EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 ›...

82
EVALUATION OF SURGICAL OUTCOMES IN CRANIOSYNOSTOSIS Quantitative assessments in metopic and unicoronal synostosis Giovanni Maltese Department of Plastic Surgery Institute of Surgical Sciences at the Sahlgrenska Academy University of Gothenburg Gothenburg, Sweden Göteborg 2013

Transcript of EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 ›...

Page 1: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS  

 

   Quantitative  assessments  in  metopic  and  unicoronal  synostosis  

 Giovanni  Maltese  

Department of Plastic Surgery Institute of Surgical Sciences at the Sahlgrenska Academy

University of Gothenburg Gothenburg, Sweden

 

Göteborg  2013  

Page 2: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*
Page 3: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

Evaluation  of  surgical  outcomes  in  craniosynostosis  Quantitative  assessments  in  metopic  and  unicoronal  synostosis  ©  2013  Giovanni  Maltese  e-­‐mail  [email protected]    http://hdl.handle.net/2077/31999    ISBN 978-91-628-8644-8  Printed  is  Sweden  by  INEKO

Page 4: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*
Page 5: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

    To  my  wife  Kristina,  and  to  our  

wonderful  daughters  Clara  and  Lia  Isabella  

 

To  the  memory  of  my  father  Gianni  

 

Page 6: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*
Page 7: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

   

Page 8: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

   

  “Considerate  la  vostra  semenza:  fatti  non  foste  a  viver  come  bruti,  ma  per  seguir  virtute  e  canoscenza”    “Call  to  mind  from  whence  ye  sprang:  'Ye  were  not  form'd  to  live  the  life  of  brutes,  'But  virtue  to  pursue  and  knowledge  high.”    Dante  Alighieri  (1265-­‐1321)  La  Divina  Commedia  –  Inferno:  C  XXVI,  v  112-­‐120        He  uses  statistics  as  a  drunken  man  uses  lampposts  —  for  support  rather  than  illumination  Andrew  Lang  (1844-­‐1912)  

 

   

Page 9: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*
Page 10: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

7    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

TABLE  OF  CONTENTS  

1.  ABSTRACT  .............................................................................  9  

2.  ABBREVIATIONS  ..................................................................  10  

3.  LIST  OF  PUBLICATIONS    .......................................................  11  

4.  INTRODUCTION    ..................................................................  12  

4.1      Craniofacial  surgery  in  Göteborg  ............................................................................  12  

5.  GROWTH  OF  THE  NORMAL  SKULL    .......................................  15  

5.1      Embryology    ....................................................................................................................  15  

5.2      Normal  sutural  biology    ..............................................................................................  16  

5.3      Cranial  growth    ..............................................................................................................  17    

6.  CRANIOSYNOSTOSIS    ...........................................................  19  

6.1      Etiopathogenesis    ..........................................................................................................  19  

6.2      Genetic  considerations    ..............................................................................................  19  

6.3      Types  of  craniosynostosis    .........................................................................................  21  

6.4      Epidemiology    .................................................................................................................  22  

6.5      Morphogenesis    .............................................................................................................  23  

6.6      The  craniofacial  syndromes    .....................................................................................  25  

6.7      Functional  aspects    .......................................................................................................  26  

6.8      Neurodevelopment    ......................................................................................................  27  

Page 11: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

8    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

7.  TREATMENT  ........................................................................  29  

7.1      A  brief  historical  perspective    ..................................................................................  29  

7.2      Treatment  of  the  three  most  common  SSC  in  Göteborg    ..................................  31  

8.  EVALUATION  OF  SURGICAL  RESULTS    ...................................  33  

9.  AIMS  OF  THE  THESIS    ...........................................................  37  

10.  MATERIAL  &  METHODS    ....................................................  38  

10.1      Patients  &  Controls    ...................................................................................................  38  

10.2      Operative  procedures    ..............................................................................................  40  

10.3      Measurements  and  Computer  programs    ...........................................................  42  

10.4      Statistical  methods    ....................................................................................................  47  

