Example in Portal Frame From a to Z

45
1 STRUCTURAL CALCULATIONS Using MASTERSERIES POWERPAD Project Name: ALUSAMI STORE Steel BUILDING V01 CLIENT: AL QATARIA FOR IND. STEEL STRUCTURAL ENGINEERS ALWADI STEEL ST17-GATE 98 IND. AREA DOHA-QATAR Tel: (+974) 4600982 Fax: (+974) 4505194 PROJECT NO: 290 July 2010

description

Masterseries example

Transcript of Example in Portal Frame From a to Z

Page 1: Example in Portal Frame From a to Z

1

SSTTRRUUCCTTUURRAALL CCAALLCCUULLAATTIIOONNSS Using

MASTERSERIES POWERPAD

Project Name: ALUSAMI STORE

Steel BUILDING

V01

CLIENT: AL QATARIA FOR IND. STEEL

SSTTRRUUCCTTUURRAALL EENNGGIINNEEEERRSS

AALLWWAADDII SSTTEEEELL ST17-GATE 98

IND. AREA

DOHA-QATAR

Tel: (+974) 4600982 Fax: (+974) 4505194

PPRROOJJEECCTT NNOO:: 229900

July 2010

Page 2: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 2

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

2

Page 3: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 3

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

3

1. MATERIAL SPECIFICATIONS:-

- Concrete characteristic strength = 30 MPa

- Steel Section is steel 43, its yield strength = 275 MPa

- Bolts are high strength bolts grade 8.8

- Welding electrode with yield strength (E7018) = 460 MPa

- Welding electrode with ultimate strength = 520 MPa

2. CODES-

- Design of Steel sections and connections according to British Standard 5950-1-

2000.

- Design of Cold Formed sections according to AISI-1996.

- Design of Concrete Footing according to British Standard 8110-1997.

- Loadings applied as per B.S. 6399 code.

-All tolerances as per B.S.5950-1-2000 code

3. SOFT WARES:-

-Design of hot rolled sections by Master Port Plus

is a new and innovative approach to the generation, elastic-plastic analysis and

design of portal frames, providing a complete management system where all

aspects of a 3D portal frame building design can be considered with ease.

-Design of connections by MASTER KEY.

-Design of Concrete Footing by MASTER KEY.

-Design of Cold Formed Sections by CFS6.00

4. DESIGN CRITERIA:

1. Dead load of steel & concrete Structure Computed by Sap 2000

Automatically.

2. Roof live load = 57 Kg /m2.

3. Wind Speed = 42 m /Sec = 150 Km/h.

5. Deflection Limit:

1- Main Frame Rafters = L/180 Due to D+L.

2- Roof Purlin = L/180 Due to D+L.

3-Lateral Deflection for Columns = L/100 Due to all cases.

4-Wall Grits = L/120 Due to wind only.

5-End Wall Columns = L/120 Due to wind only.

Page 4: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 4

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

4

6. WIND LOADS: Wind Loading to BS 6399 - Part 2

Basic Wind Speed (3Second) = 150 km/h = 42 m/Sec

Basic wind Speed (mean Hourly) = 0.49X42 = 20.5 m/Sec

Building meets definition Enclosed Building

Developed Suburban Location. Exposure Category B

Purlin Spacing 1.20m

Girt Spacing = 1.20m

Bay Spacing = 5.75m

End Wall Column Spacing = 6.00m

Eave height H = 9.00m

Apex height H = 11.50 m

Width B = 44.50 m

Length 40.00 m

Site Basic Data Location and Base wind speed BREVe3 site data for SD320379 - Base wind speed, Vb 20.5 m/s Altitude and Obstructions Site altitude 0 m - Shelter effect from obstructions is not included Seasonal factor, Ss Season length is All year - Seasonal factor, Ss 1.000 Annual risk and probability factor Design annual risk 0.02 - Probability factor, Sp 1.000 Topographic Increments Site altitude only - Topography not significant - assumed to be flat Heights (m) Heights above ground 10, Diagonals 5; 20 and 50

Direction Factors - Using unity direction Factors Direction (°N) 0 30 60 90 120 150 180 210 240 270 300 33 Direction factor, Sd 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard Method Site description Site is in country, nearest distance to sea = 1.00km.

Height Above Ground = 10.0 m - Ve 36.5 m/s - q 815.7 N/m²

He = 10 m , Ca = 0.83 , a = 50 m

Wind Pressure =qXCa = 815.7X0.83 = 676 N/m2

Page 5: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 5

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

5

7. Loading Cases and Load Combination

Load Group Labels Load Group UT Unity Load Factor (All Cases) Load Group D1 Dead Load Load Group D2 Services Load Group L1 Live Load Load Group W1 Wind on Side (Top Values) --> Load Group W2 Wind on Side (Bottom Values) --> Load Group W3 Wind on Gable Load Group P1 Wind on Side (Top Values) --> with Internal Pressure Cpi = Load Group P2 Wind on Side (Bottom Values) --> with Internal Pressure Cpi = Load Group P3 Wind on Gable with Internal Pressure Cpi = Load Group S1 Wind on Side (Top Values) --> with Internal Suction Csi = Load Group S2 Wind on Side (Bottom Values) --> with Internal Suction Csi = Load Group S3 Wind on Gable with Internal Suction Csi =

Load Case 001 : 1.4 (Dead+Services) + 1.6 Live Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.60 L1 Notional Loads FIND +0.5 (Determine notional load equal to the specified percentage) Plastic Hinges End 2 of Member 00028 Plastic Moment -928.231 kN.m End 2 of Member 00026 Plastic Moment -928.230 kN.m End 2 of Member 00037 Plastic Moment -928.151 kN.m End 2 of Member 00038 Plastic Moment -928.150 kN.m End 2 of Member 00048 Plastic Moment -928.152 kN.m End 2 of Member 00047 Plastic Moment -928.152 kN.m End 2 of Member 00058 Plastic Moment -928.150 kN.m End 2 of Member 00057 Plastic Moment -928.149 kN.m End 2 of Member 00067 Plastic Moment -928.150 kN.m End 2 of Member 00068 Plastic Moment -928.151 kN.m End 2 of Member 00078 Plastic Moment -928.231 kN.m End 2 of Member 00080 Plastic Moment -928.231 kN.m

Load Case 002 : Dead + Services + Live (Service) Load Combination + 1.00 UT + 1.00 D1 + 1.00 D2 + 1.00 L1

Load Case 003 : Live Only (Service) Load Combination + 1.00 UT + 1.00 L1

Load Case 004 : (Sway Stability) Load Combination + 1.00 UT Notional Loads ADD @ +0.0 (Apply the FIND a% notional load at the specified angle) Level @ (m) F (kN) Level @ (m) F (kN) Level @ (m) F (kN)

0 0.000 0.626 1 4.375 0.364 2 7.923 0.448

3 8.750 2.352 4 9.223 0.380 5 9.567 3.508

6 9.892 0.384 7 10.384 3.520 8 10.560 0.388

9 11.201 2.188

Load Case 005 : 1.4 (Dead+Services) + 1.6 Live + Notional --> Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.60 L1 Notional Loads ADD @ +0.0 (Apply the FIND a% notional load at the specified angle) Level @ (m) F (kN) Level @ (m) F (kN) Level @ (m) F (kN)

0 0.000 0.626 1 4.375 0.364 2 7.923 0.448

3 8.750 2.352 4 9.223 0.380 5 9.567 3.508

6 9.892 0.384 7 10.384 3.520 8 10.560 0.388

9 11.201 2.188

Plastic Hinges End 2 of Member 00028 Plastic Moment -928.221 kN.m End 2 of Member 00038 Plastic Moment -928.138 kN.m End 2 of Member 00048 Plastic Moment -928.139 kN.m End 2 of Member 00058 Plastic Moment -928.139 kN.m End 2 of Member 00068 Plastic Moment -928.139 kN.m End 2 of Member 00080 Plastic Moment -928.220 kN.m

Load Case 006 : 1.0 Dead + 1.4 Side Wind W1 Load Combination + 1.00 UT + 1.00 D1 + 1.40 W1

Page 6: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 6

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

6

Load Case 007 : 1.0 Dead + 1.4 Side Wind P1 Load Combination + 1.00 UT + 1.00 D1 + 1.40 P1

Load Case 008 : 1.0 Dead + 1.4 Side Wind S1 Load Combination + 1.00 UT + 1.00 D1 + 1.40 S1

Load Case 009 : 1.4(Dead + Serv + Side Wind W1) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 W1

Load Case 010 : 1.4(Dead + Serv + Side Wind P1) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 P1

Load Case 011 : 1.4(Dead + Serv + Side Wind S1) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 S1

Load Case 012 : 1.2(Dead + Serv + Live + Side Wind W1) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 W1

Load Case 013 : 1.2(Dead + Serv + Live + Side Wind P1) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 P1

Load Case 014 : 1.2(Dead + Serv + Live + Side Wind S1) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 S1

Load Case 015 : 1.0 Dead + 1.4 Side Wind W2 Load Combination + 1.00 UT + 1.00 D1 + 1.40 W2

Load Case 016 : 1.0 Dead + 1.4 Side Wind P2 Load Combination + 1.00 UT + 1.00 D1 + 1.40 P2

Load Case 017 : 1.0 Dead + 1.4 Side Wind S2 Load Combination + 1.00 UT + 1.00 D1 + 1.40 S2

Load Case 018 : 1.4(Dead + Serv + Side Wind W2) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 W2

Load Case 019 : 1.4(Dead + Serv + Side Wind P2) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 P2

Load Case 020 : 1.4(Dead + Serv + Side Wind S2) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 S2

Load Case 021 : 1.2(Dead + Serv + Live + Side Wind W2) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 W2

Load Case 022 : 1.2(Dead + Serv + Live + Side Wind P2) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 P2

Load Case 023 : 1.2(Dead + Serv + Live + Side Wind S2) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 S2

Load Case 024 : 1.0 Dead + 1.4 Gable Wind W3 Load Combination + 1.00 UT + 1.00 D1 + 1.40 W3

Load Case 025 : 1.0 Dead + 1.4 Gable Wind P3 Load Combination + 1.00 UT + 1.00 D1 + 1.40 P3

Load Case 026 : 1.0 Dead + 1.4 Gable Wind S3 Load Combination + 1.00 UT + 1.00 D1 + 1.40 S3

Load Case 027 : 1.4(Dead + Serv + Gable Wind W3) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 W3

Load Case 028 : 1.4(Dead + Serv + Gable Wind P3) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 P3

Load Case 029 : 1.4(Dead + Serv + Gable Wind S3) Load Combination + 1.00 UT + 1.40 D1 + 1.40 D2 + 1.40 S3

Load Case 030 : 1.2(Dead + Serv + Live + Gable Wind W3) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 W3

Load Case 031 : 1.2(Dead + Serv + Live + Gable Wind P3) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 P3

Load Case 032 : 1.2(Dead + Serv + Live + Gable Wind S3) Load Combination + 1.00 UT + 1.20 D1 + 1.20 D2 + 1.20 L1 + 1.20 S3

Page 7: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 7

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

7

Load Case 033 : D1 Dead Load Load Combination + 1.00 UT + 1.00 D1

Load Case 034 : D1 Dead Load plus D2 Services Load Combination + 1.00 UT + 1.00 D1 + 1.00 D2

Load Case 035 : L1 Live Load Load Combination + 1.00 UT + 1.00 L1

Load Case 036 : W1 Wind on Side (Top Values) --> Load Combination + 1.00 UT + 1.00 W1

Load Case 037 : W2 Wind on Side (Bottom Values) --> Load Combination + 1.00 UT + 1.00 W2

Load Case 038 : W3 Wind on Gable Load Combination + 1.00 UT + 1.00 W3

MEMBER PROPERTIES

Members 1-18 and 83-100 M ... ... IPE 600 122.44 [Grade 43]

A 156.0E-4 Ix 92080E-8 Iy 3387E-8 J 165.2E-8

E 205.0E6 G 78.85E6

Members 19-24, 31-36, 41-46, 51-56, 61-66 and 71-76 (3.186m Haunch End1 (1200.0), 2.046m Haunch

End2 (1200.0))

MD ... ... IPE 600 122.44 [Grade 43]

A 156.0E-4 Ix 92080E-8 Iy 3387E-8 J 165.2E-8

E 205.0E6 G 78.85E6

Members 25-30, 37-40, 47-50, 57-60, 67-70 and 77-82 (0.827m Haunch at End 2, Depth 600.0mm to

1200.0mm)

MH ... ... IPE 600 122.44 [Grade 43]

A 156.0E-4 Ix 92080E-8 Iy 3387E-8 J 165.2E-8

E 205.0E6 G 78.85E6

Members 101-114

M ... ... 305x102 UB 33 [Grade 43]

A 41.82E-4 Ix 6502E-8 Iy 195.0E-8 J 12.2E-8

E 205.0E6 G 78.85E6

Members 115-128 and 145-203

M ... ... 2No 80x80x8 ANG 19.28 (0mm) [Grade 43]

A 24.6E-4 Ix 144.8E-8 Iy 270.4E-8 J 5.76E-8

E 205.0E6 G 78.85E6

Members 129-144

M ... ... 2No 80x80x10 ANG 23.8 (0mm) [Grade 43]

A 30.2E-4 Ix 175.2E-8 Iy 340.6E-8 J 10.9E-8

E 205.0E6 G 78.85E6

Page 8: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 8

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

8

8. Frame Geometry - (Floor Plan) - Plan View

Frame Geometry - (Floor Plan) - X+046 Y+042 Z+000

Page 9: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 9

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

9

9. Support Reactions

Support Reactions Serviceability (002 : Dead + Services + Live (Service))

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 1.613 0.000 0.000 0.000 0.000

