Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq....

32
Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q 2 2 2 2 2 2 2 . 0 2 89 . 0 2 . 0 ' ; 2 . 0 2 89 . 0 89 . 0 ' q pq p pq q q q pq p pq p p For Thalassemia evolutionary operator 2 2 11 22 2 2 2 2 11 22 11 22 ' ; ' 2 2 Wp pq Wq pq p q Wp pq Wq Wp pq Wq or pq p pq q pq p pq p p 2 ' ; 2 ' 2 2 2

Transcript of Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq....

Page 1: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Evolutionary operator: p`= p2 +pq; q` = q2 +pq.

For lethal alleles: p`= p2 +pq; q` = q2 +pq.

Allele frequenses A-p, a - q

22

2

22

2

2.0289.0

2.0';

2.0289.0

89.0'

qpqp

pqqq

qpqp

pqpp

For Thalassemia evolutionary operator

2 211 22

2 2 2 211 22 11 22

' ; '2 2

W p pq W q pqp q

W p pq W q W p pq W q

or

pqp

pqq

pqp

pqpp

2';

2'

22

2

Page 2: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Evolutionary operator with selection

2 2AA Aa aa AaW p W pq W q W pq

p ' ; q ' ;W W

2 2AA aa AaW W p W q 2W pq - mean fitness

Selection in case Thalassemia: WAA=0.89; WAa=1; Waa=0.2

Selection recessive lethal gene: WAA=1; WAa=1; Waa=0

Page 3: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

2 2AA aa AaW W p W q 2W pq - mean fitness

WAA, WAa, Waa –individual fitnesses

Why mean?

2 2 2p q 2pq (p q) 1.

2 2AA Aa aa AaW p W pq W q W pq

p ' ; q ' ;W W

Page 4: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Equilibria points

p=0, q=1 - population contains a allele only and on the zygote level the population consist of the homozygotes aa;

p=1,q=0 - population contains A allele only and on the zygote level the population consist of the homozygotes A A.

2 2AA Aa aa AaW p W pq W q W pq

p ; q ;W W

2 2AA aa AaW W p W q 2W pq

Page 5: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

AA Aa aa Aa

AA Aa aa Aa

AA Aa aa Aa

pW p(W p W q); qW q(W q W p);

if p,q 0

W W p W q; W W q W p;

W p W q W q W p;

q 1 p

2 2AA aa AaW W p W q 2W pq

aa Aa AA Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

2 2AA Aa aa AaW p W pq W q W pq

p ; q ;W W

Equation for equilibria points

Page 6: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

aa Aa AA aa Aa

aa Aa AA aa Aa

AA Aa AA aa Aa

AA Aa AA aa Aa

p 0

q

if

W W 0and W W 2W 0

or W W 0and W W 2W 0

if

W W 0and W W 2W 0

or W W 0and W W 0

0

2W

0 , 1p q

1p q aa Aa AA Aa

AA aa Aa AA aa Aa

W W W Wp ; q

W W 2W W W 2W

Condition of the polymorphic state

aa Aa

AA Aa

aa Aa

AA Aa

AA aa Aa

W W 0

W W 0

W W

W W

max(W , W ) W

Page 7: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Superdominance, when a heterozygote is fitter than both homozygotes

Superrecessivity , when a heterozygote is les fit than either homozygotes

In intermediate cases:

WAA Waa WAa (if WAA < WAa) or

WAa Waa WAA (if WAa < WAA)

The population has no polymorphic equilibria

aa Aa AA Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

Heterozygote equilibrium states: p>0, q>0

AA aa Aamin(W , W ) W

AA aa Aamax(W , W ) W

Page 8: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Lethal allele

AA Aa aa Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

Let Waa=0

AA aa Aamax(W , W ) W

AA aa Aamin(W , W ) W

If WAa > max(WAA,Waa) =WAA

Equilibrium point is polymorphic

Previous conditions: WAA=WAa=1, Waa=0

Condition not so realistic

Page 9: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Selection against a recessive allele.

1, 1 .AA Aa aaW W W s

AA Aa aa Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

AA aa Aamax(W , W ) W

AA aa Aamin(W , W ) W

Page 10: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Selection in case Thalassemia

AA Aa aa Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

AA aa Aamax(W , W ) W

AA aa Aamin(W , W ) W

WAA=0.89, WAa=1, Waa=0.2

If WAa > max(WAA,Waa) =WAA

Equilibrium point is polymorphic

Good condition. Note, that can be WAA<1

Page 11: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Dominant selection(also selection against a recessive allele)

aa Aa AA Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

AA aa Aamax(W , W ) W

AA aa Aamin(W , W ) W

Two different phenotypes

{AA, Aa}, {aa} WAA=WAa=1, Waa =1-s

WAA=WAa=1-s, Waa =1

No polymorphic equilibria point

Page 12: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Haploid selection

; ;AA A A Aa A a aa a aW W W

2 2AA aa A amax( , )

aa Aa AA Aa

AA aa Aa AA aa Aa

W W W Wp ; q ;

W W 2W W W 2W

AA aa Aamax(W , W ) W

AA aa Aamin(W , W ) W

2 2AA aa A amin( , )

Page 13: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Equilibria points and trajectories

Page 14: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Selection against a recessive allele.Trajectories.

2

2

2

2

2

2

22( 2 )

( 2 )

) ( )(

aa aa

aa

aa

aa Aa

aa Aa

Aa AA Aa

Aa AA Aa

Aa AA Aa

W q W pqq q q

W

W q W pq Wqq q

W

W pq W p W pq qq q

W

W pq W p q W pqq q

W

W p W p W qq q

W

W q W q

W q p

pq W q

2 2AA Aa aa AaW p W pq W q W pq

p ' ; q ' ;W W

2 2AA aa AaW W p W q 2W pq

2

1, 1 .

