Ex-2-5-FSc-part2-ver-2-2-6

16
MathCity.org Merging man and maths Exercise 2.5 (Solutions) Calculus and Analytic Geometry, MATHEMATICS 12 Available online @ http://www.mathcity.org, Version: 2.2.6 Some Important Derivative Formulas 0 d c dx = where c is constant 1 n n d x nx dx - = sin cos cos sin d x x dx d x x dx = =- 2 2 tan sec cot csc d x x dx d x x dx = =- csc csc cot sec sec tan d x x x dx d x x x dx =- = 1 2 1 2 1 1 1 1 d Sin x dx x d Cos x dx x - - = - - = - 1 2 1 2 1 1 1 1 d Tan x dx x d Cot x dx x - - = + - = + 1 2 1 2 1 1 1 1 d Sec x dx x x d Csc x dx x x - - = - - = - Question # 1 Solution 1(i) Suppose sin 2 y x = sin 2( ) y y x x δ δ + = + sin 2( ) y x x y δ δ = + - sin 2( ) sin 2 x x x δ = + - Dividing both sides by x δ sin(2 2 ) sin 2 y x x x x x δ δ δ δ + - = 2 2 2 2 2 2 2cos sin 2 2 x x x x x x x δ δ δ + + + - = ( ) ( ) 2cos 2 sin x x x x δ δ δ + = Taking limit as 0 x δ ( ) ( ) 0 0 2cos 2 sin lim lim x x x x x y x x δ δ δ δ δ δ δ + = ( ) ( ) 0 sin 2 lim cos 2 x x dy x x dx x δ δ δ δ = + ( ) ( ) 0 0 sin 2 lim cos 2 lim x x x x x x δ δ δ δ δ = +

description

fsc

Transcript of Ex-2-5-FSc-part2-ver-2-2-6

  • MathCity.org Merging man and maths

    Exercise 2.5 (Solutions) Calculus and Analytic Geometry, MATHEMATICS 12

    Available online @ http://www.mathcity.org, Version: 2.2.6

    Some Important Derivative Formulas

    0d cdx = where c is constant 1n nd x nxdx

    =

    sin cos

    cos sin

    dx x

    dxd

    x xdx

    =

    =

    2

    2

    tan sec

    cot csc

    dx xdx

    dx xdx

    =

    =

    csc csc cot

    sec sec tan

    dx x xdx

    dx x xdx

    =

    =

    1

    2

    1

    2

    11

    11

    d Sin xdx xd Cos xdx x

    =

    =

    12

    12

    11

    11

    d Tan xdx xd Cot xdx x

    =

    +

    =

    +

    1

    2

    1

    2

    11

    11

    d Sec xdx x xd Csc xdx x x

    =

    =

    Question # 1

    Solution 1(i) Suppose sin2y x=

    sin2( )y y x x + = +

    sin2( )y x x y = +

    sin2( ) sin2x x x= +

    Dividing both sides by x

    sin(2 2 ) sin 2y x x xx x

    + =

    2 2 2 2 2 22cos sin2 2x x x x x x

    x

    + + +

    =

    ( ) ( )2cos 2 sinx x xx

    +=

    Taking limit as 0x

    ( ) ( )0 0

    2cos 2 sinlim limx x

    x x xyx x

    +=

    ( ) ( )0sin

    2 lim cos 2x

    xdyx xdx x

    = +

    ( ) ( )0 0sin

    2 lim cos 2 limx x

    xx x

    x = +

  • FSc-II / Ex- 2.5 - 2

    ( )2 cos 2 0 (1)x= + 0

    sinlim 1

    =

    2cos2dy xdx

    =

    Solution 1(ii) Let tan3y x= ( )tan3y y x x + = + ( )tan 3 3 tan3y x x x = +

    ( )( )

    sin 3 3 sin3cos 3 3 cos3

    x x x

    x x x

    +=

    +

    ( ) ( )( )

    sin 3 3 cos3 cos 3 3 sin3cos 3 3 cos3

    x x x x x x

    x x x

    + +=

    +

    ( )( )

    sin 3 3 3cos 3 3 cos3

    x x x

    x x x

    + =

    +

    ( )( )

    sin 3cos 3 3 cos3

    x

    x x x

    = +

    Dividing by x ( )