14 87.652 120.537 0.000 0.000 0.000 -101.786

15 -87.652 120.536 0.000 0.000 0.000 101.786

Total 0.000 1878.042 0.000 0.000 0.000 0.000

Support Reactions Serviceability (003 : Live Only (Service))

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 0.000 0.000 0.000 0.000

14 57.674 71.489 0.000 0.000 0.000 -66.977

15 -57.674 71.489 0.000 0.000 0.000 66.977

Total 0.000 1000.843 0.000 0.000 0.000 0.000

Support Reactions Serviceability (004 : (Sway Stability))

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 -0.011 0.000 0.000 0.000 0.000 0.000

14 -0.915 -0.311 0.000 0.000 0.000 1.921

15 -0.915 0.311 0.000 0.000 0.000 1.921

Total -14.147 0.000 0.000 0.000 0.000 35.728

Support Reactions Serviceability (033 : D1 Dead Load)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 1.613 0.000 0.000 0.000 0.000

14 29.977 49.048 0.000 0.000 0.000 -34.809

15 -29.977 49.048 0.000 0.000 0.000 34.809

Total 0.000 877.198 0.000 0.000 0.000 0.000

Support Reactions Serviceability (034 : D1 Dead Load plus D2 Services)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 1.613 0.000 0.000 0.000 0.000

14 29.977 49.048 0.000 0.000 0.000 -34.809

15 -29.977 49.048 0.000 0.000 0.000 34.809

Total 0.000 877.198 0.000 0.000 0.000 -0.001

Support Reactions Serviceability (035 : L1 Live Load)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 0.000 0.000 0.000 0.000

14 57.674 71.489 0.000 0.000 0.000 -66.977

15 -57.674 71.489 0.000 0.000 0.000 66.977

Total 0.000 1000.844 0.000 0.000 0.000 0.000

Support Reactions Serviceability (036 : W1 Wind on Side (Top Values) -->)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 10.317 0.000 0.000 0.000

14 -54.282 -53.800 0.000 0.000 0.000 67.598

15 17.463 -37.598 0.000 0.000 0.000 -14.112

Total -257.784 -679.470 0.000 0.000 0.000 421.465

Page 10: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 10

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

10

Support Reactions Serviceability (037 : W2 Wind on Side (Bottom Values) -->)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 10.317 0.000 0.000 0.000

14 -36.164 -9.415 0.000 0.000 0.000 71.818

15 -7.141 -24.160 0.000 0.000 0.000 39.507

Total -305.387 -255.093 0.000 0.000 0.000 896.296

Support Reactions Serviceability (038 : W3 Wind on Gable)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 -11.218 0.000 0.000 0.000

14 -15.362 -36.622 0.000 -0.036 0.000 26.063

15 15.362 -36.622 0.000 -0.036 0.000 -26.064

Total 0.000 -590.525 -296.752 -1.654 0.000 -0.020

Support Reactions Serviceability (Maximum Values)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 -0.011 1.613 -11.218 0.000 0.000 0.000

14 87.652 120.537 0.000 -0.036 0.000 -101.786

15 -87.652 120.536 0.000 -0.036 0.000 101.786

Total -305.387 1878.042 -296.752 -1.654 0.000 896.296

Support Reactions Serviceability (Minimum Values)

Node Directional Reactions (kN) Moment Reactions (kN.m)

Rx(kN) Ry(kN) Rz(kN) Mx(kN.m) My(kN.m) Mz(kN.m)

7 0.000 0.000 10.317 0.000 0.000 0.000

14 -54.282 -53.800 0.000 0.000 0.000 71.818

15 17.463 -37.598 0.000 0.000 0.000 -26.064

Total 0.000 -679.470 0.000 0.000 0.000 -0.020

Page 11: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 11

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

11

10. Deflected Shape - (Grid Line : A - A)

Envelope (Serviceability Cases)

Deflected Shape - (Grid Line : A - A) - Front View

5 Magnification

Page 12: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 12

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

12

11. Deflected Shape - (Grid Line : E - E)

Envelope (Serviceability Cases)

Deflected Shape - (Grid Line : E - E) - Front View

5 Magnification

Page 13: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 13

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

13

12. Bending Moment Diagram - (Grid Line : A - A)

Envelope (All Cases)

Bending Moment Envelope (All Cases) (Major Axis) - (Grid Line : A - A) - Front View

Bending Moment Values (kN.m)

500 kN.m = 1m

Page 14: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 14

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

14

13. Bending Moment Envelope) - (Grid Line : E - E)

Envelope (All Cases)

Bending Moment Envelope (All Cases) (Major Axis) - (Grid Line : E - E) - Front View

Bending Moment Values (kN.m)

500 kN.m = 1m

Page 15: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 15

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

15

14. Gable Column :

AXIAL WITH MOMENTS (MEMBER)

Gable Column : Member 105 (A3)

Between 4.200 and 5.400 m, in Load Case 19

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.4 D2 + 1.4 P2

P2 UDLZ -004.173 ( kN/m )

Member Forces in Load Case 19 and Maximum Deflection from Load Case 37

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

105 3 2.26C 0.00 28.90 0.00 0.00 0.00 71.46 31.23

91 2.26T 0.00 -28.90 0.00 0.00 0.00 @ 4.946 @ 4.946

Classification and Properties (BS 5950: 2000) Section (33.0 kg/m) 305x102 UB 33 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 4.74, 41.8, 275, 2.26, 71.46, 0 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Local Capacity Check Fvx/Pvx 0.045 / 340.53 = 0 Low Shear Mcx = py.Sxx1.2 py.Zxx 275 x 480.81.2 x 275 x 415.87 = 132.22 kN.m

Pz =Ae.py 41.82x275 = 1150.05 kN n = F/Pz -2.259 / 1150.05 = 0.002 OK Srx = Fn(Sxx, n) 480.8, 0.002 480.8 cm³ Mrx = Srx.py 480.8 x 275 132.219 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (71.457/132.219)²+(0)1= 0.292 OK

Compression Resistance Pc λx = Lex/rxx 100x1x9.892/12.47 = 79.3 OK Pcx = Area.pcx 41.82x204.828/10 = 856.592 kN Table 24 a λy = Ley/ryy 100x1x1.2/2.16 = 55.6 OK Pcy = Area.pcy 41.82x228.01/10 = 953.542 kN Table 24 b

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x71+.5x71+.15x71)/71 0.44 0.998 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 1 Table 26

mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x54+.6x71+.1x54)/71 .8x71/71 0.95 Table 26 myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 1 Table 26

Lateral Buckling Check Mb Le = 1.00 L 1 x 1.2 = 1.2 m λ = Le/ryy 1.2 / 2.16 55.56 OK v = Fn (x,Le,ryy,λ) 31.63, 1.2, 2.16, 55.56 0.965 Table 19 λLT= u.v.λ.βW 0.868 x 0.965 x 55.56 1 46.52

pb = Fn (py,λLT) 275, 46.52 246.39 N/mm² Table 16 Mb = Sxx.pb Mc 480.8 x 246.39 132.22 = 118.467 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.998x71.5/118.5 0.602

Page 16: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 16

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

16

rc=Fc/Pcy 2.3/953.5 0.002 λr=(rbλLT+rcλy)/(rb+rc) (0.602•46.5+0.002•55.6)/(0.602+0.002) 46.559 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.602+0.002)/(0.602+0.002) 34.233 Mob= Mb(1-Fc/Pcy) 118.467(1-2.3/953.5) 118.186 Mxy= Mcx(1-Fc/ Pcy)

½ 132.220(1-2.3/953.5)½ 132.063 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 132.220(1-2.3/856.6)/(1+0.5•2.3/856.6) 131.698 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 12.570(1-2.3/953.5)/(1+1.0(2.3/953.5)) 12.510 Mab=fn( λr, λro, ε, Mxy, Mob) 46.559, 34.233, 1.000, 132.063, 118.186 128.865 Max=fn( λx, ε, Mrx, Mox) 79.326, 1.000, 132.219, 131.698 131.747 May=fn( λy, ε, Mry, Moy) 55.556, 1.000, 12.570, 12.510 12.536 mx.Mx/Max 0.95x71.5/131.7 0.515 OK mLT.MLT/Mab 0.998x71.5/128.9 0.554 OK mx.Mx/Max 0.95x71.5/131.7 0.515 OK Compare with Simplied to 4.8.3.3 0.596, 0.604, 0.605 0.605 Compare with MoreExact to 4.8.3.3 0.517, 0.604, 0.542 0.604

Deflection Check - Load Case 37 δ Span/100 31.23 9892 / 100 31.23 mm OK

APPENDIX-G STABILITY (MEMBER) : G.2.(A).1

Gable Column : Member 105 (A3)

Between 3.000 and 5.400 m, in Load Case 29

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.4 D2 + 1.4 S3

S3 UDLZ +003.341 ( kN/m )

Lateral and Torsional Restraints Side rails @ 3, 4.2, 5.4, 6.6, 7.8, 9 and 9.892 m Stays @ 3, 5.4, 7.8, 9 and 9.892 m

Member Forces in Load Case 29

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

105 3 2.26C 0.00 -23.13 0.00 0.00 0.00 -57.21 0.00 0.00

91 2.26T 0.00 23.13 0.00 0.00 0.00 @ 4.946 @ 0.000 @ 4.946

Classification and Properties (BS 5950: 2000) Section (33.0 kg/m) 305x102 UB 33 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 4.74, 41.8, 275, -2.26, 57.21, 0 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Compression Resistance Pc λy = L/ryy 100x2.4/2.16 = 111.11 OK y = Fn(a,hs,x,λy) 187.62, 301.9, 31.63, 111.111 0.897 G.2.3 λTC = y.λ 0.897x111.11 = 99.68 OK Pcy = Area.pcy 41.82x141.38/10 = 591.27 kN Table 24 b

Equivalent Uniform Moment Factor mt λy = L/ryy 100x2.4/2.16 = 111.11 OK y = Fn(a,hs,x,λy) 187.62, 301.9, 31.63, 111.111 0.897 G.2.3 βt=Fn(M1,M2) 48.351, 56.724 0.852 mt=Fn(y,βt) 0.897, 0.852 0.916 Table 39

Lateral Buckling Resistance Moment Mb Mp = py.Sxx1.2 py.Zxx 275 x 480.8 1.2 x 275 x 415.87 = 132.22 kN.m

Page 17: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 17

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

17

λy = L/ryy 100x2.4/2.16 = 111.11 OK vt = Fn(a,x,hs,λ) 187.62, 31.63, 301.9, 111.111 0.887 G.2.4.1 c=Fn(R,q,x) 1, 1, 31.63 1 G.2.5 λTB = nt.u.vt.λy 1 x 0.868 x 0.887 x 111.111 85.515 G.2.4.1 pb = Fn (py,λTB) 275, 85.52 152.75 N/mm² Table 16 Mb = Sxx.pb Mp py.Zxx 480.8 x 152.75 132.22 275 x 415.87 = 73.444 kN.m

Elastic Stability of Uniform Members : G.2.1 F/Pc+mt.MA/Mb 2.259 / 591.27 + 0.916 x 57.206 / 73.444 = 0.718 OK

15. Main Column :

AXIAL WITH MOMENTS (MEMBER)

Column 1 : Members 25-26 and 29 (B1)

Between 7.600 and 8.750 m, in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.4 D2 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 2

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

10 181.40C 0.00 -115.09 -0.02 0.00 0.00 -0.07 13.61

65 166.54C 0.00 -115.09 0.02 -1007.02 0.00 @ 4.375 @ 5.368

Classification and Properties (BS 5950: 2000) Section (122.4 kg/m) IPE 600 122.44 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 5.79, 42.83, 265, 181.4, 1007.02, 0.07 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Local Capacity Check Fvx/Pvx 115.088 / 1144.8 = 0.101 Low Shear Mcx = py.Sxx1.2 py.Zxx 265 x 3512.41.2 x 265 x 3069.45 = 930.786 kN.m Fvy/Pvy 0.015 / 1196.316 = 0 Low Shear Mcy = py.Syy1.2 py.Zyy 265 x 485.61.2 x 265 x 307.94 = 97.924 kN.m

Pz = Ag.py 155.98 x 265 = 4133.47 kN n = F/Pz 181.4 / 4133.47 = 0.044 OK Srx = Fn(Sxx, n) 3512.4, 0.044 3502.64 cm³ Mrx = Srx.py 3502.64 x 265 928.199 kN.m Sry = Fn(Syy, n) 485.6, 0.044 485.4 cm³ Mry = Sry.py 485.4 x 265 97.924 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (897.686/928.199)²+(0.014/97.924)1= 0.935 OK

Compression Resistance Pc λx = Lex/rxx 100x1x8.75/24.3 = 36 OK Pcx = Area.pcx 155.98x253.765/10 = 3958.219 kN Table 24 a λy = Ley/ryy 100x1x1.15/4.66 = 24.7 OK Pcy = Area.pcy 155.98x257.95/10 = 4023.511 kN Table 24 b

Page 18: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 18

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

18

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x908+.5x941+.15x974)/1007 0.44 1 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 1 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-252+.6x-504+.1x-755)/1007 .8x755/1007 0.6 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 0.898 Table 26

Lateral Buckling Check Mb Le = 1.00 L 1 x 1.15 = 1.15 m λ = Le/ryy 1.15 / 4.66 24.68 OK v = Fn (x,Le,ryy,λ) 31.88, 1.15, 4.66, 24.68 0.993 Table 19 λLT= u.v.λ.βW 0.873 x 0.993 x 24.68 1 21.39

pb = Fn (py,λLT) 265, 21.39 265 N/mm² Table 16 Mb = Sxx.pb Mc 3512.4 x 265 930.786 = 930.786 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 1x-897.7/930.8 0.964 rc=Fc/Pcy 181.4/4023.5 0.045 λr=(rbλLT+rcλy)/(rb+rc) (0.964•21.4+0.045•24.7)/(0.964+0.045) 21.537 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1.019(2•0.964+0.045)/(0.964+0.045) 34.161 Mob= Mb(1-Fc/Pcy) 930.786(1-181.4/4023.5) 888.822 Mxy= Mcx(1-Fc/ Pcy)

