EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

41
EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007

Transcript of EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Page 1: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

EVPP 550Waterscape Ecology and

Management

Professor R. Christian

JonesFall 2007

Page 2: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• Global carbon cycle includes:– Photosynthesis– Respiration– Fossil Fuel

combustion– Ocean

interactions– Rock

interactions (over long term)

Page 3: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• Earth’s atmosphere contains relatively small amounts of CO2 as compared to O2

• But the amount has increased greatly over the past several decades

• As a greenhouse gas, CO2 is a major factor in the warming of Earth surface temperatures

• CO2 is also intimately involved in the carbonate-bicarbonate buffering system that controls pH in most freshwaters

Ice core data

Direct Measurements

Page 4: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• Carbon dioxide dissolves in water to produce carbonic acid

• Carbonic acid dissociates to produce bicarbonate and hydrogen ion (1st dissociation of carbonic acid)

• Bicarbonate dissociates to produce carbonate and another hydrogen ion (2nd dissociation of carbonic acid)

• CO2 + H20 ↔ H2CO3

• H2CO3 ↔ HCO3- + H+

• HCO3- ↔ CO3

-2 + H+

Page 5: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• pH = -log [H+]• pH is the negative log

of the hydrogen ion concentration

• pH = 4 means [H+] = 10-4

• pH = 7 means [H+] = 10-7

• pH = 10 means [H+] = 10-10

Page 6: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH• The relative amounts of carbonate, bicarbonate, and carbon

dioxide-carbonic acid change with pH in a predictable manner based on dissociation equations

• At high pH, carbonate dominates• At intermediate pH, bicarbonate dominates• At low pH, carbon dioxide-carbonic acid dominates

Page 7: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• Alkalinity is the ability of water to resist acidification

• If the carbonate-bicarbonate system is the major buffer, then pH change can be resisted as long as bicarbonate and carbonate are present since they can absorb hydrogen ions

• Alkalinity = [HCO3-] + 2 x [CO3

-2]

Page 8: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH• pH of rain in equilibrium

with atmospheric CO2 is about 5.5

• Pollutants such as sulfate and NOX decrease it futher

• The total amount of alkalinity in a given water body is based, not only on the input of CO2 from the atmosphere, but even more so on sources of carbonate and bicarbonate from the watershed

Page 9: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• For some purposes we need to know the total amount of dissolved inorganic carbon (DIC) in a water body

• This determines the carbon available for photosynthesis and also is needed to calculate the photosynthetic rate using the C-14 method

• DIC = [H2CO3] + [HCO3-]

+ [CO3-2]

• Based on equations in handout, if we know pH, alkalinity, and temperature, we can derive total DIC and concentration of all forms of DIC

Page 10: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH

• Effect of photosynthesis on pH and carbonate system

• Effect of respiration on pH and carbonate system

• Psyn consumes CO2, equilibrium shifts to left resulting in consumption of H+ and increase in pH

• Resp releases CO2, equilibrium shift to left resulting in release of H+

and decrease in pH

CO2 + H20 ↔ H2CO3 ↔ HCO3- + H+ ↔ CO3

-2 + H+

Page 11: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – CO2, alk, pH• Vertical profiles

of pH

Page 12: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – Dissolved Ions

• Sources– Atmosphere– Soil/rocks

• Dissolution• Weathering

– Sediments

• Measurement– Total Dissolved Solids

(TDS)– aka Filterable Residue– Gravimetric procedure– Filter substantial

volume of water, then evaporate filtrate until constant weight

– Problems: some residues are volatile and some retain water

Page 13: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – Dissolved Ions

• Range: 1 mg/L to 300,000 mg/L (saturated brine)

• Equivalent to 0.001 – 300 ppt

• Fresh water: < 1 ppt • Ocean: 35 ppt• Great Salt Lake: 220

ppt

Page 14: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – Dissolved Ions

• Conductivity– Measures the ability of

water to conduct an electrical current

– Proportional to the number of ions in solution

– Pure water has a very low conductance (<0.1 umho/cm = uS/cm)

– Conductance is a rough measure of TDS which can be calibrated more accurately for a given waterbody

• Conductivity– Is a function of temperature

so values need to be standardized to a given temperature, usually 25oC

– Conductivity increases by a factor of about 0.025 per oC

– So to get Specific Conductance (Conductivity standardized to 25oC):

– Cond(25oC) = Cond (T) x 1.025^(25-T)

Page 15: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry – Dissolved Ions

• Anions– CO3-2 and HCO3-

(70-75% by wt)– SO4-2 and Cl- also

important

• Cations– Ca+2 (60%)– Mg+2 (15-20%)– Na+ (15-20%)– K+ (5-10%)

• Alkalinity– [CO3-2] + [HCO3-]– Acid buffering capacity

• Hardness– [Ca+2] + [Mg+2]– Reaction to soap– More soap required in

hard water because Ca and Mg tie some of it up

Page 16: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Forms– N2 = dissolved molecular nitrogen

– NH4+, NH3, NH4OH = ammonia nitrogen

– NO2- = nitrite ion

– NO3- = nitrate ion

– Organic nitrogen: includes proteins, amino acids, urea, etc.