    ( )sin 31

    cos 3 3 cos3xy

    x x x x x

    = +

    Taking limit as 0x

    ( )( )0 0sin 3

    lim limcos 3 3 cos3x x

    xyx x x x x

    = +

    ( )( )0

    sin 3 1 3limcos 3 3 cos3 3x

    xdydx x x x x

    = + ing and ing 3 on R.H.S

    ( )( )0 0

    sin 3 13 lim lim3 cos 3 3 cos3x x

    x

    x x x x

    = +

    ( )13(1)

    cos 3 3(0) cos3x x= +

    3cos3 cos3x x

    = 23

    cos 3x=

    23sec 3dy xdx

    =

    Solution 1(iii) Let sin2 cos2y x x= + ( ) ( )sin 2 cos2y y x x x x + = + + + ( ) ( )sin 2 cos2y x x x x y = + + +

    ( ) ( )sin 2 cos2 sin 2 cos2x x x x x x = + + + ( ) ( )sin 2 2 sin 2 cos 2 2 cos2x x x x x x = + + +

    2 2 2 2 2 22cos sin2 2

    x x x x x x + + + =

    2 2 2 2 2 22sin sin2 2

    x x x x x x + + + +

  • FSc-II / Ex- 2.5 - 3

    ( ) ( ) ( ) ( )2cos 2 sin 2sin 2 sinx x x x x x = + + Dividing by x

    ( ) ( ) ( ) ( )1 2cos 2 sin 2sin 2 siny x x x x x xx x

    = + + Taking limit as 0x ( ) ( ) ( ) ( )

    0 0

    1lim lim 2cos 2 sin 2sin 2 sinx x

    yx x x x x x

    x x

    = + +

    ( ) ( ) ( ) ( )0 0 0 0

    sin sin2 lim cos 2 lim 2 lim sin 2 lim

    x x x x

    x xdyx x x x

    dx x x = + +

    ( ) ( )2cos 2 0 (1) 2sin 2 0 (1)x x= + + Since 0

    sinlim 1

    =

    2cos2 2sin 2dy x xdx

    =

    Solution 1(iv)

    Let 2cosy x= 2cos( )y y x x + = +

    2 2cos( ) cosy x y x = +

    2 2 2 2( ) ( )2sin sin2 2

    x x x x x x + + + =

    2 2 2 2 2 22 22sin sin2 2

    x x x x x x x x x x + + + + + =

    2 2 22 2 22sin sin2 2

    x x x x x x x + + +=

    222sin sin

    2 2x x

    x x x x x = + + +

    Dividing by x

    221 2sin sin

    2 2y x x

    x x x x xx x

    = + + +

    ing and ing 2x

    x

    +

    on R.H.S

    222 2sin sin

    2 22

    xx

    y x xx x x x x

    xx xx

    + = + + + +

  • FSc-II / Ex- 2.5 - 4

    22

    sin22sin

    2 22

    xx x

    x xx x x x

    xx x

    + = + + +

    +

    Taking limit as 0x

    22

    0 0

    sin2lim lim 2sin

    2 22

    x x

    xx x

    y x xx x x x

    xxx x

    + = + + +

    +

    22

    0 0 0

    sin22 lim sin lim lim

    2 22

    x x x

    xx xdy x x

    x x x xxdx

    x x

    + = + + + +

    ( ) ( )22sin (0) (0) (1) (0)x x= + + +

    22 sindy x xdx

    =

    Solution 1(v)

    Let 2tany x= ( )2tany y x x + = + ( )2 2tan tany x x x = + ( )( ) ( )( )tan tan tan tanx x x x x x = + + +