½ 930.786(1-181.4/4023.5)½ 909.562 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 930.786(1-181.4/3958.2)/(1+0.5•181.4/3958.2) 868.234 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 97.924(1-181.4/4023.5)/(1+1.0(181.4/4023.5)) 89.475 Mab=fn( λr, λro, ε, Mxy, Mob) 21.537, 34.161, 1.019, 909.562, 888.822 909.562 Max=fn( λx, ε, Mrx, Mox) 36.012, 1.019, 928.199, 868.234 912.300 May=fn( λy, ε, Mry, Moy) 24.678, 1.019, 97.924, 89.475 97.053 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.6x897.7/912.3+.5x0.898x0.1/(97.9(1-181.4/3958.2)) 0.591 OK mLT.MLT/Mab+my.My/May 1x-897.7/909.6+1x0/97.1 0.987 OK mx.Mx/Max+my.My/May 0.6x897.7/912.3+1x0/97.1 0.591 OK Compare with Simplied to 4.8.3.3 0.708, 1.01, 1.01 1.01 Compare with MoreExact to 4.8.3.3 0.638, 1.01, 1.034 1.034

Deflection Check - Load Case 2 δ Span/100 13.61 8750 / 100 13.61 mm OK

APPENDIX-G STABILITY (MEMBER) : G.2.(A).1

Column 1 : Members 25-26 and 29 (B1)

Between 8.750 and 8.750 m, in Load Case 23

Member Loading and Member Forces Loading Combination : 1 UT + 1.2 D1 + 1.2 D2 + 1.2 L1 + 1.2 S2

S2 UDLX +000.636 [ kN/m ]

Lateral and Torsional Restraints Side rails @ 3, 4, 5.2, 6.4, 7.6 and 8.75 m Stays @ 3, 4, 5.2, 6.4, 7.6 and 8.75 m

Member Forces in Load Case 23

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

10 159.55C 0.00 -66.05 0.01 0.00 0.00 0.05 0.00

65 147.87C 0.00 -104.38 -0.01 -745.61 0.00 @ 4.375 @ 5.368

Classification and Properties (BS 5950: 2000) Section (122.4 kg/m) IPE 600 122.44 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 5.79, 42.83, 265, 159.55, 745.61, 0.05 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Page 19: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 19

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

19

Compression Resistance Pc λy = L/ryy 100x0/4.66 = 0 OK y = Fn(a,hs,x,λy) 360, 581, 32.01, 0.002 1 G.2.3 λTC = y.λ 1x0 = 0 OK Pcy = Area.pcy 155.98x265/10 = 4133.47 kN Table 24 b

Equivalent Uniform Moment Factor mt λy = L/ryy 100x0/4.66 = 0 OK y = Fn(a,hs,x,λy) 360, 581, 32.01, 0.002 1 G.2.3 βt=Fn(M1,M2) 745.609, 745.609 1 mt=Fn(y,βt) 1, 1 1 Table 39

Lateral Buckling Resistance Moment Mb Mp = py.Sxx1.2 py.Zxx 265 x 3512.4 1.2 x 265 x 3069.33 = 930.786 kN.m λy = L/ryy 100x0/4.66 = 0 OK vt = Fn(a,x,hs,λ) 360, 32.01, 581, 0.002 0.989 G.2.4.1 c=Fn(R,q,x) 1, 1, 32.01 1 G.2.5 λTB = nt.u.vt.λy 1 x 0.873 x 0.989 x 0.002 0.002 G.2.4.1 pb = Fn (py,λTB) 265, 0 265 N/mm² Table 16 Mb = Sxx.pb Mp py.Zxx 3512.4 x 265 930.786 265 x 3069.33 = 813.373 kN.m

Elastic Stability of Uniform Members : G.2.1 F/Pc+mt.MA/Mb 159.549 / 3958.264 + 1 x 745.609 / 813.373 = 0.957 OK

16. Rafter 1 of Bay 1 :

AXIAL WITH MOMENTS (MEMBER)

Rafter 1 of Bay 1 : Members 31-33 (C1-C5)

Between 2.400 and 3.600 m, in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.4 D2 + 1.6 L1

D1 UDLY -000.080 [ kN/m ]

D2 UDLY -000.000 [ kN/m ]

L1 UDLY -000.570 [ kN/m ]

Member Forces in Load Case 1 and Maximum Deflection from Load Case 2

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

59 135.00C 0.00 152.65 0.00 -1025.02 0.00 517.62 0.04 35.77

117 116.42C 0.00 -13.06 0.00 506.33 0.00 @ 20.228 @ 14.658 @ 15.245

Classification and Properties (BS 5950: 2000) Section (122.4 kg/m) IPE 600 122.44 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 5.79, 42.83, 265, 135, 1025.02, 0.04 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Local Capacity Check Fvx/Pvx 128.398 / 1144.8 = 0.112 Low Shear Mcx = py.Sxx1.2 py.Zxx 265 x 3512.41.2 x 265 x 3069.45 = 930.786 kN.m Fvy/Pvy 0 / 1196.316 = 0 Low Shear

Page 20: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 20

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

20

Mcy = py.Syy1.2 py.Zyy 265 x 485.61.2 x 265 x 307.94 = 97.924 kN.m

Pz = Ag.py 155.98 x 265 = 4133.47 kN n = F/Pz 135.005 / 4133.47 = 0.033 OK Srx = Fn(Sxx, n) 3512.4, 0.033 3506.99 cm³ Mrx = Srx.py 3506.99 x 265 929.353 kN.m Sry = Fn(Syy, n) 485.6, 0.033 485.49 cm³ Mry = Sry.py 485.49 x 265 97.924 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (577.317/929.353)²+(0.003/97.924)1= 0.386 OK

Compression Resistance Pc λx = Lex/rxx 100x1x21.987/24.3 = 90.5 OK Pcx = Area.pcx 155.98x175.876/10 = 2743.306 kN Table 24 a λy = Ley/ryy 100x1x1.2/4.66 = 25.8 OK Pcy = Area.pcy 155.98x256.88/10 = 4006.756 kN Table 24 b

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x641+.5x601+.15x563)/680 0.44 1 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 1 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-301+.6x194+.1x464)/1025 .8x464/1025 0.362 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 .8x0/0 0.8 Table 26

Lateral Buckling Check Mb Le = 1.00 L 1 x 1.2 = 1.2 m λ = Le/ryy 1.2 / 4.66 25.75 OK v = Fn (x,Le,ryy,λ) 31.88, 1.2, 4.66, 25.75 0.992 Table 19 λLT= u.v.λ.βW 0.873 x 0.992 x 25.75 1 22.31

pb = Fn (py,λLT) 265, 22.31 265 N/mm² Table 16 Mb = Sxx.pb Mc 3512.4 x 265 930.786 = 930.786 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 1x-577.3/930.8 0.620 rc=Fc/Pcy 135/4006.8 0.034 λr=(rbλLT+rcλy)/(rb+rc) (0.62•22.3+0.034•25.8)/(0.62+0.034) 22.484 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1.019(2•0.62+0.034)/(0.62+0.034) 34.041 Mob= Mb(1-Fc/Pcy) 930.786(1-135/4006.8) 899.424 Mxy= Mcx(1-Fc/ Pcy)

½ 930.786(1-135/4006.8)½ 914.971 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 930.786(1-135/2743.3)/(1+0.5•135/2743.3) 863.727 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 97.924(1-135/4006.8)/(1+1.0(135/4006.8)) 91.540 Mab=fn( λr, λro, ε, Mxy, Mob) 22.484, 34.041, 1.019, 914.971, 899.424 914.971 Max=fn( λx, ε, Mrx, Mox) 90.492, 1.019, 929.353, 863.727 863.727 May=fn( λy, ε, Mry, Moy) 25.751, 1.019, 97.924, 91.540 97.168 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.362x577.3/863.7+.5x0.8x0/(97.9(1-135/2743.3)) 0.242 OK mLT.MLT/Mab+my.My/May 1x-577.3/915+1x0/97.2 0.631 OK mx.Mx/Max+my.My/May 0.362x577.3/863.7+1x0/97.2 0.242 OK Compare with Simplied to 4.8.3.3 0.306, 0.654, 0.669 0.669 Compare with MoreExact to 4.8.3.3 0.279, 0.654, 0.668 0.668

Deflection Check - Load Case 2 δ Span/180 35.77 21987 / 180 35.77 mm OK

APPENDIX-G STABILITY (MEMBER) : G.2.(A).2

Rafter 1 of Bay 1 : Members 31-33 (C1-C5)

Between 2.400 and 4.800 m, in Load Case 1

Page 21: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 21

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

21

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.4 D2 + 1.6 L1

D1 UDLY -000.080 [ kN/m ]

D2 UDLY -000.000 [ kN/m ]

L1 UDLY -000.570 [ kN/m ]

Lateral and Torsional Restraints Purlins @ 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, 9.6, 10.8, 12, 13.2, 14.4, 15.6, 16.8, 18, 19.2, 20.4, 21.6, 21.785 and 21.987 m Stays @ 2.4, 4.8, 7.2, 8.4, 9.6, 13.2, 16.8, 19.2, 20.4 and 21.987 m

Member Forces in Load Case 1

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

59 135.00C 0.00 152.65 0.00 -1025.02 0.00 517.62 0.04 0.00

117 116.42C 0.00 -13.06 0.00 506.33 0.00 @ 20.228 @ 14.658 @ 15.245

Classification and Properties (BS 5950: 2000) Section (122.4 kg/m) IPE 600 122.44 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 5.79, 42.83, 265, 135, 1025.02, 0.04 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 and 5-32

Compression Resistance Pc λy = L/ryy 100x2.4/4.02 = 59.73 OK y = Fn(a,hs,x,λy) 360, 1032.977, 31.88, 59.732 0.984 G.2.3 λTC = y.λ 0.984x59.73 = 58.79 OK Pcy = Area.pcy 155.98x215.63/10 = 3363.382 kN Table 24 b

Equivalent Uniform Moment Factor mt λy = L/ryy 100x2.4/4.02 = 59.73 OK y = Fn(a,hs,x,λy) 360, 1032.977, 31.88, 59.732 0.984 G.2.3 βt=Fn(M1,M2) 680.588, 380 0.558 mt=Fn(y,βt) 0.984, 0.558 0.769 Table 39

Lateral Buckling Resistance Moment Mb Mp = py.Sxx1.2 py.Zxx 265 x 3512.4 1.2 x 265 x 3069.33 = 930.786 kN.m

λy = L/ryy 100x2.4/4.02 = 59.73 OK vt = Fn(a,x,hs,λ) 360, 31.88, 1032.977, 59.732 0.953 G.2.4.2 c=Fn(R,q,x) 1.247, 0.328, 31.88 1.013 G.2.5 λTB = c.nt.vt.λy 1.013 x 1 x 0.953 x 59.732 57.687 G.2.4.2 pb = Fn (py,λTB) 265, 57.69 212.87 N/mm² Table 16 Mb = Sxx.pb Mp py.Zxx 3512.4 x 212.87 930.786 265 x 3069.45 = 746.536 kN.m

Elastic Stability of Tapered Members : G.2.2 F/Pc+M/Mb 135.005 / 2743.66 + 577.317 / 746.54 0.823 OK

Page 22: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 22

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

22

17. Roof Bracing :

STRUT AND TIE (MEMBER)

Roof Bracing : Member 162 (N.83-N.105) Classification and Properties (BS 5950: 2000) Section (19.28 kg/m) 2No 80x80x8 ANG 19.28 (0mm) [Grade 43] Class = Fn(b,d,t,py) 80, 80, 8, 275 (Axial: Non-Slender) Compact Auto Design Load Cases 1 and 5-32

Double Angles Tie Connected Through One Leg Only : 4.6.3.1 (Case 28) Ae = Fn(Ag - 0.3 a2) 24.6 - 0.3 x 11.8 21.06 cm² Tc = Ae.py 21.06x275/10 = 579.15 kN F (Tie)/Tc 75.828 / 579.15 0.131 OK

18. Wall Bracing :

STRUT AND TIE (MEMBER)

Wall Bracing : Member 138 (B1-A1) Classification and Properties (BS 5950: 2000) Section (12.86 kg/m) 2No 70x70x6 ANG 12.86 (0mm) [Grade 43] Class = Fn(b,d,t,py) 70, 70, 6, 275 (Axial: Non-Slender) SemiComp Auto Design Load Cases 1 and 5-32

Double Angles Tie Connected Through One Leg Only : 4.6.3.1 (Case 22) Ae = Fn(Ag - 0.3 a2) 16.38 - 0.3 x 7.98 13.99 cm² Tc = Ae.py 13.99x275/10 = 384.615 kN F (Tie)/Tc 9.988 / 384.615 0.026 OK

19. ROOF & SIDE PURLIN 5.75 m LENGHT

Member Check - 1999 AISI Specification (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Load Combination: D+L

Design Parameters at 2.8750 m:

Lx 5.7500 m Ly 2.8750 m Lt 2.8750 m

Kx 1.0000 Ky 1.0000 Kt 1.0000

Section: Section 1.sct

Material Type: A570 Grade 36, Fy=248.21 MPa

Cbx 1.2987 Cby 1.0000 ex 0.0000 mm

Cmx 1.0000 Cmy 1.0000 ey 0.0000 mm

Braced Flange: Top Red. Factor, R: 0.7 Stiffness, k: 0 kN

Page 23: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 23

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

23

Loads: P Mx Vy My Vx

(kN) (kN-m) (kN) (kN-m) (kN)