11.  RESULTS    ...........................................................................  48  

12.  DISCUSSION    .....................................................................  56  

13.  CONCLUSIONS    ..................................................................  65  

14.  ACKNOWLEDGEMENTS  ......................................................  66  

15.  REFERENCES    .....................................................................  67    

   

Page 12: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

9    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

ABSTRACT  

 Background:   A   continuous   and   objective   evaluation   of   surgical  outcomes  must  be  an  integrated  part  of  the  technical  development.  The  present   thesis   has   the   ambition   to   innovate   the   evaluation   of   surgical  results   allowing   systematic   and   objective   assessment   of   the   surgical  procedures  used  for  metopic  and  unicoronal  craniosynostosis  (UCS).  Material  &  methods:  The  effect  of  springs  on  hypotelorism  was  studied  by  measuring  the  bony  interorbital  distance  (BIOD)  and  the  axes  of  the  orbits  on  cephalograms.  Thereafter,  the  pre-­‐  and  post-­‐operative  BIOD  in  patients  operated  with  spring-­‐assisted  surgery   (SAS)  was  compared   to  that   of   patients   operated   using   the   traditional   cranioplasty   and   to   a  control   group.   The   effect   on   forehead   symmetry   of   a   fronto-­‐orbital  advancement  (FOA)  and  of  a  more  radical   forehead  substitution  with  a  calvarial   bone   graft   in   UCS  was  measured.   To   be   able   to   evaluate   our  results,   a   computer   tool   that   measured   frontal   symmetry   was  developed.   Intracranial  volume   in  metopic   synostosis,  before  and  after  surgery  was  measured  by  using  a  newly  developed  computer   tool   that  measured  volume  in  CT  scans.    Results:  1.  Springs  had  effect  on  hypotelorism  and  orbital  shape.  2.  SAS  before   6   months   of   age   normalized   BIOD,   a   result   previously   not  achieved.   3.   The   computer   was   simple   to   use   and   gave   a   precise  assessment   of   forehead   symmetry.   4.   Forehead   reconstruction   with   a  calvarial  bone  graft  gives  better  forehead  symmetry  than  FOA  in  UCS.  5.  Total   intracranial   volume   in   metopic   synostosis   was   normal   before  surgery   but   significantly   lower   than   in   controls   at   3   years   of   age.   The  ratio   frontal-­‐to-­‐total   volume   before   surgery   was   low   in   patients   with  metopic   synostosis.   The   ratio   was   improved,   but   not   normalized,   by  surgery.    Conclusion:    Systematic  evaluation  with  quantitative  measurements  of  surgical   results   is   important   to   be   able   to   objectively   assess   outcomes  and  to  develop  and  compare  surgical  techniques.        

Page 13: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

10    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

ABBREVIATIONS  

ASC       Absolute  symmetry  change  =  SRpreop  –  SRpostop  BG       Bone  grafting  group  (study  II  &  V)  BIOD       Bony  interorbital  distance  FGF       Fibroblast  growth  factor  FGFR       Fibroblast  growth  factor  receptor  FIV       Frontal  intracranial  volume  FOA       Fronto-­‐orbital  advancement  FOA       Fronto-­‐orbital  axes  (only  in  paper  I)  MA       Mismatch  area  MSX2       Muscle  segment  homeobox  2  OMIM       Online  mendelian  inheritance  in  man  database  

RSC       Relative  symmetry  change  = !"!"#$!!!"!"#$"!!"!"#$!

 

S       Spring  group  (study  II  &  IV)  SA   skull  area  outlined  by  the  frontal  contour  and  a  line  

between  end-­‐point  and  point  p  SAS   Spring-­‐assisted  surgery  SD   Standard  deviation  

SR   Symmetry  ratio  = !"!"∙ 1000      

SSC         Single  suture  craniosynostosis  TGF-­‐β       Transforming  growth  factor  β  TIV       Total  intracranial  volume  USC       Unicoronal  synostosis  VAS       Visual  analogue  scale  ZADS       Zide-­‐Alpert  deformity  scale    

Page 14: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

11    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

LIST  OF  PUBLICATIONS  

 This  thesis  is  based  on  the  following  studies,  which  will  be  referred  in  the  text  by  their  roman  numerals  (I-­‐V)    

I. Spring-­‐Assisted  Correction  of  Hypotelorism  in  Metopic  Synostosis.    Giovanni  Maltese,  Peter  Tarnow,  Claes  Lauritzen.    Plast  Reconstr  Surg.  2007  Mar;119(3):977-­‐84.  