    ( )( ) ( )( )sin sin

    tan tancos cos

    x x xx x x

    x x x

    +

    = + + +

    ( )( ) ( ) ( )( )sin cos sin cos

    tan tancos cos

    x x x x x xx x x

    x x x

    + +

    = + + +

    ( )( ) ( )( )sin

    tan tancos cos

    x x xx x x

    x x x

    +

    = + + +

    ( )( ) ( )sin

    tan tancos cos

    xx x x

    x x x

    = + + +

    Dividing by x

    ( )( ) ( )1 sin

    tan tancos cos

    y xx x x

    x x x x x

    = + + +

    Taking limit when 0x

    ( )( ) ( )0 01 sinlim lim tan tan

    cos cosx x

    y xx x x

    x x x x x

    = + + +

  • FSc-II / Ex- 2.5 - 5

    ( )( )0 0

    tan tan sinlim limcos cosx x

    x x xdy xdx x x x x

    + + = +

    ( )( ) ( )

    tan 0 tan1

    cos 0 cosx x

    x x

    + +=

    +

    tan tancos cos

    x x

    x x

    +=

    22tancos

    x

    x=

    22tan secdy x xdx

    =

    Solution 1(vi)

    Let tany x=

    ( )tany y x x + = + ( )tan tany x x x = +

    ( )( ) ( )( )tan tan

    tan tantan tan

    x x xx x x

    x x x

    + + = + + +

    ( )( )

    tan tan

    tan tan

    x x x

    x x x

    + =

    + +

    ( )( )( )

    sin1 sincos costan tan

    x x x

    x x xx x x

    +=

    ++ +

    Now do yourself as above.

    Solution 1(vii)

    Let cosy x=

    cosy y x x + = +

    cos cosy x x x = +

    2sin sin2 2

    x x x x x x + + + =

    Dividing by x

    2sin sin2 2

    x x x x x x

    yx x

    + + +

    =

    Taking limit as 0x

    0 0

    sin sin2 2

    lim 2 limx x

    x x x x x x

    yx x

    + + +

    =

    As ( )( )x x x x x x x = + + + , putting in above

  • FSc-II / Ex- 2.5 - 6

    ( )( )0sin sin

    2 22 lim

    x

    x x x x x x

    dydx x x x x x x

    + + + =

    + + +

    ( )0 0sin sin

    2 2lim lim

    2

    x x

    x x x x x x

    x x xx x x

    + + +

    =

    + + +

    ( )

    0sin

    2 (1)0

    x x

    x x

    + +

    =

    + +

    ( )sin2

    xdydx x

    =

    Question # 2

    Solution # 2(i) Assume 2 sec4y x x= Differentiating w.r.t x

    2 sec4dy d x xdx dx

    =

    2 2sec4 sec4d dx x x xdx dx

    = +

    2 sec4 tan 4 (4 ) sec4 (2 )dx x x x x xdx

    = +

    2 sec4 tan 4 (4) 2 sec4x x x x x= + ( )2 sec4 2 tan 4 1x x x x= +

    Solution # 2(ii)

    Let 3 2tan secy = Diff. w.r.t

    3 2tan secdy dd d

    =

    3 2 2 3tan sec sec tand d

    d d

    = +

    3 2 2tan 2sec sec sec 3tan tand dd d

    = +

    ( ) ( )3 2 2 2tan 2sec sec tan sec 3tan sec = + ( )2 2 2 2sec tan 2 tan 3sec = +

  • FSc-II / Ex- 2.5 - 7

    Solution # 2(iii)

    Let ( )2sin 2 cos3y = Diff. w.r.t

    ( )2sin 2 cos3dy dd d

    =

    ( ) ( )2 sin 2 cos3 sin 2 cos3dd

    =

    ( )2 sin 2 cos3 cos 2 (2 ) sin 3 (3 )d dd d

    = +

    ( )( )2 sin 2 cos3 cos2 (2) sin3 (3) = + ( )( )2 sin 2 cos3 2cos2 3sin3 = +

    Solution # 2(iv)