Total 0.000 3.5679 0.000 0.0000 0.000

Applied 0.000 3.5679 0.000 0.0000 0.000

Strength 28.296 4.5029 10.320 0.8140 14.747

Effective section properties at applied loads:

Ae 514.20 mm^2 Ixe 3031731 mm^4 Iye 375845 mm^4

Sxe(t) 30317 mm^3 Sye(l) 5495 mm^3

Sxe(b) 30317 mm^3 Sye(r) 5495 mm^3

Interaction Equations

AISI Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.792 + 0.000 = 0.792 <= 1.0

AISI Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.792 + 0.000 = 0.792 <= 1.0

AISI Eq. C3.3.1-1 (Mx, Vy) 0.628 + 0.000 = 0.628 <= 1.0

AISI Eq. C3.3.1-1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0

Calculation Details - 1999 AISI Specification (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Axial Compression Strength (KL/r)x=313.78, (KL/r)y=36.247

x=20.389 MPa AISI C3.1.2.1-7

y=1527.9 MPa AISI C3.1.2.1-8

t=201.96 MPa AISI C3.1.2.1-9 Fe=20.389 MPa Fy=248.21 MPa

c=3.4891 AISI C4-4 Fn=17.881 MPa AISI C4-3 Effective width calculations for part 1: Stiffened Zee Element 1: Unstiffened, w=18.392 mm f=17.881 MPa, k=0.43

=0.18444 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 2: Check for lip stiffener reduction S=136.52 AISI Eq. B4-1 w/t < S/3 (fully stiffened, no lip reduction) Element 2: Stiffened, w=49.511 mm f1=17.881 MPa, f2=17.881 MPa

=1 AISI Eq. B2.3-5 k=4 AISI Eq. B2.3-4

=0.16279 AISI Eq. B2.1-4

=1 AISI Eq. B2.1-3 be=49.511 mm AISI Eq. B2.1-2 b1=24.756 mm AISI Eq. B2.3-1 b2=24.756 mm AISI Eq. B2.3-3 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=192.24 mm f1=17.881 MPa, f2=17.881 MPa

=1 AISI Eq. B2.3-5 k=4 AISI Eq. B2.3-4

=0.63206 AISI Eq. B2.1-4

=1 AISI Eq. B2.1-3 be=192.24 mm AISI Eq. B2.1-2 b1=96.119 mm AISI Eq. B2.3-1 b2=96.119 mm AISI Eq. B2.3-3

Page 24: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 24

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

24

b1+b2 > compression width (fully effective) Element 5: Unstiffened, w=18.392 mm f=17.881 MPa, k=0.43

=0.18444 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 4: Check for lip stiffener reduction S=136.52 AISI Eq. B4-1 w/t < S/3 (fully stiffened, no lip reduction) Element 4: Stiffened, w=49.511 mm f1=17.881 MPa, f2=17.881 MPa

=1 AISI Eq. B2.3-5 k=4 AISI Eq. B2.3-4

=0.16279 AISI Eq. B2.1-4

=1 AISI Eq. B2.1-3 be=49.511 mm AISI Eq. B2.1-2 b1=24.756 mm AISI Eq. B2.3-1 b2=24.756 mm AISI Eq. B2.3-3 b1+b2 > compression width (fully effective) Ae=514.2 mm^2 Pn=9.1946 kN AISI C4-1

c=1.8, c=0.85 One Flange Braced Part Stiffened Zee C1=0.935 AISI C4.4-2 C2=0.99909 AISI C4.4-3 C3=15.379 AISI C4.4-5 Pn=50.932 kN AISI C4.4-1 Check for buckling about axis parallel to sheathing KL/r=74.884 Fy=248.21 MPa

c=0.83268 AISI C4-4 Fn=185.69 MPa AISI C4-2 Effective width calculations for part 1: Stiffened Zee Element 1: Unstiffened, w=18.392 mm f=185.69 MPa, k=0.43

=0.59436 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 2: Check for lip stiffener reduction S=42.363 AISI Eq. B4-1 Ia=185.65 mm^4 AISI Eq. B4.2-4 Is=391.44 mm^4 > Ia (no lip reduction) k=3.2303 AISI Eq. B4.2-8 Element 2: Partially stiffened, w=49.511 mm f=185.69 MPa, k=3.2303

=0.58376 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 3: Stiffened, w=192.24 mm f1=185.69 MPa, f2=185.69 MPa

=1 AISI Eq. B2.3-5 k=4 AISI Eq. B2.3-4

=2.0368 AISI Eq. B2.1-4

=0.43793 AISI Eq. B2.1-3 be=84.186 mm AISI Eq. B2.1-2

Page 25: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 25

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

25

b1=42.093 mm AISI Eq. B2.3-1 b2=42.093 mm AISI Eq. B2.3-3 Ineffective width=108.05 mm Element 5: Unstiffened, w=18.392 mm f=185.69 MPa, k=0.43

=0.59436 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 4: Check for lip stiffener reduction S=42.363 AISI Eq. B4-1 Ia=185.65 mm^4 AISI Eq. B4.2-4 Is=391.44 mm^4 > Ia (no lip reduction) k=3.2303 AISI Eq. B4.2-8 Element 4: Partially stiffened, w=49.511 mm f=185.69 MPa, k=3.2303

=0.58376 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Ae=352.12 mm^2 Pn=65.386 kN AISI C4-1

c=1.8, c=0.85 Flexural Strength about X-axis

y=177.52 MPa AISI C3.1.2.1-8

t=201.96 MPa AISI C3.1.2.1-9 Cb=1.2987 AISI C3.1.2.1-10 Not subject to lateral-torsional buckling - same as fully braced strength Flexural Strength about Y-axis

x=357.98 MPa AISI C3.1.2.1-7

t=201.96 MPa AISI C3.1.2.1-9 Cb=1 AISI C3.1.2.1-10 Fy=248.21 MPa Fe=1024 MPa AISI C3.1.2.1-5 Fc=248.21 MPa AISI C3.1.2.1-2 Effective width calculations for part 1: Stiffened Zee Element 1: No compressive stress (fully effective) Element 2: No compressive stress (fully effective) Element 3: Stiffened, w=192.24 mm f1=0.11393 MPa, f2=0.1139 MPa

=0.99981 AISI Eq. B2.3-5 k=4.0004 AISI Eq. B2.3-4

=0.050449 AISI Eq. B2.1-4

=1 AISI Eq. B2.1-3 be=192.24 mm AISI Eq. B2.1-2 b1=96.109 mm AISI Eq. B2.3-1 b2=96.128 mm AISI Eq. B2.3-3 b1+b2 > compression width (fully effective) Element 5: Unstiffened, w=18.392 mm f=246.29 MPa, k=0.43

=0.68451 AISI Eq. B2.1-4

=0.99137 AISI Eq. B2.1-3 b=18.234 mm (ineffective width=0.15869 mm) AISI Eq. B2.1-2 Element 4: Check for lip stiffener reduction S=41.761 AISI Eq. B4-1 Ia=199.85 mm^4 AISI Eq. B4.2-4 Is=391.44 mm^4 > Ia (no lip reduction)

Page 26: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 26

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

26

k=3.2303 AISI Eq. B4.2-8 Element 4: Partially stiffened, w=49.511 mm f=191.08 MPa, k=3.2303

=0.59217 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Center of gravity shift: x=-0.031404 mm Sc=5476.9 mm^3 Mn=1.3594 kN-m AISI C3.1.2.1-1

b=1.67, b=0.9 Compression and Bending Interaction

x=1 AISI C5.2.1-4

y=1 AISI C5.2.1-5 Effective section at applied loads Effective width calculations for part 1: Stiffened Zee Element 1: No compressive stress (fully effective) Element 2: No compressive stress (fully effective) Element 3: Stiffened, w=192.24 mm f1=113.12 MPa, f2=-113.12 MPa

=-1 AISI Eq. B2.3-5 k=24 AISI Eq. B2.3-4

=0.64901 AISI Eq. B2.1-4

=1 AISI Eq. B2.1-3 be=192.24 mm AISI Eq. B2.1-2 b1=48.059 mm AISI Eq. B2.3-1 b2=96.119 mm AISI Eq. B2.3-2 Compression width=96.119 mm b1+b2 > compression width (fully effective) Element 5: Unstiffened, w=18.392 mm f=115.72 MPa, k=0.43

=0.46921 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1 Element 4: Check for lip stiffener reduction S=53.414 AISI Eq. B4-1 Ia=49.306 mm^4 AISI Eq. B4.2-4 Is=391.44 mm^4 > Ia (no lip reduction) k=3.2303 AISI Eq. B4.2-8 Element 4: Partially stiffened, w=49.511 mm f=116.8 MPa, k=3.2303

=0.46298 AISI Eq. B2.1-4

<0.673 (fully effective) AISI Eq. B2.1-1

Web Crippling Check - 1999 AISI Specification (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Load Combination: D+L

Parameters at 5.7500 m:

Total Load: 2.4820 kN on bottom flange

Total Moment: 0.00000 kN-m

Bearing: 50.800 mm

Flange fastened to bearing surface: No

Distance from edge of bearing to edge of opposite load: 5.7500 m

Page 27: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 27

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

27

Section: Section 1.sct

Material Type: A570 Grade 36, Fy=248.21 MPa

Applied Load: 2.4820 kN on bottom flange

Applied Moment: 0.0000 kN-m

Distance from edge of bearing to end of member: 0.0000 m

Part Elem Calculation Type Pa (kN) Pay (kN) Notes

1 3 1999 AISI Eq.-1 2.7667 2.7667

Web Crippling Strength 2.7667

Web Crippling Check: 2.4820 kN <= 2.7667 kN

Moment Check: 0.0000 kN-m <= 4.5029 kN-m

Interaction Equations

AISI Eq. C3.5.1-1 (P, M) 1.077 + 0.000 = 1.077 <= 1.500

20. FOOTING DESIGN

PAD 13 @ NODE 13 : (GRID C9)

Basic Properties Design to BS 8110: 1997 Fy, Fcu, Covers T, B, S 460 N/mm², 30 N/mm², 50 mm, 50 mm, 50 mm Gross: Area, Area1, Z zz, Z xx 3.75, 0.9, 1.563, 0.938 Conc Den, LFsrv , LFult 24.0, 1.0, 1.0 Surcharge = Surext + h0 • γsoil 20.0 = 0.0 + 1.0 • 20.0 SWP = SWP0 + γsoil• (h0+ D) 282 = 250 + 20 x (1.000 + 0.600)

Wall Loading Loading F, os xx, os zz 11.0 kN/m, XX = 0 mm, ZZ = 0 mm Note All wall loads are resolved back to the column as a point load and induced moments.

Loading Top (L, EccX, EccZ, F).t 750, 0.375, 0.000 8.3 kN Bottom (L, Xecc, Zecc, F).b 750, -0.375, 0.000 8.3 kN

Mxx Moments Mxx.t = F.t.EccX.t 8.25 x 0.375 3.1 kN.m Mxx.b = F.b.EccX.b 8.25 x -0.375 -3.1 kN.m

Page 28: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 28

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

28

Mzz Moments

Resultant Forces from Wall at Column F.w = F.t + F.b + F.l + F.r 8.3 + 8.3 + 0.0 + 0.0 16.5 kN Mx.w = Mxx.t+Mxx.b+Mxx.l+Mxx.r 3.1 + -3.1 + 0.0 + 0.0 0.0 kN.m Mz.w = Mzz.t+Mzz.b+Mzz.l+Mzz.r 0.0 + 0.0 + 0.0 + 0.0 0.0 kN.m

Z-Z Axis Section Capacities As Bottom bars 8-T16@200 1608 mm² X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 1608, 460, 0.4, 1500, 30, 0.95 0.07 Mu conc = Fn(Z, Beff, X, K1, Fcu) 515, 1500, 39, 0.4, 30 362 kN.m vc = Fn(AS, bv, d, Fcu) 1608, 1500, 542, 30 0.36 N/mm²

X-X Axis Section Capacities As Bottom bars 13-T16@200 2614 mm² X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 2614, 460, 0.4, 2500, 30, 0.95 0.07 Mu conc = Fn(Z, Beff, X, K1, Fcu) 500, 2500, 38, 0.4, 30 571 kN.m vc = Fn(AS, bv, d, Fcu) 2614, 2500, 526, 30 0.37 N/mm²

Critical Serviceability : 23 : 1.2(Dead + Serv + Live + Side Wind S2) (Approx.)