) (1 ) 1 ; ( )( 1; ;

AA Aa aa

Aa A Aa A aa

W W W s

W p s qW q p sq W p W qpq s

q qW

2 2

2

(1 )

1

pq s q q sq q q

W sq

Page 15: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Example. Selection against recessive lethal gene

Page 16: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Fisher’s Fundamental Theorem of Natural Selection

Mean fitness increase along the trajectory

Page 17: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Lethal allele2

2

2

( );

;

2 ( 2 ) (1 ).

(1 )(1 ) .

1; .

1 1

(1 )

p pq p p q

W W

W p pq p p q p q

q q

qp q

q q

pp

Wpq

qW

W q

2 2

2 2 2 2

(1 ) (1 ),

, , .

1, 1 0, 1 1 ,

1 1.

If W q W q

then q q q q q q

qq q q

qq

q

Page 18: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

2(1 )W q

0

0.2

0.4

0.6

0.8

1

1.20

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63 0.7

0.77

0.84

0.91

0.98

q

Wmax

Page 19: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Selection against a recessive allele.2 2

AA Aa aa AaW p W pq W q W pqp ' ; q ' ;

W W

2 2

AA aa AaW W p W q 2W pq

1, 1 .AA Aa aaW W W s 2 2 2

2 2 2

2 2

2

2 2

(1 ); ;

(1 ) (1 ) ( ) 1.

( ) 1 ( ) 1.

.

1

1 .

1 ( ) 1 .

p pq s q pq sq qp q

W W W

W q s q s q

W W s q s q

q q

Then

sq qq sq W

W

sq s qq q q

Page 20: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

2( ) 1W s q

0

0.2

0.4

0.6

0.8

1

1.2

0

0.0

6

0.1

2

0.1

8

0.2

4

0.3

0.3

6

0.4

2

0.4

8

0.5

4

0.6

0.6

6

0.7

2

0.7

8

0.8

4

0.9

0.9

6

s=0.5

s=0.7

s=0.9

s=0.1

Page 21: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Mean fitness in case Thalassemia

WAA=0.89, WAa=1, Waa=0.2

2 2AA aa Aa

2 2AA aa Aa

2AA aa Aa Aa AA AA

W W p W q 2W pq

W W (1 q) W q 2W (1 q)q

W q (W W 2W ) q(2W 2W ) W

2W 0.91q 0.22q 0.89

00.10.20.30.40.50.60.70.80.9

1

0

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63 0.7

0.77

0.84

0.91

0.98

q

W

Page 22: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

WAA=0.50, WAa=1, Waa=0.2

2W 1.3q q 0.50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.80

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63 0.7

0.77

0.84

0.91

0.98

q

W

Page 23: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Mean fitness calculation and dynamics

Page 24: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Convergence to equilibria2 2

AA aa AaW W p W q 2W pq

In intermediate cases:

Waa WAa WAA (or WAA WAa Waa)

The population has no polymorphic equilibria

Page 25: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Convergence to equilibria

Superdominance (overdominance), when a heterozygote is fitter than both homozygotes

Superrecessivity (underdominance), when a heterozygote is les fit than either homozygotes

AA aa Aamin(W , W ) W

AA aa Aamax(W , W ) W

2 2AA aa AaW W p W q 2W pq

Page 26: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Blood groups

• A,B,O –alleles allel enzyme

• A O B dominance A A

• AA, AO, = A B B

• BB, BO, = B O -

• AB = AB

• OO = O

Page 27: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

1 1 1 1 2 1 3

2 2 1 2 2 2 3

3 3

1 2 3

1 3 2 3 3

; ;0

p p p p p p p

p p p

A p B

p p p p

p p p p

p

p p p

p

Page 28: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

A O B dominance A AAA, AO, = A B BBB, BO, = B O -AB = ABOO = O

12

12

1 1 1 1 2 1 3

2 2 2

1 2 3

11 11

1 2 2 2 3

3 3 1 311

2 2

33

2

2 2 3 32

; ;0

p p p p p p p

p p p p p p p

p p

A p B p

W W

W

W W

p p W p p

p

pW

W

W

Page 29: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

12

12

1 1 1 1 2 1 3

2 2 2

1 2 3

11 11

1 2 2 2 3

3 3 1 311

2 2

33

2

2 2 3 32

; ;0

p p p p p p p

p p p p p p p

p p

A p B p

W W

W

W W

p p W p p

p

pW

W

W

1 1 1 1 2 1 3

2 2 1 2 2 2 3

3 3 1 3 2 3 3

1 1 1 2

12

12

12

22 22

22

22 21 3 2 2 2 3 3 3

11 11

11

11 11 2

33

33

( ) /

( ) /

( ) /

2 2 2 .

p p p p p p p W

p p p p pW p p W

p p p p p p p

W W

W W

W p p p p p p p p p

W

W

W

W

W

p p pW W WW

W

W

Evolutionary operator

Page 30: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Simulation

Page 31: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

One-locus multiallele autosomal systems

Page 32: Evolutionary operator: p`= p 2 +pq; q` = q 2 +pq. For lethal alleles: p`= p 2 +pq; q` = q 2 +pq. Allele frequenses A-p, a - q For Thalassemia evolutionary.

Fishers Fundamental Theorem of Natural Selection

2 211 1 12 1 2 nn nW W P W P P ... W P

Mean fitness

increase along the trajectory