    Let cos siny x x= +

    ( )1 12 2cos( ) sinx x= + Diff. w.r.t x

    ( )1 12 2cos( ) sindy d x xdx dx

    = +

    ( ) ( )1 1 12 2 21sin( ) sin sin2

    d dx x x x

    dx dx

    = +

    ( ) ( )1 1 12 2 21 1sin( ) sin cos2 2

    x x x x

    = +

    1 cos sin2 sin

    x x

    x x

    =

    Question # 3

    Find dydx

    if (i) cosy x y= (ii) sinx y y= Solution 3(i) Since cosy x y=

    cosdy d

    x ydx dx

    =

    cos cosd dx

    x y ydx dx

    = +

    ( sin ) cos (1)dyx y ydx

    = +

    sin cosdy dyx y ydx dx

    + = ( )1 sin cosdyx y ydx

    + =

    cos

    1 sindy ydx x y

    =+

  • FSc-II / Ex- 2.5 - 8

    Solution 3 (ii) Since sinx y y=

    ( sin )dx d y ydx dx

    =

    1 sin sind dyy y ydx dx

    = +

    cos sindy dyy y ydx dx

    = + ( cos sin ) dyy y ydx

    = +

    1cos sin

    dydx y y y

    =+

    Question # 4 Find the derivative w.r.t. x

    (i) 1cos1 2

    x

    x

    +

    + (ii) 1 2sin

    1x

    x

    +

    +

    Solution 4(i)

    Since 1cos1 2

    xyx

    +=

    +

    Diff. w.r.t x

    1cos

    1 2dy d xdx dx x

    +=

    +

    1 1sin

    1 2 1 2x d xx dx x

    + +=

    + +

    121 1

    sin1 2 1 2

    x d xx dx x

    + + = + +

    121 1 1 1

    sin1 2 2 1 2 1 2

    x x d xx x dx x

    + + + = + + +

    ( ) ( ) ( ) ( )( )2

    12 1 2 1 1 1 21 1 1 2

    sin1 2 2 1 1 2

    d dx x x x

    x x dx dxx x x

    + + + + + +

    = + + +

    ( )( )

    ( )( ) ( )( )( )2

    12

    12

    1 2 1 2 1 1 21sin

    1 2 1 22 1

    x x xx

    x xx

    + + ++=

    + ++

    ( )( ) ( )2

    12

    12

    1 21 1 2 2 2sin

    1 2 1 22 1

    xx x x

    x xx

    ++ + =

    + ++

    ( )( ) ( )2

    12

    12

    1 21 1sin

    1 2 1 22 1

    xx

    x xx

    ++ =

    + ++

  • FSc-II / Ex- 2.5 - 9

    ( )( ) ( ) 2

    12

    1 12 2

    1 21 1sin

    2 1 2 2 1 1 2

    xx

    x x x

    ++=

    + + +

    ( ) 321 1

    sin1 22 1 1 2

    dy xdx xx x

    + =

    ++ +

    Solution 4(ii) Do yourself as above.

    Question # 5

    Differential (i) sin x w.r.t cot x (ii) 2sin x w.r.t 4cos x . Solution 5(i) Let siny x= and cotu x= Diff. y w.r.t x

    sindy d xdx dx

    =

    cos x=

    Now diff. u w.r.t x

    cotdu d

    xdx dx

    = 2csc x=

    21

    csc

    dxdu x

    =

    2sin x=

    Now by chain rule

    dy dy dxdu dx du

    =

    ( )( )2cos sinx x= 2sin cosx x=

    Solution 5(ii)

    Let 2siny x= and 4cosu x= Diff. y w.r.t x

    2sindy d xdx dx

    =

    ( )2sin sindx xdx

    = 2sin cosx x=

    Now diff. u w.r.t x

    4cosdu d

    xdx dx

    =

    ( )34cos cosdx xdx

    = ( )34cos sinx x= 34sin cosx x=

  • FSc-II / Ex- 2.5 - 10

    31

    4sin cosdxdu x x

    =

    Now by chain rule

    dy dy dxdu dx du

    =

    ( ) 312sin cos 4sin cosx x x x

    =

    21 sec2

    x=

    Question # 6

    If ( )tan 1 tan 1 tany x x+ = , show that 1dydx

    = .