No Service Case defined Calculating approximate values based on an Average ULS load Factor of 1.20 Fpad = Den•d•Area•LF 24.0 x 0.6 x 3.75 x 1.00 54.0 kN Fstub = Den•H•Area1•LF 24.0 x 0.5 x 0.9 x 1.00 10.8 kN Fsur = Sur•(Area-Area1)•LF 20.0 x (3.75 - 0.9) x 1.00 57.0 kN Fwall = Fwall•LF 16.5x1.00 16.5 kN Fcol = F + Fstub + Fwall 124.3 + + 10.8 + 16.5 151.6 kN Fres = F + Fpad + Fstub + Fsur + Fwall124.3 + 54.0 + 10.8 + 57.0 + 16.5 262.6 kN Mzz = Mzz + Vx•D + Fcol•ezz 0.0 + (-97.2 x 1.1) + (151.6 x 0.0) -106.9 kN.m Effective L (Le) = Fn(Mzz,Fres,L) -106.9, 262.6, 2500 2500 mm

Pressure Pmax = Fn(Pa, Pzz, Pxx, p1-4) 70.0, ±68.4, ±0.0, 1.6, 1.6, 138.4, 138.4 138.4 kN/m² OK

FOS Overturning Mzz Rest = (F+stub)•e+(pad+sur)•L/2+wall•e (124 + 11) x 1.250 + ( 54 + 57) x 1.250 + 17 x 1.250 328 kN.m FOS OT zz = Mzz Rest / Mzz ot 328 / 107 3.07 > 1.5 OK

FOS Sliding Friction Resist. Ffric= •F (0.30 x 263 78.77 kN Cohesion Resist. Fcoh= C•Bnet•Lnet 16 • 1.500 • 2.500 60.00 kN Passive Resist. Fpas=(Kp•hc•)•D•Lperp (3.000 • 1.300 • 20.0) • 0.600 • 1.500 70.20 kN Fos = ((Ffric/1.5) + (Fcho+Fpas)/2)/Fv ((78.77/ 1.5) + (60.00 +70.20)/2)/97.18 1.21 >= 1 OK

Combined Axial & Horizontal loads F/Pv+ Fv/Ph<1 (BS 8004: 2.3.2.4.7 ) 262.6 / 1057.5 + 97.2 / 138.8 = 0.25 + 0.70 0.95 OK

Critical Ultimate : 5 : 1.4 (Dead+Services) + 1.6 Live + Notional --> Fpad = Den•d•Area•LF 24.0 x 0.6 x 3.75 x 1.00 54.0 kN Fstub = Den•H•Area1•LF 24.0 x 0.5 x 0.9 x 1.00 10.8 kN Fsur = Sur•(Area-Area1)•LF 20.0 x (3.75 - 0.9) x 1.00 57.0 kN Fwall = Fwall•LF 16.5x1.00 16.5 kN Fcol = F + Fstub + Fwall 183.7 + + 10.8 + 16.5 211.0 kN Fres = F + Fpad + Fstub + Fsur + Fwall183.7 + 54.0 + 10.8 + 57.0 + 16.5 322.0 kN Mzz = Mzz + Vx•D + Fcol•ezz 0.0 + (-117.2 x 1.1) + (211.0 x 0.0) -128.9 kN.m Effective L (Le) = Fn(Mzz,Fres,L) -128.9, 322.0, 2500 2500 mm

Pressure Pmax = Fn(Pa, Pzz, Pxx, p1-4) 85.9, ±82.5, ±0.0, 3.4, 3.4, 168.4, 168.4 168.4 kN/m² (ULS)

FOS Overturning Mzz Rest = (F+stub)•e+(pad+sur)•L/2+wall•e (184 + 11) x 1.250 + ( 54 + 57) x 1.250 + 17 x 1.250 402 kN.m FOS OT zz = Mzz Rest / Mzz ot 402 / 129 3.12 > 1.0 OK

FOS Sliding Friction Resist. Ffric= •F (0.30 x 322 96.59 kN

Cohesion Resist. Fcoh= C•Bnet•Lnet 16 • 1.500 • 2.500 60.00 kN Passive Resist. Fpas=(Kp•hc•)•D•Lperp (3.000 • 1.300 • 20.0) • 0.600 • 1.500 70.20 kN

Page 29: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 29

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

29

Fos = ((Ffric/1.5) + (Fcho+Fpas)/2)/Fv ((96.59/ 1.5) + (60.00 +70.20)/2)/117.18 1.11 >= 1 OK

Moments and Shears Static load reduction w=(Sur + Den•D)•L

(20.0 + 24.0 x 0.6) x 1.00 34.4kN/m²

Moments at Column Face X-X Moment Lower M - w•la²•B/2 0 - 34.4 • 2500 • 0² / 2 0.0 kN.m OK X-X Moment Upper M - w•La²•B/2 0 - 34.4 • 2500 • 0² / 2 0.0 kN.m OK Z-Z Moment Left M - w•La²•B/2 99.8 - 34.4 • 1500 • 950² / 2 76.5 kN.m OK Z-Z Moment Right M - w•la²•B/2 16.4 - 34.4 • 1500 • 950² / 2 -6.9 kN.m OK

Shear at d and 2d from Column Face Checking <= 2vc at d & <= vc at 2d from column face X-X lower Vd, V2d, lad, la2d, d, b, w 0, 0, -526, -1052, 526, 2500, 34.4 0.03, 0.07 N/mm² OK X-X upper Vd, V2d, lad, la2d, d, b, w 0, 0, -526, -1052, 526, 2500, 34.4 0.03, 0.07 N/mm² OK Z-Z left Vd, V2d, lad, la2d, d, b, w 94.8, 0, 408, -134, 542, 1500, 34.4 0.09, 0.01 N/mm² OK Z-Z right Vd, V2d, lad, la2d, d, b, w 10.3, 0, 408, -134, 542, 1500, 34.4 -0.01, 0.01 N/mm² OK

Punching Shear Sub Zone Loads F0=283.6 + F1=0 + F2=0 + F3=0 + F4=0 + F12=1.9 + F23=0 + F34=36.5 + F41=0 322.0 kN Sub Zone Error = Fres/(F0-F41) (1 - 321.98 / 321.98)•100 0.000% OK

Zone Locations P4------------------- P

| F4 | F41 | F1 |------------------ | F34| F0 | F12 | F0 is bound by Punching Perimite |------------------| @ 1.5 d from column face | F3 | F23 | F2 P3------------------- P2 Strip Footing Punching Shear Not Applicable

Uplift Design Uplift detected. -40.5 kN Uplift in Case 38 : W3 Wind on Gabl 0.089 m of Negative Pressure in Case 23 : 1.2(Dead + Serv + Live + Side Wind S2) Design Top Steel to resist (SelfWeight + Surcharge) x 1.4 Load W = (d x den + sur) x 1.4 (600x24.0 + 20.0) x 1.4 48.16 kN/m²

Z-Z Axis Section Capacities in Reversal No Top Steel. Use Fcu Ten = Min(2, 0.05 x Fcu) = Min(2, 0.05 x 30) 1.50 N/mm² Z zz = B x D² / 6 1500 x 600² / 6 0.09m³ Mu zz = Z x Fcu ten 0.09 x 1.50 x 1000 135.00 kN.m

X-X Axis Section Capacities in Reversal No Top Steel. Use Fcu Ten = Min(2, 0.05 x Fcu) = Min(2, 0.05 x 30) 1.50 N/mm² Z xx = B x D² / 6 2500 x 600² / 6 0.15m³ Mu xx = Z x Fcu ten 0.15 x 1.50 x 1000 225.00 kN.m

Moments at Column Face M zz = Fn(W,Wd,Lmax) 48.16, 1500, 950 32.60 kN.m OK M xx = Fn(W,Wd,Lmax) 48.16, 2500, 0 0.00 kN.m OK

Shear at Column Face v zz = Fn(W,Lmax,d) 48.16, 950, 550 0.08 N/mm² OK v xx = Fn(W,Lmax,d) 48.16, 0, 550 0.00 N/mm² OK

Dimensional Checks Cover to Bars Not less than 20 (Cl 3.3.1.2) 50 OK Tens. Min Steel % Bot zz 0.13 to 4.00 (Cl 3.12.5.3) 0.18 OK Tens. Min Steel % Bot xx 0.13 to 4.00 (Cl 3.12.5.3) 0.17 OK Tens. Steel gap Inner zz B 25 to 750 (Cl 3.12.11.2.7) 200 OK Tens. Steel gap Inner xx B 25 to 750 (Cl 3.12.11.2.7) 200 OK Min Steel Dia Not less than 7 (Cl 3.12.11.2.2) 16 OK

Page 30: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 30

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

30

PAD 6 @ NODE 6 : (GRID A6)

Basic Properties Design to BS 8110: 1997 Fy, Fcu, Covers T, B, S 460 N/mm², 30 N/mm², 50 mm, 50 mm, 50 mm Gross: Area, Area1, Z zz, Z xx 2.25, 0.094, 0.563, 0.563 Conc Den, LFsrv , LFult 23.4, 1.0, 1.0 Surcharge = Surext + h0 • γsoil 20.0 = 0.0 + 1.0 • 20.0 SWP = SWP0 + γsoil• (h0+ D) 282 = 250 + 20 x (1.000 + 0.600)

Wall Loading Loading F, os xx, os zz 11.0 kN/m, XX = 0 mm, ZZ = 0 mm Note All wall loads are resolved back to the column as a point load and induced moments.

Loading Top (L, EccX, EccZ, F).t 600, 0.450, 0.000 6.6 kN Bottom (L, Xecc, Zecc, F).b 600, -0.450, 0.000 6.6 kN

Mxx Moments Mxx.t = F.t.EccX.t 6.60 x 0.450 3.0 kN.m Mxx.b = F.b.EccX.b 6.60 x -0.450 -3.0 kN.m

Mzz Moments

Resultant Forces from Wall at Column F.w = F.t + F.b + F.l + F.r 6.6 + 6.6 + 0.0 + 0.0 13.2 kN Mx.w = Mxx.t+Mxx.b+Mxx.l+Mxx.r 3.0 + -3.0 + 0.0 + 0.0 0.0 kN.m Mz.w = Mzz.t+Mzz.b+Mzz.l+Mzz.r 0.0 + 0.0 + 0.0 + 0.0 0.0 kN.m

Z-Z Axis Section Capacities As Bottom bars 6-T16@300 1206 mm² X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 1206, 460, 0.4, 1500, 30, 0.95 0.05 Mu conc = Fn(Z, Beff, X, K1, Fcu) 515, 1500, 29, 0.4, 30 271 kN.m vc = Fn(AS, bv, d, Fcu) 1206, 1500, 542, 30 0.33 N/mm²

X-X Axis Section Capacities As Bottom bars 6-T16@300 1206 mm² X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 1206, 460, 0.4, 1500, 30, 0.95 0.06 Mu conc = Fn(Z, Beff, X, K1, Fcu) 500, 1500, 29, 0.4, 30 263 kN.m vc = Fn(AS, bv, d, Fcu) 1206, 1500, 526, 30 0.34 N/mm²

Critical Serviceability : 26 : 1.0 Dead + 1.4 Gable Wind S3 (Approx.) No Service Case defined Calculating approximate values based on an Average ULS load Factor of 1.20 Fpad = Den•d•Area•LF 23.4 x 0.6 x 2.25 x 1.00 31.6 kN Fsur = Sur•(Area-Area1)•LF 20.0 x (2.25 - 0.094) x 1.00 43.1 kN Fwall = Fwall•LF 13.2x1.00 13.2 kN Fcol = F + Fwall 1.4 + + 13.2 14.6 kN Fres = F + Fpad + Fsur + Fwall 1.4 + 31.6 + 43.1 + 13.2 89.3 kN

Page 31: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 31

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

31

Mzz = Mzz + Vx•D + Fcol•ezz 0.0 + (-20.1 x 0.6) + (14.6 x 0.0) -12.1 kN.m Effective L (Le) = Fn(Mzz,Fres,L) -12.1, 89.3, 1500 1500 mm

Pressure Pmax = Fn(Pa, Pzz, Pxx, p1-4) 39.7, ±21.5, ±0.0, 18.2, 18.2, 61.2, 61.2 61.2 kN/m² OK

FOS Overturning Mzz Rest = (F)•e+(pad+sur)•L/2+wall•e1(1) x 0.750 + ( 32 + 43) x 0.750 + 13 x 0.750 67 kN.m FOS OT zz = Mzz Rest / Mzz ot 67 / 12 5.55 > 1.5 OK

FOS Sliding Friction Resist. Ffric= •F (0.30 x 89 26.80 kN Cohesion Resist. Fcoh= C•Bnet•Lnet 16 • 1.500 • 1.500 36.00 kN Passive Resist. Fpas=(Kp•hc•)•D•Lperp (3.000 • 1.300 • 20.0) • 0.600 • 1.500 70.20 kN Fos = ((Ffric/1.5) + (Fcho+Fpas)/2)/Fv ((26.80/ 1.5) + (36.00 +70.20)/2)/20.13 3.52 >= 1 OK

Combined Axial & Horizontal loads F/Pv+ Fv/Ph<1 (BS 8004: 2.3.2.4.7 ) 89.3 / 634.5 + 20.1 / 62.8 = 0.14 + 0.32 0.46 OK

Critical Ultimate : 26 : 1.0 Dead + 1.4 Gable Wind S3 Fpad = Den•d•Area•LF 23.4 x 0.6 x 2.25 x 1.00 31.6 kN Fsur = Sur•(Area-Area1)•LF 20.0 x (2.25 - 0.094) x 1.00 43.1 kN Fwall = Fwall•LF 13.2x1.00 13.2 kN Fcol = F + Fwall 1.7 + + 13.2 14.9 kN Fres = F + Fpad + Fsur + Fwall 1.7 + 31.6 + 43.1 + 13.2 89.6 kN Mzz = Mzz + Vx•D + Fcol•ezz 0.0 + (-24.2 x 0.6) + (14.9 x 0.0) -14.5 kN.m Effective L (Le) = Fn(Mzz,Fres,L) -14.5, 89.6, 1500 1500 mm

Pressure Pmax = Fn(Pa, Pzz, Pxx, p1-4) 39.8, ±25.8, ±0.0, 14.1, 14.1, 65.6, 65.6 65.6 kN/m² (ULS)

FOS Overturning Mzz Rest = (F)•e+(pad+sur)•L/2+wall•e1(2) x 0.750 + ( 32 + 43) x 0.750 + 13 x 0.750 67 kN.m FOS OT zz = Mzz Rest / Mzz ot 67 / 14 4.64 > 1.0 OK

FOS Sliding Friction Resist. Ffric= •F (0.30 x 90 26.89 kN

Cohesion Resist. Fcoh= C•Bnet•Lnet 16 • 1.500 • 1.500 36.00 kN Passive Resist. Fpas=(Kp•hc•)•D•Lperp (3.000 • 1.300 • 20.0) • 0.600 • 1.500 70.20 kN Fos = ((Ffric/1.5) + (Fcho+Fpas)/2)/Fv ((26.89/ 1.5) + (36.00 +70.20)/2)/24.16 2.94 >= 1 OK

