Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation...

17
Evolution of magnetar-powered supernovae Miyu Masuyama, RESCEU collaborator : Toshio Nakano, Toshikazu Shigeyama RIKEN-RESCEU joint meeting 2016/07/25-27 1

Transcript of Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation...

Page 1: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

Evolution of magnetar-powered supernovae

Miyu Masuyama, RESCEU collaborator : Toshio Nakano, Toshikazu Shigeyama

RIKEN-RESCEU joint meeting 2016/07/25-27

1

Page 2: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

1. Neutron stars

2

• Neutron Stars (NS) • generated by core collapse supernovae • observed NS, a few hundreds

• Power sources of them • rotation energy • gravitational energy of accreting matters • thermal energy • magnetic field energy

Page 3: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

1. Neutron stars

3

• Neutron Stars (NS) • generated by core collapse supernovae • observed NS, a few hundreds

• Power sources of them • rotation energy • gravitational energy of accreting matters • thermal energy • magnetic field energy

-> We focus on NS with strongest magnetic fields, “Magnetar”.

Page 4: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

2. Magnetars

4

• NS with strong magnetic fields

( typical neutron stars : B~1012 G )

• Spin down. Pdot > 0 • Radiate X-ray by using magnetic

fields. Lx ~ 1035 erg/s >> Lspin -> rapidly spin & Highly magnetize at their birth.

-> The mechanism for growth of strong magnetic fields & what supernovae generate magnetars have not been well understood.

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

0.001 0.01 0.1 1 10 100

Perio

d de

rivat

ive(s/

s)

Period(1/s)

Radio PulsarMagnetar

Binary10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

0.001 0.01 0.1 1 10 100

Perio

d de

rivat

ive(s/

s)

Period(1/s)

10 16G

10 15G

10 14G

10 13G

10 12G

10 11G

1kyr

1Myr

10kyr

100kyr

10Myr

100Myr

(s)(ATNF pulsar catalog)

Page 5: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

North east (NE)506039010

North West (NW)506037010

South East (SE)50604010

South West (SW)506038010

1E 2259+586 (AXP)404076010

XIS1

XIS0,3

1E 2259+586

Suzaku X-ray image, CTB109 (SNR) & 1E2259+586 (magnetar)

• discovered magnetars : about 30 ( ATNF pulsar catalog )

• some associate with SNR              ( e.g. Kes 73, CTB 109 )

• Observations of such SNR : • Progenitors are very massive ( >30M◉)

( e.g. Figer +05, Kumar +12 )  • ESNR ~ 1051 erg

( e.g. Vink & Kuiper 06 ) 

• Theoretical prediction※ : • Erot ~ 1052 erg are injected

to stellar envelope by magnetic dipole radiation. ※ Magnetars have very short spin periods (P0 < 3ms) and highly strong magnetic field (B0 > 1015G) at their birth (α-dynamo effect) (Duncan & Thompson 92). Therefore they have Erot ~ 1052 erg and inject its energy to stellar envelope. 

5

3. Previous works

Page 6: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

2.1 何をやっていたのか ( 私の修論の復習 )

(A). A mechanism without rapidly rotation amplify a magnetic field of magnetar. -> Erot < 1052 erg

(B). Most of rotation energy is used for something (e.g. GW, binding energy). (C). Underestimate energy of SNR associated with magnetars. -> ESNR > 1051 erg

6

4. Our work

core collapse of massive star supernove supernove remnant

R ~ 1010 cm R ~ 1019 cm

t ~ 0 sec t ~ 10,000 yrst ~ 100 daysexplosion expansion

Erot ~1052 erg (A)?? ESNR ~1051 erg (C)?? (B)??

Page 7: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

2.1 何をやっていたのか ( 私の修論の復習 )

(A). A mechanism without rapidly rotation amplify a magnetic field of magnetar. -> Erot < 1052 erg

(B). Most of rotation energy is used for something (e.g. GW, binding energy). (C). Underestimate energy of SNR associated with magnetars. -> ESNR > 1051 erg

7

4. Our work

core collapse of massive star supernove supernove remnant

R ~ 1010 cm R ~ 1019 cm

t ~ 0 sec t ~ 10,000 yrst ~ 100 daysexplosion expansion

-> We perform 1D hydrodynamical simulations of evolutions of magnetars for 10,000 yrs to investigate the relation between Erot and ESNR.

Erot ~1052 erg (A)?? ESNR ~1051 erg (C)?? (B)??