    Solution

    Since ( )tan 1 tan 1 tany x x+ = 1 tan

    tan1 tan

    xyx

    =+

    1 tan1 1 tan

    x

    x

    =

    +

    4

    4

    tan tan

    1 tan tanx

    x

    pi

    pi

    =

    +

    tan4

    xpi

    =

    4y xpi =

    Diff. w.r.t x

    4dy d

    xdx dx

    pi =

    0 1= 1dy

    dx =

    Question # 7

    If tan tan tan ...y x x x= + + + , prove that ( ) 22 1 secdyy xdx

    = .

    Solution

    Since tan tan tan ...y x x x= + + + Taking square on both sides

    2 tan tan tan ...y x x x= + + +

    tan tan tan tan ...x x x x= + + + +

    2 tany x y = +

    Diff. w.r.t x

  • FSc-II / Ex- 2.5 - 11

    ( )2 tand dy x ydx dx

    = +

    22 secdy dyy xdx dx

    = + 22 secdy dyy xdx dx

    =

    ( ) 22 1 secdyy xdx

    =

    Question # 8

    If 3cosx a = , 3siny b = , show that tan 0dya bdx

    + = .

    Solution

    3cosx a = , 3siny b = Diff. x w.r.t

    ( )3cosdx d ad d = ( )23cos cosda

    d

    =

    ( )23 cos sina =

    23 sin cosdx ad

    = 21

    3 sin cosddx a

    =

    Now diff. y w.r.t

    ( )3sindy d bd d = ( )23sin sindb

    d

    =

    23 sin cosb =

    Now by chain rule dy dy ddx d dx

    =

    22

    13 sin cos3 sin cos

    ba

    =

    tanba

    =

    tandy

    a bdx

    = tan 0dya bdx

    + =

    Question # 9

    Do yourself

  • FSc-II / Ex- 2.5 - 12

    Derivative of inverse trigonometric formulas

    (i) 12

    11

    d Sin xdx x

    =

    See proof on book page 76

    (ii) 12

    11

    d Cos xdx x

    =

    Proof Let 1cosy x= where [ ]0,x pi

    cos y x =

    Diff. w.r.t x

    cosd dxydx dx

    = sin 1dyydx

    =

    1sin

    dydx y

    =

    2

    11 cos y

    =

    Since sin y is positive for [ ]0,x pi

    2

    11 x

    =

    (iii) 1 21

    1d Tan xdx x

    =

    +

    See proof on book at page 77 (iv) 1 2

    11

    d Cot xdx x

    =

    +

    Proof Let 1coty x= cot y x = Diff. w.r.t x

    cotd dy xdx dx

    = 2csc 1dyy

    dx =

    21

    csc

    dydx y

    =

    21

    1 cot y

    =

    +

    2 21 cot cscy y+ =

    21

    1dydx x

    = +

    (v) 12

    11

    d Sec xdx x x

    =

    Proof Let 1secy x= sec y x = Diff. w.r.t x

  • FSc-II / Ex- 2.5 - 13

    secd dy xdx dx

    = sec tan 1dyy ydx

    =

    1sec tan

    dydx y y

    =

    2

    1sec sec 1y y

    =

    2 21 tan secy y+ =

    12

    11

    d Sec xdx x x

    =

    sec y x=

    (vi) 12

    11

    d Csc xdx x x

    =

    See on book at page 77

    Question # 10

    Solution 10(i)

    Let 1 xy Cosa

    =

    Diff. w.r.t x 1dy d xCos

    dx dx a

    =

    2

    1

    1

    d xdx ax

    a

    =

    2

    2

    1 1

    1

    dx

    a dxxa

    =

    2 2

    2

    1 1 (1)aa x

    a

    =

    2 2

    1aaa x

    =

    2 2

    1a x

    =

    Ans

    Solution 10(ii)

    Let 1cot xya

    =

    Diff w.r.t x 1cot

    dy d xdx dx a

    =

  • FSc-II / Ex- 2.5 - 14

    21

    1

    d xdx ax

    a

    =

    +

    ( )2 22

    1 1 dx

    a x a dxa

    =

    +

    ( )2

    2 21 1a

    a x a

    =

    + 2 2

    a

    a x

    =

    +.