Moments and Shears Static load reduction w=(Sur + Den•D)•L

(20.0 + 23.4 x 0.6) x 1.00 34.0kN/m²

Moments at Column Face X-X Moment Lower M - w•la²•B/2 10.8 - 34 • 1500 • 600² / 2 1.6 kN.m OK X-X Moment Upper M - w•La²•B/2 10.8 - 34 • 1500 • 600² / 2 1.6 kN.m OK Z-Z Moment Left M - w•La²•B/2 15.5 - 34 • 1500 • 593.5² / 2 6.5 kN.m OK Z-Z Moment Right M - w•la²•B/2 5.5 - 34 • 1500 • 593.5² / 2 -3.5 kN.m OK

Shear at d and 2d from Column Face Checking <= 2vc at d & <= vc at 2d from column face X-X lower Vd, V2d, lad, la2d, d, b, w 4.4, 0, 74, -452, 526, 1500, 34 0.00, 0.03 N/mm² OK X-X upper Vd, V2d, lad, la2d, d, b, w 4.4, 0, 74, -452, 526, 1500, 34 0.00, 0.03 N/mm² OK Z-Z left Vd, V2d, lad, la2d, d, b, w 5, 0, 51.5, -490.5, 542, 1500, 34 0.00, 0.03 N/mm² OK Z-Z right Vd, V2d, lad, la2d, d, b, w 1.2, 0, 51.5, -490.5, 542, 1500, 34 0.00, 0.03 N/mm² OK

Punching Shear Sub Zone Loads F0=89.6 + F1=0 + F2=0 + F3=0 + F4=0 + F12=0 + F23=0 + F34=0 + F41=0 89.6 kN Sub Zone Error = Fres/(F0-F41) (1 - 89.632 / 89.632)•100 0.000% OK

Zone Locations P4------------------- P

| F4 | F41 | F1 |------------------ | F34| F0 | F12 | F0 is bound by Punching Perimite |------------------| @ 1.5 d from column face | F3 | F23 | F2 P3------------------- P2 Projections from Column face 2 opposite Projections are less than 1.5 d => Not Applicable

Page 32: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 32

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

32

Dimensional Checks Cover to Bars Not less than 20 (Cl 3.3.1.2) 50 OK Tens. Min Steel % Bot zz 0.13 to 4.00 (Cl 3.12.5.3) 0.13 OK Tens. Min Steel % Bot xx 0.13 to 4.00 (Cl 3.12.5.3) 0.13 OK Tens. Steel gap Inner zz B 25 to 750 (Cl 3.12.11.2.7) 300 OK Tens. Steel gap Inner xx B 25 to 750 (Cl 3.12.11.2.7) 300 OK Min Steel Dia Not less than 7 (Cl 3.12.11.2.2) 16 OK

21. NICK COLUMN DESIGN

Page 33: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 33

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

33

Page 34: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 34

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

34

22. BASE CONNECTION DESIGN

BASE PLATE AT : D9 - LEVEL 0

Base-Plate Connection to BS 5950

LOADING CASE 001 : 1.4 (DEAD+SERVICES) + 1.6 LIVE

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F Moment +0.0 kNm, Shear -89.8 kN, Axial +139.8 kN (Axial Compression)

Basic Dimensions Column: IPE600122.44 [43] D=600.0, B=220.0, T=19.0, t=12.0, r=24.0, py=265 Data grout, Fcu, Fcv, py, slope 15 N/mm², 25 N/mm², 0.35 N/mm², 275 N/mm², 30 deg to vertical Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Column Capacities Mc, Fvc, Fc 930.8 kN.m, 1144.8 kN, 4133.5 kN Fvc = 1144.8 kN OK

Summary of Results (Unity Ratios) Concrete Pressure 0.14 OK Base-Plate thickness in Compression 0.72 OK Horizontal Shear 0.48 OK Flange & Web Welds 0.06 0.06 OK

Step 1: Base-Plate Pressure Allowable Pressure=0.40•Fcu 0.40•15 6.0 N/mm² Pressure Configuration Compression Only Ac=x2•wf+x3•ww+x4•wf 69.00•250.00 + 512.00•250.00 + 69.00•250.00 1625.0 cm² Conc Cap C=0.40•Fcu•Ac 0.40•15•162500.0 975.0 kN OK Pressure=P•1000/Ac 139.8•1000/162500 0.86 N/mm² OK

Step 2a: Plate Compression Bending e=L1 119.0 119.0 mm Mapp=p•e²/2 0.9•119.0²/2 6091 Nmm/mm tp=(6•Mapp/py) (6•6091/275) 11.5 mm OK Note: Axial Load Axial Using Elastic Modulus Zp (4.13.2.2)

Step 4: Shear Base Friction Friction Fr=0.30•F 0.30•+139.8 k 41.9 k

Page 35: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 35

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

35

Bolt Bearing Pss=Min(Bs, Cb, Pb, Bb)•nbs Min(39.2, 36.0, 147.2, 147.2) = 36.0•2 72.0 kN Pts=Min(Bsten, Cb, Pb, Bb)•nbt Min(39.2, 36.0, 147.2, 147.2) = 36.0•2, (no tension) 72.0 kN

Total Shear Capacity Total Cap=Fr+Pss+Pts 41.9 + 72.0 + 72.0 185.9 kN OK

Step 5: Flange & Web Welds Load dispersal Flanges resist Moment and Axial, Web resists Axial and Shear. Direct Bearing therefore design for tensile forces only. Areas A, Af, Aw 156.0, 41.8, 67.4 cm²

Flange Welds Fapp=F•Af/A 139.8•41.8/156.0 0.0 kN No Resultant Tensile Force

Web Welds Web weld load=Fv/(D-2(fw+T)) 89.8/(600.0 - 2(10 +19.0)) 0.17 kN/mm Fcap w=2•0.7•leg•Py 2•0.7•9•220 2.77 kN/mm OK

23. EAVE CONNECTION DESIGN

EAVES JOINT AT : C9 - LEVEL 2 : RAFTER 2 OF BAY 1 : MEMBERS 34-36 (C9-C5)

Page 36: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 36

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

36

Beam to Column Flange End-Plated Connection to BS 5950

LOADING CASE 005 : 1.4 (DEAD+SERVICES) + 1.6 LIVE + NOTIONAL -->

Basic Data Applied Forces at Column/Left Rafter Interface Left Rafter Forces M, Fvr, Fr 972.3 kNm, 146.0 kN, 133.4 kN Resultant Forces M, Fv, F 972.3 kNm, 160.0 kN, 116.3 kN Load directions Top of Joint in Tension, Rafter moving Down and in Compression. Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Rafter Capacities Mc, Fvc, Fc 2057.8 kN.m, 1806.0 kN, 5090.4 kN Mc = 2057.8 kN.m OK Column Forces M, Fv, F 0.9 x 972 kN.m (approx.), 116 kN, 160 kN Column Capacities Mc, Fvc, Fc 930.8 kN.m, 1144.8 kN, 4133.5 kN Mc = 930.8 kN.m OK

Summary of Results (Unity Ratios) Moment Capacity 933.2 kNm (for 6 rows of bolts) (Modified Applied Moment Mm=873.5 kNm) 0.94 OK Moment Capacity 915.2 kNm (for the 5 rows of bolts required in the tension zone) 0.95 OK Shear Capacity 0.12 OK Beam Tension Stiffener at row 4 0.00, 0.18, 0.45 0.45 OK Flange Welds 0.88, 0.96 0.96 OK Web Welds 0.47, 0.24 0.47 OK Haunch Welds 0.03, 0.63, 0.12 0.63 OK Column Compression stiff Web Weld 0.41 0.41 OK End of Haunch Compression Zone 0.08, 0.12 0.12 OK

Step 1: Tension Zone BOLT ROW 1 End Plate row 1 only Mp=Leff•tk•tk •py/4 313.2•16.0•16.0•275.0/4 5512.6 kN.mm T2.5: 3 Prmode1=4•Mp/m 4•5512.6/50.30 438.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•5512.6 + 50.00•2•197.7)/(50.30 + 50.00) 307.0 kN Eq 2.2 Pr=min(Prmode1,2,3) min(438.4, 307.0, 395.4) 307.0 kN

BOLT ROW 2 End-Plate rows 1 to 2 combined Leff(Row 1)=Max(ii/2, iii/2) Max(276.2/2, 313.2/2) 156.6 mm Leff(Row 2)=(ii / 2) 276.2/2 138.1 mm Leff=Leff(Row 1)+P+Leff(Row 2) 156.6 + 150.0 + 138.1 444.7 mm Mp=Leff•tk•tk •py/4 444.7•16.0•16.0•275.0/4 7826.8 kN.mm T2.6: 3 & 1 Prmode1=4•Mp/m 4•7826.8/50.30 622.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•7826.8 + 50.00•4•197.7)/(50.30 + 50.00) 550.2 kN Eq 2.2 Pr=min(Prmode1,2,3) min(622.4, 550.2, 790.7) 550.2 kN Pr net=Pr-Pr1,1 550.2 - 307.0 243.2 kN Triangular limit Ptri= Pr1•La/lamax 307.0•930.3/1080.3 264.4 Pr 2=Min(Pr 2+PrResid, Ptri) Min(243.2 & 0.0, 264.4) 243.2 kN modified New Residual PrResid=Pr 2-Ptri 243.2 - 264.4 0.0 kN

BOLT ROW 3 End-Plate rows 1 to 3 combined Leff(Row 1)=Max(ii/2, iii/2) Max(276.2/2, 313.2/2) 156.6 mm Leff(Row 3)=(ii / 2) 276.2/2 138.1 mm Leff=Leff(Row 1)+P+Leff(Row 3) 156.6 + 300.0 + 138.1 594.7 mm Mp=Leff•tk•tk •py/4 594.7•16.0•16.0•275.0/4 10466.8 kN.mm T2.6: 3 & 1 Prmode1=4•Mp/m 4•10466.8/50.30 832.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•10466.8 + 50.00•6•197.7)/(50.30 + 50.00) 800.0 kN Eq 2.2 Pr=min(Prmode1,2,3) min(832.4, 800.0, 1186.1) 800.0 kN Pr net=Pr-Pr2,1 800.0 - 550.2 249.7 kN Triangular limit Ptri= Pr1•La/lamax 307.0•780.3/1080.3 221.7 Pr 3=Min(Pr 3+PrResid, Ptri) Min(249.7 & 0.0, 221.7) 221.7 kN modified New Residual PrResid=Pr 3-Ptri 249.7 - 221.7 28.0 kN

Page 37: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 37

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

37

BOLT ROW 4 End-Plate rows 1 to 4 combined Leff(Row 1)=Max(ii/2, iii/2) Max(276.2/2, 313.2/2) 156.6 mm Leff(Row 4)=Max(ii/2, iii-ii/2) Max(276.2/2, 299.6-276.2/2) 161.5 mm Leff=Leff(Row 1)+P+Leff(Row 4) 156.6 + 450.0 + 161.5 768.1 mm Mp=Leff•tk•tk •py/4 768.1•16.0•16.0•275.0/4 13518.8 kN.mm T2.6: 3 & 4 Prmode1=4•Mp/m 4•13518.8/50.30 1075.1 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•13518.8 + 50.00•8•197.7)/(50.30 + 50.00) 1057.9 kN Eq 2.2 Pr=min(Prmode1,2,3) min(1075.1, 1057.9, 1581.4) 1057.9 kN Pr net=Pr-Pr3,1 1057.9 - 772.0 285.9 kN Triangular limit Ptri= Pr1•La/lamax 307.0•630.3/1080.3 179.1 Pr 4=Min(Pr 4+PrResid, Ptri) Min(285.9 & 28.0, 179.1) 179.1 kN modified New Residual PrResid=Pr 4-Ptri 285.9 - 179.1 106.8 kN

BOLT ROW 5 End Plate row 5 only Mp=Leff•tk•tk •py/4 315.6•16.0•16.0•275.0/4 5553.7 kN.mm T2.5: 2 Prmode1=4•Mp/m 4•5553.7/50.30 441.6 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•5553.7 + 50.00•2•197.7)/(50.30 + 50.00) 307.8 kN Eq 2.2 Pr=min(Prmode1,2,3) min(441.6, 307.8, 395.4) 307.8 kN Triangular limit Ptri= Pr1•La/lamax 307.0•501.3/1080.3 142.5 Pr 5=Min(Pr 5+PrResid, Ptri) Min(307.8 & 106.8, 142.5) 142.5 kN modified New Residual PrResid=Pr 5-Ptri 307.8 - 142.5 165.4 kN

BOLT ROW 6 End Plate row 6 only Mp=Leff•tk•tk •py/4 276.2•16.0•16.0•275.0/4 4861.1 kN.mm T2.5: 1 Prmode1=4•Mp/m 4•4861.1/50.30 386.6 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•4861.1 + 50.00•2•197.7)/(50.30 + 50.00) 294.0 kN Eq 2.2 Pr=min(Prmode1,2,3) min(386.6, 294.0, 395.4) 294.0 kN Triangular limit Ptri= Pr1•La/lamax 307.0•351.3/1080.3 99.8 Pr 6=Min(Pr 6+PrResid, Ptri) Min(294.0 & 165.4, 99.8) 99.8 kN modified New Residual PrResid=Pr 6-Ptri 294.0 - 99.8 194.2 kN

Potential Tension Capacity Sigma Pri 307.0 + 243.2 + 221.7 + 179.1 + 142.5 + 99.8 kN 1193.4 kN