Page 17: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Forms– Equilibrium

between ammonia nitrogen forms is a function of temperature and pH

Page 18: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Transformations– Nitrogen fixation

• N2 → reduced organic N (like amino acid)• Three groups of organisms can do this

– Aerobic and anaerobic heterotrophic bacteria use organic matter as energy substrate/important in sediments

– Cyanobacteria use light as energy source/important in open water/done in heterocysts/may occur in large blooms in midsummer in enriched lakes

– Purple photosynthetic bacteria use light as energy source, but need anoxic conditions

Page 19: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Transformations– Nitrogen fixation– Rate of N fixation

in water column is increased during N limitation

– Rate of N limitation is related to light intensity implying that light energy is driving the process

Page 20: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Transformations– Assimilation of combined nitrogen

• NH4+ → reduced organic nitrogen (like amino acid)

• NO3- → reduced organic nitrogen (like amino acid)

• NH4+ is energetically more favorable as it is already reduced

Page 21: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Transformations– Proteolysis or ammonification

• Organic Nitrogen → NH4+• Proteolytic bacteria use energy released from this

transformation for metabolism

– Nitrification• NH4+ → NO2-

– Nitrosomonas uses energy released for metabolism

• NO2- → NO3-– Nitrobacter uses energy released for metabolism– Reaction occurs quickly so NO2- generally very low

Page 22: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

• Transformations– Denitrification

• NO3- → N2• Anaerobic/aerobic interface habitats such as

mud-water interface• Active in sediments and wetlands, may greatly

deplete NO3 in groundwater

Page 23: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

Page 24: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry -

Nitrogen

Page 25: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

Page 26: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Nitrogen

Page 27: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry -

Nitrogen

Page 28: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry -

Nitrogen

Page 29: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• Importance to organisms– Nucleic acids– Adenosine Triphosphate

(high energy PO4 bonds)– Bones and other solid

inclusions

• Sources– Erosion of igneous rocks– Dissolution of phosphate-

containing sedimentary rocks

– Guano beds, bone skeletons

– Human and animal waste, detergents

Page 30: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• Forms of phosphorus– In biological systems and in

water, almost all P is in the PO4 form

– Can be individual PO4-3 ions or PO4 group can be combined with organic molecules, either dissolved or particulate

• Analytic Forms– Phosphate ion aka

orthophosphate aka soluble reactive phosphorus

• Measured on filtered samples

– Total soluble phosphorus• Measured on filtered

sample after digestion

– Total phosphorus• Measured on whole water

samples after digestion

Page 31: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• Ortho-P– Only directly utilizable

form of inorganic P– May be formed from

organic P by enzymatic action

– Reacts with other chemicals and adsorps to particles and elements like Fe

• Organic P = Total P – Ortho P– Often most P in lakes

is tied up in organisms or detritus

– Can cycle between ortho-P and organic P

Page 32: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• P cycle in lakes

Page 33: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• P cycle in lakes

Page 34: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Phosphorus

• P profiles in various lakes

Page 35: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• Iron is a necessary requirement for all living organisms (enzyme systems)

• Iron has two states– Fe+3 = ferric ion

• Forms insoluble compounds• Found under oxic conditions

– Fe+2 = ferrous ion• Is generally soluble• Found under anoxic conditions

Page 36: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• Even though generally insoluble in oxic epilimnion, Fe can be held there by chelators (compounds that weakly bind it to prevent precipitation, but may give it up to cells)

Page 37: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• Generally, however, in oxic conditions Fe is found in a precipitated oxide form such as Fe(OH)3

• These iron precipitates help to bind PO4 in the sediments and keep it from migrating into the water column

Page 38: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• However, when anoxic conditions set in, the Fe(OH)3 dissolves and PO4-3 can be rapidly released fueling algal growth

Page 39: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• However, when anoxic conditions set in, the Fe(OH)3 dissolves and PO4-3 can be rapidly released fueling algal growth

Page 40: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Iron

• However, when anoxic conditions set in, the Fe(OH)3 dissolves and PO4-3 can be rapidly released fueling algal growth

Page 41: EVPP 550 Waterscape Ecology and Management Professor R. Christian Jones Fall 2007.

Water Chemistry - Silicon

• Required for diatioms

• Removed from the water column during diatom growth and sinking

• May come to limit diatom growth during the growing season