    Solution 10(iii)

    Let 11 ay Sina x

    =

    Diff. w.r.t x 11dy d aSin

    dx a dx x

    =

    2

    1 1

    1

    d aa dx xa

    x

    =

    ( )12 22

    1 1 da x

    a dxx ax

    =

    ( )22 2x xx a

    =

    22 2

    1xxx a

    =

    2 2

    1x x a

    =

    Ans

    Solution 10(iv)

    Let 1 21y Sin x= Diff. w.r.t x

    1 21dy d Sin xdx dx

    =

    ( )2

    22

    1 11 1

    dx

    dxx

    =

    ( ) ( )2 22121 1 1 1

    21 1d

    x xdxx

    =

    +

    ( ) ( )2 2 121 1 1 2

    2 1x

    x x

    =

    2

    11

    x

    x x=

    2

    11 x

    =

    Solution 10(v)

    Let 2

    12

    11

    xy Secx

    +=

    Diff. w.r.t x 2

    12

    11

    dy d xSecdx dx x

    +=

    2

    222 2

    2 2

    1 111 1 1

    1 1

    d xdx x

    x x

    x x

    +=

    + +

  • FSc-II / Ex- 2.5 - 15

    ( ) ( )( ) ( ) ( ) ( )

    ( )2 2 2 2

    22 2 22 22

    2 2 2

    1 1 1 1111 11

    1 ( 1)

    d dx x x x

    dx dxxx xx

    x x

    + +

    = + +

    ( ) ( )( )( ) ( )( )

    ( )2 2

    224 2 4 22

    2 2

    1 2 1 2112 1 2 11

    1 ( 1)

    x x x x

    xx x x xx

    x x

    +

    =

    + + + + +

    ( )( )

    ( )( )

    22 2 2

    22 4 2 4 2 2

    1 2 1 1

    1 2 1 2 1 1

    x x x x

    x x x x x x

    =

    + + + +

    ( ) ( )( )2 21 2 2

    1 4x

    x x=

    + ( )2

    41 2

    x

    x x

    =

    + ( )2

    21x

    =

    + Ans

    Solution 10(vi) Do yourself as above.

    Solution 10(vii) Do yourself as above.

    Question # 11

    Show that dy ydx x

    = if 1y xTanx y

    = .

    Solution

    Since 1y xTanx y

    =

    1 xy x Tany

    =

    Diff. w.r.t x 1dy d xx Tan

    dx dx y

    =

    ( )1 1d x x dx Tan Tan xdx y y dx

    = +

    ( )121 1

    1

    d x xx Tan

    dx y yxy

    = + +

    12 2 2

    2

    (1)1dyy x

    xdxx Tany x y y

    y

    = + +

    2 2x dy yy x

    y x dx x

    = + +

  • FSc-II / Ex- 2.5 - 16

    2

    2 2 2 2dy xy x dy ydx y x y x dx x

    = ++ +

    2

    2 2 2 2dy x dy xy ydx y x dx y x x

    + = ++ +

    2 2

    2 2 2 21 1x dy y x

    y x dx x y x

    + = + + +

    dy ydx x

    = Proved

    Question # 12

    If ( )1tan ,y pTan x= show that ( ) ( )2 211 1 0.x y p y+ + = Solution

    Since ( )1tany pTan x= 1 1Tan y pTan x = Differentiating w.r.t x

    1 1d dTan y p Tan xdx dx

    =

    2 21 1

    1 1dy p

    y dx x =

    + + ( ) ( )2 21 1dyx p ydx + = +

    ( ) ( )2 211 1 0x y p y + + = Since 1dy ydx =

    Error Analyst

    Muzammil Ahsan 2009-11 Govt. Post Graduate Collage Jauharabad Distt. Khushab

    Nain Malik 2012-14

    Muhammad Usman Saleem (2013-15) DPS & IC Jauharabad Distt. Khushab

    Abeer Butt (2013-15) FCC

    Book: Exercise 2.5

    Calculus and Analytic Geometry Mathematic 12 Punjab Textbook Board, Lahore. Edition: May 2013.

    Made by: Atiq ur Rehman ([email protected]) Available online at http://www.MathCity.org in PDF Format (Picture format to view online). Page Setup used: A4. Printed: September 25, 2014.