft 2500 ft and below.

GPWS

PRIORITY MESSAGE MODE

1 Whoop Whoop – Pull Up 1 & 2

2 Terrain – Terrain 2

3 Too Low – Terrain 4A & 4B

4 Too Low – Gear 4A

5 Too Low – Flaps 4B

6 Sink Rate 1

7 Don’t Sink 3

8 Glide Slope 5

Page 102: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 102 Badarul Zaman

Hamidin

TCASTraffic Alert & Collision Avoidance System

• To alert pilot of its intruder in their vicinity and to avoid aircraft collision.

• Generate alert and collision avoidance advisory messages:• Two types of advisory:

– Traffic Alert / Advisory (TA)• Audible warns pilot of the closing intruder/aircraft at 40 sec distant.• ‘Traffic Traffic’

– Resolution Advisory (RA)• Display when intruder/aircraft at 25 sec distant.• Offers audible corrective or preventive maneuvers to avoid collision.• ‘Climb Climb Climb’

• TCAS components:– TCAS facility– MODE S transponder facility– ATC Radar Beacon Systems

Page 103: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 103 Badarul Zaman

Hamidin

Weather Radar

• Airborne Weather Radar as ground based radar for weather avoidance system.

• To display the pilot of weather condition ahead to ensure smooth flight and passenger comfort.

• Operated using microwave frequencies:– X Band ( 8 GHz – 12 GHz )

• In private jet for clear reception• BUT, not reliable coverage behind existing condition

– C Band ( 4 GHz – 8 GHz )• In commercial transport for greater distance coverage• Penetrate ahead existing condition

• Components– Transceiver Unit – located in Radome*

– Radar Scanner/Antenna – Located in Radome

– Radarscope• Color display CRT• Level 1 RED (severe weather)• Level 2 YELLOW (mild weather)• Level 3 GREEN (normal weather)

Page 104: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 104 Badarul Zaman

Hamidin

STORMSCOPETM

• Weather avoidance system.

• Display condition of the weather.

• Also called as “All Weather Mapping”.

• Use to locate thunderstorm activities.

• Severity of weather shown by dense dot.

• Unlike radar, do not radiate radio signals.

• Instead, ONLY receive radio signals.

• The radio frequency signal received is produced by the lighting or severe turbulence condition.

Page 105: Excellent  cns

Center of Excellence for Aviation TrainingCenter of Excellence for Aviation Training

Universiti Kuala LumpurMalaysian Institute of Aviation Technology

TCNV 214 Slide 105 Badarul Zaman

Hamidin

Project A-40Navigation Systems

• Objective : To identify type and understand available aircraft navigation systems, their components and location onboard the aircraft.

• Project type: Group

• Work Performance: – Each group will select an aircraft type for the project.– All information must be refer to respective aircraft maintenance manual.– List available navigation systems onboard the aircraft.– Identify the location of the navigation components and equipments.– Installation and maintenance requirements according to the maintenance manual.– Provide written explanation and presentation.

• Aircrafts Selection:1. Boeing 7772. Boeing 7373. Airbus 3304. Airbus 3205. Hawker Siddeley – HS 1256. Fokker 50

Page 106: Excellent  cns

TCNV 214 Slide 106 Badarul Zaman

Hamidin

Thank You

KP(JPS)5195/US/38

DCAM No. AO/0110/03