Step 2 & 6A: Compression Zone Web Bearing n =min(5,2+0.6•Be/K) min(5, 2 + 0.6•549.4/43.0) 5.000 Web Bearing Pbw =(b1+n•k)•t•Pyb (69.5 + 5.0•43.0)•12.0•275 938.9 kN Stiff Bearing Ps =2(L-snipe)•ts•Pyb 2(100.0 - 25)•12•275 495.0 kN Bearing Cap=Pbw+Ps 938.9 + 495.0 1433.9 kN

Web Buckling Px mod=min(1,(ae+0.7•d)/(1.4•d)) min(1,(584.2 + 0.7•562.0)/(1.4•562.0)) 1.000 Px =Pbw•mod•25ε•t/((b1+n•k)d) 938.9•1.00x25x1.00•12.0/((69.5+5•43.0)x562.0) 704.4 kN As =2•Ls•ts+Lw•tw 2•100•12 + 360•12 6720 mm² Iyyweb =((Lw-ts)•tw³)/12 (360 - 12)•12³)/12 50112 mm4 Iyy=Iyyweb+(ts(2•Ls+ts)³)/12 50112 + 12(2•100 + 12³)/12 9578240 mm4 Ryy=(Iyy/As) (9578240/6720) 37.75 mm

λ=0.7(D-2•T)/Ryy 0.7(600.0 - 2•19.0)/37.75 10.42 Px =Pc•As 275•6720.0(table 24 c) 1848.0 kN

Beam Compression Beam Compression Zone Flange in Compression Utilising 40% OverStressing Total Area Flange 220.0•17.5 38.5 cm² Pcbeam 38.5•265•1.40 1428.4 kN Eq 2.9

Step 3: Column Web Shear Pvweb=0.6•pyc•Av 0.6•265(12.0•600.0) 1144.8 kN Eq 2.10

Potential Compression Capacity Pcmin Min(1433.9, 1848.0, 1428.4) 1428.4 kN OK

Page 38: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 38

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

38

Step 4: Moment Capacity Fc=Min(Pri+N, Pc) min(1193.4 + 116.3,1428.4) 1309.7 kN Fri=Fc-Axial 1309.7 - 116.3 1193.4 kN Shear Limit Fri=Min(Fri, Fq) min(1193.4,1144.8) 1144.8 kN Pδ=Pri -Fri 1193.4 - 1144.8 48.6 kN

Final Bolt Forces and Moment Capacities Bolt row 6: Mc6 =(Pr6-Pδ )• h6 99.8 - 48.6 = 51.2•351.3 18.0 kN.m Bolt row 5 Mc5=Pr5•h5 142.5•501.3 71.4 kN.m Bolt row 4 Mc4=Pr4•h4 179.1•630.3 112.9 kN.m Bolt row 3 Mc3=Pr3•h3 221.7•780.3 173.0 kN.m Bolt row 2 Mc2=Pr2•h2 243.2•930.3 226.3 kN.m Bolt row 1 Mc1=Pr1•h1 307.0•1080.3 331.6 kN.m Mc 933.2 kN.m Mm=M-N•Hn 972.3 - 116.3•849.9 873.5 kN.m OK Tension Bolts Only the first 5 rows are required to resist the applied moment The remaining rows shall be considered to be part of the shear zone. Mc' for 5 rows 331.6, 226.3, 173.0, 112.9, 71.4 915.2 kN.m Ft for 5 rows 307.0, 243.2, 221.7, 179.1, 142.5 1093.6 kN Ftdesign=Ft •Mapp/Mc' 1093.6•873.5/915.2 1043.7 kN

Step 5: Shear Bolts Bolt Shear Capacity BSC=132.375, tg=35 132.4 kN Bearing Capacity-End Plate pb=460, edge=70.0, ?=24, tk=16, kbs=1.00 176.6 kN Bearing Capacity-Column Flange pb=460, edge=70.0, ?=24, tk=19, kbs=1.00 209.8 kN Bearing Capacity-Bolts pb=1000, ?=24, tk=16 384.0 kN Pss=Min(bearing...,shear) Min(176.6, 209.8, 384.0, 132.4) 132.4 kN Pts Min(bearing...,0.4•shear) Min(176.6, 209.8, 384.0, 53.0) 53.0 kN V=Ns•Pss+Nt•Pts 6•132.4 + 10•53.0 1324 kN OK

Step 6C: Beam Tension Stiffeners Stiffener at Bolt Row 4 Asn=2•Bsn•ts 2(105 - 10)•18 3325 mm² Lt=Lu+P+Ll 75.0 + 129 + 75.0 279.0 mm Tension Asnreq =(Fu+Fl)/pyt-Lt•t (179.1 + 142.5)/265 - 279.0•10 0.0 mm² OK F1=Fu•m1/(m1+m2u) 179.1•50.3/(50.3 + 58.4) 82.9 kN F2=Fl•m1/(m1+m2l) 142.5•50.3/(50.3 + 43.5) 76.4 kN Bending Asnreq =(F1+F2)/py (82.9 + 76.4)/265 601.0 mm² OK Weld Tension fs=F/2/l t /( 2•0.7•leg) 159.3/2/(105 - 10)/( 2•0.7•6) 99.8 N/mm² OK

Steps 7&8: Welds Flange Tension Weld Fapp=min(B•T•Py, Fr1+Fr2) Min(220.0•17.5•265, 307.0 + 243.2) 550.2 kN FwCap=2•0.7•ts•L•Pyw 2•0.7•8•(220.0 - 2•8)•275 628.3 kN OK

Flange Compression Weld Fapp=Ft+N 1043.7 + 116.3 1160.0 kN FwCap=2•0.7•ts•B•Pyw 2•0.7•16•(220.0 - 2•12)•275 1207.4 kN OK

Web Welds in Tension Zone Lwt=L-proj-T-root+1.73•g/2 649 - 0 - 17.5 - 24.0 + 1.73 120/2 711.3 mm Load per row Row1=K1•Fr1 (46/(50 + 46))•307 146.7 kN Row2=K2•Fr2 1•243 243.2 kN Row3=K3•Fr3 1•222 221.7 kN Row4=K4•Fr4 (58/(50 + 58))•179 96.2 kN Row5=K5•Fr5 (44/(50 + 44))•142 66.1 kN Total Load Ft 146.7, 243.2, 221.7, 96.2, 66.1 774.0 kN FwCap=2•0.7•ts•Lwt•Pyw 2•0.7•6•711.3•275 1643.1 kN OK

Web Welds in Shear Zone Lws=D-(Tt+Tb )-rt-rb-Lwt 1159.0 - 35.8 - 24.0 - 24.0 - 711 363.9 mm FwCap=2•0.7•ts•Lws•Pyw 2•0.7•6•363.9•220 672.5 kN OK

Haunch Welds Method Force is resisted by both the Web Weld and the End Weld Each area must resist at least 1/4 of total load

Page 39: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 39

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

39

Applied Force Fh=Mh/(D-T) 616.2/(597.0 - 17.5) 1063.3 kN Fhcomp=(Ft+N)/Cos(θ) 1043.7 + 116.3 / Cos(6.4) 1167.2 kN Fh=min(Fh,Fhcomp) min(1063.3 , 1167.2) 1063.3 kN

Haunch Web Weld Lw =(Hl-Dc/2-Tep)/Cos(Τheta) (3213 - 600.0/2 - 16)/Cos(6.4) 2819.6 mm Lw=Lw -tw-(T+tw1)/Sin(Theta1) 2819.6 - 6 -(17.5 + 10)/Sin(10.6)= 2819.6-6-150.1 2663.5 mm WebCap=2•0.7•t(Lw-2•t)•Pyw 2•0.7•10(2663.5 - 2•10)•220 8142.0 kN t=tw•Cos((90-ThetaH1)/2) 10•Cos((90-10.6)/2) 7.7 mm WebCap>= Fh/4 8142.0 >= 1063.3/4 265.8 kN OK

Haunch End Weld EndCap=t(B-2•w)•Pyw 8(220.0 - 2•10)•275 423.0 kN EndCap>= Fh/4 423.0 >= 1063.3/4 265.8 kN OK Total Capacity=WebCap+EndCap 8142.0 + 423.0 8565.0 kN OK

Compression Stiffener Web Weld Fapp=Ft+N 1043.7 + 116.3 1160.0 kN FwCap=2•2•0.7•ts(D-2(T+r))•Pyw 2•2•0.7•9(600.0 - 2(19.0 + 24.0))•220 2849.6 kN OK

Step 8: End of Haunch Compression Zone Force Applied From Haunch Weld design Proportioning applied load Fh between haunch Web and End welds Fend=Fh•Endcap/(Endcap +Webcap) 1063.3•423.0/(423.0 + 8142.0) 52.5 kN Fend=Max(Fend,Fh/4) max(52.5, 1063.3/4) 265.8 kN FCapp=Fend•Tan(ThetaH1) 265.8•Tan(10.6) 49.5 kN

Web Bearing n =min(5,2+0.6•Be/K) min(5, 2 + 0.6•597.0/41.5) 5.000 Web Bearing Pbw =(b1+n•k)•t•Pyb (10.0 + 5.0•41.5)•9.8•275 586.2 kN OK

Web Buckling Px mod=min(1,(ae+0.7•d)/(1.4•d)) min(1,(597.0 + 0.7•562.0)/(1.4•562.0)) 1.000 Px =Pbw•mod•25ε•t/((b1+n•k)d) 586.2•1.00x25x1.00•9.8/((10.0+5•41.5)x562.0) 410.8 kN OK

24. APEX CONNECTION DESIGN

APEX JOINT AT : C5 - LEVEL 5 : RAFTER 1 OF BAY 1 : MEMBERS 31-33 (C1-C5)

Page 40: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 40

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

40

Beam to Beam End-Plated Connection to BS 5950

LOADING CASE 001 : 1.4 (DEAD+SERVICES) + 1.6 LIVE

Basic Data Applied Forces at End-plate Interface Right Rafter Forces M, Fvr, Fr -473.0 kNm, 12.9 kN, 114.6 kN Resultant Forces M, Fv, F -473.0 kNm, 0.0 kN, 115.3 kN Load directions Bottom of Joint in Tension, Rafter moving Down and in Compression. Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Rafter Capacities Mc, Fvc, Fc 2075.6 kN.m, 1816.9 kN, 5108.7 kN Mc = 2075.6 kN.m OK

Summary of Results (Unity Ratios) Moment Capacity 608.5 kNm (for 7 rows of bolts) (Modified Applied Moment Mm=439.4 kNm) 0.72 OK Moment Capacity 472.6 kNm (for the 3 rows of bolts required in the tension zone) 0.93 OK Shear Capacity 0.00 OK Flange Welds 0.46, 0.60 0.60 OK Web Welds 0.47, 0.00 0.47 OK Haunch Welds 0.97 0.97 OK

Step 1: Tension Zone BOLT ROW 1 End Plate row 1 only Mp=Leff•tk•tk •py/4 253.2•12.0•12.0•275.0/4 2506.8 kN.mm T2.5: 3 Prmode1=4•Mp/m 4•2506.8/40.30 248.8 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•2506.8 + 50.38•2•137.2)/(40.30 + 50.38) 207.7 kN Eq 2.2 Pr=min(Prmode1,2,3) min(248.8, 207.7, 274.4) 207.7 kN

BOLT ROW 2 End-Plate rows 1 to 2 combined Leff(Row 1)=Max(ii/2, iii/2) Max(248.7/2, 253.2/2) 126.6 mm Leff(Row 2)=(ii / 2) 248.7/2 124.4 mm Leff=Leff(Row 1)+P+Leff(Row 2) 126.6 + 120.0 + 124.4 371.0 mm Mp=Leff•tk•tk •py/4 371.0•12.0•12.0•275.0/4 3672.5 kN.mm T2.6: 3 & 1 Prmode1=4•Mp/m 4•3672.5/40.30 364.5 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•3672.5 + 50.38•4•137.2)/(40.30 + 50.38) 385.9 kN Eq 2.2 Pr=min(Prmode1,2,3) min(364.5, 385.9, 548.8) 364.5 kN Pr net=Pr-Pr1,1 364.5 - 207.7 156.8 kN Triangular limit Ptri= Pr1•La/lamax 207.7•957.3/1077.3 184.6 Pr 2=Min(Pr 2+PrResid, Ptri) Min(156.8 & 0.0, 184.6) 156.8 kN modified New Residual PrResid=Pr 2-Ptri 156.8 - 184.6 0.0 kN

BOLT ROW 3 End-Plate rows 1 to 3 combined Leff(Row 1)=Max(ii/2, iii/2) Max(248.7/2, 253.2/2) 126.6 mm Leff(Row 3)=(ii / 2) 248.7/2 124.4 mm Leff=Leff(Row 1)+P+Leff(Row 3) 126.6 + 240.0 + 124.4 491.0 mm Mp=Leff•tk•tk •py/4 491.0•12.0•12.0•275.0/4 4860.5 kN.mm T2.6: 3 & 1 Prmode1=4•Mp/m 4•4860.5/40.30 482.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•4860.5 + 50.38•6•137.2)/(40.30 + 50.38) 564.5 kN Eq 2.2 Pr=min(Prmode1,2,3) min(482.4, 564.5, 823.2) 482.4 kN Pr net=Pr-Pr2,1 482.4 - 364.5 117.9 kN Triangular limit Ptri= Pr1•La/lamax 207.7•837.3/1077.3 161.5 Pr 3=Min(Pr 3+PrResid, Ptri) Min(117.9 & 0.0, 161.5) 117.9 kN modified New Residual PrResid=Pr 3-Ptri 117.9 - 161.5 0.0 kN

BOLT ROW 4 End-Plate rows 1 to 4 combined Leff(Row 1)=Max(ii/2, iii/2) Max(248.7/2, 253.2/2) 126.6 mm Leff(Row 4)=Max(ii/2, iii-ii/2) Max(248.7/2, 248.6-248.7/2) 124.4 mm Leff=Leff(Row 1)+P+Leff(Row 4) 126.6 + 360.0 + 124.4 611.0 mm Mp=Leff•tk•tk •py/4 611.0•12.0•12.0•275.0/4 6048.5 kN.mm T2.6: 3 & 4