Page 8: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

8 distance from the center

WR star just before explosion ( Iwamoto et al. 1998 )

Energy Injection to stellar envelope by magnetic dipole radiationMagnetar

CSM ISM

5 pc1010 cm108 cm106 cm

dens

ity

10-24 g/cm3

M~40M◉

stellar envelope

5. Set up for simulations

Page 9: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

9 distance from the center

WR star just before explosion ( Iwamoto et al. 1998 )

Energy Injection to stellar envelope by magnetic dipole radiationMagnetar

CSM ISM

5 pc1010 cm108 cm106 cm

dens

ity

10-24 g/cm3

M~40M◉

stellar envelope

5. Set up for simulations

Calculation region

Page 10: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

10 distance from the center

WR star just before explosion ( Iwamoto et al. 1998 )

Energy Injection to stellar envelope by magnetic dipole radiationMagnetar

CSM ISM

5 pc1010 cm108 cm106 cm

dens

ity

10-24 g/cm3

M~40M◉

stellar envelope

5. Set up for simulations

Calculation region

1D hydrodynamical simulation

+ Q

Q = L(t) injected from rotation energy of a magnetar @ inner most region

0 @ the other region{

continuity equation

equation of motion

energy equation

=-

Page 11: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

11

inject energy to stellar envelope by magnetic dipole radiation

0.01 102 106 108 1014

Energy injection time [s]

Ene

rgy

inje

ctio

n ra

te [e

rg/s

]

1015 G

1012 Gtp = 0.1 s

103 s

109 s

Magnetar Erot = 1052 erg ~ lω2

B0=1017 G

6. Magnetars as a explosion engine

rot

rot

Page 12: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

-14

-11

-8

1.0×1019 4.0×1019

log p

[g/cm

/s2 ]

r [cm]

(c)

0.0

5.0

1.0

1.5

υ×1

07 [cm

/s]

(b)

-29

-26

-23

log ρ

[g/cm

3 ]

(a)

dens

itypr

essu

reve

loci

ty

12

t = 4,000 yrs after explosion

10.0

15.0

distance from the center

ejectaCSM

ISM

forward shock

reverse shock

Initial profile

log ρ ejecta

CSM ISM

shock are formed by energy injection from magnetar.

7. Time evolution of shock waves

distance from the center

Page 13: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

• ESNR ~ Erot + Eν,heating + Enuc + Ebind

8. Energy of neutrino-heating

13

νe

νe

ー νe + n -> p + e-

νe + p -> n + e+

stalled shockneutrino sphere

※in the core

-> The stalled shock is revived by depositing of a part of energy 1051 erg carried away by neutrino νe, νe.ー

• Eν,heating ~ 1051 erg

Page 14: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

• ESNR ~ Erot + Eν,heating + Enuc + Ebind

• rough estimation of nuclear energy under assumption that the matter which exceed T > 5×109 K will be 56Ni.

->

• We should calculate hydrodynamical simulations including nuclear reactions and feedback to hydrodynamical simulations for magnetar-powered supernovae.

9. Energy of nuclear reactions

14

9

10

2 3 4 5

log Tmax [K]

Mass [solar mass]

magne

tar�

28Si->56Ni@T>5×109K�

P0=2msec,energyisinjectedinstantly�

P0=2msec,B0=5×1016G�

Page 15: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

• ESNR ~ Erot + Eν,heating + Enuc + Ebind

• Progenitors of magnetars are considered to be massive stars.

• Ebind ~ - 5 × 1051 erg ( just before explosion ) in case that a progenitor mass is 40 M◉

10. Gravitational binding energy

15

( e.g. Safi-Harb & Kumar 2012 )

Magnetar Progenitor mass1E 1048.1-5937 (Gaensler+ 2005) 30-40 M◉

CXO J164710.2-455216 (Muno+ 2006) > 40 M◉

SGR1806-20 (Figer+ 2005) ~50 M◉

SGR 1900+14 (Davies+ 2009) 17 M◉

1E 1841–045 (Kumar+2014) >> 20 M◉

SGR 0526–66 (Uchida+2015) ~26 M◉

1E 2259+586 (Nakano PhD thesis) ~40 M◉

Page 16: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

-> Most of the rotation energy 1052 erg is used to climb up the gravitational potential well of a massive star and the resultant SNR possesses the rest of the energy ESNR ~ 1051 erg.

16

1e+49

1e+50

1e+51

1e+52

0.01 1 100 10000 1e+06 1e+08 1e+10 1e+12

52�

52�

51�

50�

49� 52�-2� 0� 2� 4� 6� 8� 10� 12�

Time after explosion, log t [sec]

Ene

rgy,

log

E [e

rg]

Gravitational energy, -Eg

Internal energy, Ei

Kinetic energy, Ek

Energy injection from magnetar Erot ~ 1052 erg

ESNR ~ 1051 erg

11. Time evolution of energy

rESNR

Ebind

Einject

~ 1052 + 1051 + 1051 - 5×1051 ~ 1051 erg

• ESNR ~ Erot + Eν,heating + Enuc + Ebind

Page 17: Evolution of magnetar-powered supernovae · 2016-07-27 · Magnetar by magnetic dipole radiation CSM ISM 106 cm 108 cm 1010 cm 5 pc y 10-24 g/cm3 M~40M stellar envelope 5. Set up

• We perform 1D hydrodynamical simulations to investigate the relation between energy of magnetars at their birth Erot and energy of supernova remnants associated with magnetars ESNR.

• Most of the rotation energy is used to climb up the gravitational potential well of a massive star and the resultant supernova remnant possesses the rest of the energy ESNR ~ 1051 erg.

• We should carry out simulations including nuclear reactions and feedback to hydrodynamics.

12. Summary

17