Page 41: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 41

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

41

Prmode1=4•Mp/m 4•6048.5/40.30 600.3 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•6048.5 + 50.38•8•137.2)/(40.30 + 50.38) 743.2 kN Eq 2.2 Pr=min(Prmode1,2,3) min(600.3, 743.2, 1097.6) 600.3 kN Pr net=Pr-Pr3,1 600.3 - 482.4 117.9 kN Triangular limit Ptri= Pr1•La/lamax 207.7•717.3/1077.3 138.3 Pr 4=Min(Pr 4+PrResid, Ptri) Min(117.9 & 0.0, 138.3) 117.9 kN modified New Residual PrResid=Pr 4-Ptri 117.9 - 138.3 0.0 kN

BOLT ROW 5 End Plate row 5 only Mp=Leff•tk•tk •py/4 248.7•12.0•12.0•275.0/4 2462.1 kN.mm T2.5: 2 Prmode1=4•Mp/m 4•2462.1/40.30 244.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•2462.1 + 50.38•2•137.2)/(40.30 + 50.38) 206.8 kN Eq 2.2 Pr=min(Prmode1,2,3) min(244.4, 206.8, 274.4) 206.8 kN Triangular limit Ptri= Pr1•La/lamax 207.7•401.3/1077.3 77.4 Pr 5=Min(Pr 5+PrResid, Ptri) Min(206.8 & 0.0, 77.4) 77.4 kN modified New Residual PrResid=Pr 5-Ptri 206.8 - 77.4 129.4 kN

BOLT ROW 6 End Plate row 6 only Mp=Leff•tk•tk •py/4 248.7•12.0•12.0•275.0/4 2462.1 kN.mm T2.5: 1 Prmode1=4•Mp/m 4•2462.1/40.30 244.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•2462.1 + 50.38•2•137.2)/(40.30 + 50.38) 206.8 kN Eq 2.2 Pr=min(Prmode1,2,3) min(244.4, 206.8, 274.4) 206.8 kN Triangular limit Ptri= Pr1•La/lamax 207.7•281.3/1077.3 54.2 Pr 6=Min(Pr 6+PrResid, Ptri) Min(206.8 & 129.4, 54.2) 54.2 kN modified New Residual PrResid=Pr 6-Ptri 206.8 - 54.2 152.5 kN

BOLT ROW 7 End Plate row 7 only Mp=Leff•tk•tk •py/4 248.7•12.0•12.0•275.0/4 2462.1 kN.mm T2.5: 1 Prmode1=4•Mp/m 4•2462.1/40.30 244.4 kN Eq 2.1 Prmode2=(2•Mp+n•Nb•Pt')/(m+n) (2•2462.1 + 50.38•2•137.2)/(40.30 + 50.38) 206.8 kN Eq 2.2 Pr=min(Prmode1,2,3) min(244.4, 206.8, 274.4) 206.8 kN Triangular limit Ptri= Pr1•La/lamax 207.7•161.3/1077.3 31.1 Pr 7=Min(Pr 7+PrResid, Ptri) Min(206.8 & 152.5, 31.1) 31.1 kN modified New Residual PrResid=Pr 7-Ptri 206.8 - 31.1 175.7 kN

Potential Tension Capacity Sigma Pri 207.7 + 156.8 + 117.9 + 117.9 + 77.4 + 54.2 + 31.1 kN 763.1 kN

Step 2: Compression Zone Beam Compression Beam Compression Zone Flange in Compression Utilising 40% OverStressing Total Area Flange 220.0•17.5 38.5 cm² Pcbeam 38.5•265•1.40 1428.4 kN Eq 2.9

Potential Compression Capacity Pcmin 1428.4 1428.4 kN OK

Step 4: Moment Capacity Fc=Min(Pri+N, Pc) min(763.1 + 115.3,1428.4) 878.4 kN Fri=Fc-Axial 878.4 - 115.3 763.1 kN Pδ=Pri -Fri 763.1 - 763.1 0.0 kN

Final Bolt Forces and Moment Capacities Bolt row 7 Mc7=Pr7•h7 31.1•161.3 5.0 kN.m Bolt row 6 Mc6=Pr6•h6 54.2•281.3 15.3 kN.m Bolt row 5 Mc5=Pr5•h5 77.4•401.3 31.0 kN.m Bolt row 4 Mc4=Pr4•h4 117.9•717.3 84.6 kN.m Bolt row 3 Mc3=Pr3•h3 117.9•837.3 98.7 kN.m Bolt row 2 Mc2=Pr2•h2 156.8•957.3 150.1 kN.m Bolt row 1 Mc1=Pr1•h1 207.7•1077.3 223.8 kN.m Mc 608.5 kN.m Mm=M-N•Hn 473.0 - 115.3•291.6 439.4 kN.m OK Tension Bolts Only the first 3 rows are required to resist the applied moment The remaining rows shall be considered to be part of the shear zone.

Page 42: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 42

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

42

Mc' for 3 rows 223.8, 150.1, 98.7 472.6 kN.m Ft for 3 rows 207.7, 156.8, 117.9 482.4 kN Ftdesign=Ft •Mapp/Mc' 482.4•439.4/472.6 448.5 kN

Step 5: Shear Bolts Bolt Shear Capacity BSC=91.875, tg=24 91.9 kN Bearing Capacity-End Plate pb=460, edge=70.0, ?=20, tk=12, kbs=1.00 110.4 kN Bearing Capacity-Bolts pb=1000, ?=20, tk=12 240.0 kN Pss=Min(bearing...,shear) Min(110.4, 240.0, 91.9) 91.9 kN Pts Min(bearing...,0.4•shear) Min(110.4, 240.0, 36.8) 36.8 kN V=Ns•Pss+Nt•Pts 10•91.9 + 6•36.8 1139 kN OK

Steps 7&8: Welds Flange Tension Weld Fapp=min(B•T•Py, Fr1+Fr2) Min(220.0•17.5•265, 207.7 + 156.8) 364.5 kN FwCap=2•0.7•ts•L•Pyw 2•0.7•10•(220.0 - 2•6)•275 800.8 kN OK

Flange Compression Weld Fapp=Ft+N 448.5 + 115.3 563.8 kN FwCap=2•0.7•ts•B•Pyw 2•0.7•12•(220.0 - 2•8)•275 942.5 kN OK

Web Welds in Tension Zone Lwt=L-proj-T-root+1.73•g/2 340 - 20 - 17.8 - 24.0 + 1.73 100/2 364.7 mm Load per row Row1=K1•Fr1 (58/(40 + 58))•208 122.2 kN Row2=K2•Fr2 1•157 156.8 kN Row3=K3•Fr3 1•118 117.9 kN Total Load Ft 122.2, 156.8, 117.9 396.9 kN FwCap=2•0.7•ts•Lwt•Pyw 2•0.7•6•364.7•275 842.5 kN OK

Web Welds in Shear Zone Lws=D-(Tt+Tb )-rt-rb-Lwt 1166.0 - 35.3 - 24.0 - 24.0 - 365 718.0 mm FwCap=2•0.7•ts•Lws•Pyw 2•0.7•6•718.0•220 1326.9 kN OK

Haunch Welds Haunch End Weld OK if >= Th 18 >= 17.5 >= 17.5 mm OK

Page 43: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 43

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

43

25. SPLICE CONNECTION DESIGN

BEAM SPLICE AT 11.000 M FROM : D9 - LEVEL 2 : RAFTER 2 OF BAY 1 : MEMBERS

46-48 (D9-D5)

Non Bearing - Beam to Beam Moment Splice Connection to BS 5950

LOADING CASE 001 : 1.4 (DEAD+SERVICES) + 1.6 LIVE

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F +172.7 kNm, +67.3 kN, +123.6 kN (Bottom in tension, Axial Compression) Beam Gap= 5 mm Therefore No direct bearing. Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95

Basic Dimensions Beam-IPE600A107.56 [43] D=597.0, B=220.0, T=17.5, t=9.8, r=24.0, py=265 Beam Capacities Mc, Fvc, Fc 832.4 kN.m, 930.2 kN, 3631.0 kN Mc = 832.4 kN.m OK

Summary of Results (Unity Ratios) Top Flange in Compression Bolt Capacity 0.66 OK Top Flange in Compression Axial Capacity 0.34 OK Bottom Flange in Tension Bolt Capacity 0.43 OK Bottom Flange in Tension Axial Capacity 0.24 OK Web Bolt Capacity 0.20 OK Web Plate Moment Capacity 0.05 OK Web Plate Shear Capacity 0.06 OK

Internal Moments to (AD243) Max Design Moments

Page 44: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 44

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

44

Mxx=Mxx+Ms(x-x)+Madd.xs 172.7 + 0.0 + 0.0 172.7 kN.m Myy=Myy+Ms(y-y)+Mys+Madd.ys 0.0 + 0.0 + 0.0 + 0.0 0.0 kN.m

Resultant Forces Flange forces Min Flange Force=10% • Af • py 10% • 3850 • 265 102.0 kN Top Flange Force=Ff / 2-Mf / d -123.6 / 2 - 172.7 / 0.597 -351.1 kN Bot Flange Force=Ff / 2+Mf / d -123.6 / 2 + 172.7 / 0.597 227.5 kN

Web Forces M res Fn(Fv, ecc, Mecc, Mweb) 67.3, 120.0, 8.1, 0.0 8.1 kN.m Lever Arms Lv, Lh, Ld 120.0, 60.0, 134.2 Moment Forces Fmv, Fmh, Fmd 12.2, 6.1, 13.7 Shear Component fv=Fv / bolts 67.3 / 6 11.2 kN Axial Component fp=Fw / bolts 0.0 / 6 0 kN

Resultant Web Bolt Forces Fvx=((fmh+ fv)²+fp²) ((6.1 + 11.2)² + 0²) 17.3 kN

Fvy=((fmv+ fp)²+fv²) ((12.2 + 0)² + 11.2²) 16.6 kN

Fvxy=Fn(fmd, fv, fp, Ld, Lh, Lv) 13.7, 11.2, 0, 134.2, 60.0, 120.0 21.2 kN Bolts In Line

Top Flange in Compression Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=97, ?=24, tk=20, kbs=1.00 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=107, ?=24, tk=17.5, kbs=1.00 193.2 kN Bearing Capacity-Bolts pb=1000, ?=24, tk=17.5 420.0 kN Bolt Shear Capacity BSC=132.4, tg=37.5, J=120 132.4 kN Resultant Bolt Shear Capacity Min(220.8, 193.2, 420.0, 132.4) 132.4 kN Bolt Shear Load F / No Bolts -351.1/ 4.0 87.8 kN OK

Plate and Flange Capacity Outer Plate Axial Cap=t • d • py 20.0 • 220.0 • 265 1166.0 kN Beam Flange Axial Cap=t • d • py 17.5 • 220.0 • 265 1020.3 kN Res Axial load -351.1 kN Axial Capacity Min(1166.0, 1020.3) 1020.3 kN OK

Bottom Flange in Tension Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=50, ?=24, tk=20, kbs=1.00 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=52.5, ?=24, tk=17.5, kbs=1.00 193.2 kN Bearing Capacity-Bolts pb=1000, ?=24, tk=17.5 420.0 kN Bolt Shear Capacity BSC=132.4, tg=37.5, J=120 132.4 kN Resultant Bolt Shear Capacity Min(220.8, 193.2, 420.0, 132.4) 132.4 kN Bolt Shear Load F / No Bolts 227.5/ 4.0 56.9 kN OK

Plate and Flange Capacity Outer Plate Net Area min(t • d, t • deff • Ke) Min(20.0 • 220.0,20.0 • 168 • 1.2) = Min(4400,4032) 40.3 cm² Axial Cap=Net Area • py 40.3 • 265 1068.5 kN Beam Flange Net Area min(t • d, t • deff • Ke) Min(17.5 • 220.0,17.5 • 168 • 1.2) = Min(3850,3528) 35.3 cm² Axial Cap=Net Area • py 35.3 • 265 934.9 kN Res Axial load 227.5 kN Axial Capacity Min(1068.5, 934.9) 934.9 kN OK

Web Zone Bolt Shear Capacity Bearing Capacity-Web Plates pb=460, edge=45, ?=24, tk=2x12, kbs=1.00 248.4 kN Bearing Capacity-Beam Web pb=460, edge=57.5, ?=24, tk=9.8, kbs=1.00 108.2 kN

Page 45: Example in Portal Frame From a to Z

AL WADI STEEL

ST17-Gate98

IND. AREA

DOHA-QATAR

Job ref : Job Ref

Sheet : 45

Made By : TAMER MOHAMMED

Date : 15/04/2010

Checked : HANY AHMED HASSAN

Approved : HANY AHMED HASSAN

45

Bearing Capacity-Bolts pb=1000, ?=24, tk=9.8 235.2 kN Bolt Shear Capacity BSC=132.4, tg=33.8, J=268.3 264.8 kN Resultant Bolt Shear Capacity Min(248.4, 108.2, 235.2, 264.8) 108.2 kN Bolt Shear Load Max(Fvx,Fvy,Fvxy) 17.3, 16.6, 21.2 21.2 kN OK

Plate Capacity per plate Res Moment=(Mweb+V • ecc)/2 (0.0 + 67.3 • 120.0)/2 4.0 kN.m Moment Cap=Znet • py 274808.3 • 275 75.6 kN.m OK Res Shear V/2 67.3/2 33.7 kN Shear Cap=0.9 • t • Dnet • 0.6 • py 0.9 • 12 • 322.0 • 0.6 • 275 573.8 kN OK