II. Correction  of  hypotelorism  in  isolated  metopic  synostosis.  Giovanni  Maltese,  Peter  Tarnow,  Robert  Tovetjärn,  Lars  Kölby.  Submitted  

III. A  novel  quantitative  image-­‐based  method  for  evaluating  cranial  symmetry  and  its  usefulness  in  patients  undergoing  surgery  for  unicoronal  synostosis.  Peter  Bernhardt,  Annelie  Lindström,  Giovanni  Maltese,  Peter  Tarnow,  Jakob  H.  Lagerlöf,  Lars  Kölby.  J  Craniofac  Surg.  2013  Jan;24(1):166-­‐9.  

IV. New  objective  measurement  of  forehead  symmetry  in  unicoronal  craniosynostosis  –  comparison  between  fronto-­‐orbital  advancement  and  forehead  remodeling  with  a  bone  graft.  Giovanni  Maltese,  Peter  Tarnow,  Annelie  Lindström,  Jakob  H.  Lagerlöf,  Peter  Bernhardt,  Lars  Kölby.  Submitted  

V. Intracranial  volume  before  and  after  surgical  treatment  for  isolated  metopic  synostosis.  Giovanni  Maltese,  Peter  Tarnow,  Robert  Tovetjärn,  Lars  Kölby.  Submitted    

Page 15: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

12    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

INTRODUCTION  

In   1957   a   young  man   consulted  Dr.   Paul   Tessier   at   the  Hôpital  

Foch  in  Paris  because  of  his  facial  deformity.  Dr.  Tessier´s  description  of  the   patient   was   as   having   “prodigious   exorbitism   with   a   monstrous  aspect”.   That   patient   suffered   from   a   rare   craniofacial   syndrome  described  by  the  French  neurologist  Octave  Crouzon  in  1912  (Figure  1)  (Crouzon   1912).   Dr.   Tessier   performed   a   Le   Fort   III   mid-­‐face  advancement  via  multiple   facial   incisions,   correcting   in  one   stage  both  the  orbital  and  the  maxillary  deformity.  Sir  Harold  Gillies  had  reported  in   1950   his   experience   with   such   a  procedure,   but   recommended   his  colleagues   «never   do   it»   because   of   the  massive   relapse   (Jones   1991).   In   the  same  period,  Dr.  Tessier   also   introduced  the   trans-­‐cranial   approach   to   the  ethmoids   for   the   correction   of  hypertelorism.   This   innovative   use   of   a  combined   intra-­‐   and   extracranial  approach   represented   the   dawn   of  modern   craniofacial   surgery.   The   use   of  bone   grafting,   the   self-­‐retaining  osteotomies   and   the   fixation   devices  pioneered  by  Dr.  Tessier  were  something  absolutely   new,   but   became   standard  procedures  in  surgery  for  craniosynostosis.  

 4.1 Craniofacial  surgery  in  Göteborg  

The   chief   of   the   Plastic   Surgery   Department   of   Göteborg,   Dr.  Bengt   Johansson,   early   understood   the   importance   of   creating   a  

Figure  1  Patient  with  Crouzon  syndrome,  original  photo  from  Dr.  Crouzon’s  paper.

 

Page 16: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

13    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

dedicated   craniofacial   center,   where   different   specialists   could   treat  patients  affected  by  these  rare  conditions.  In  1972  he  invited  Dr.  Tessier  to   Göteborg   to   perform   the   first   transcranial   correction   of   orbital  hyperthelorism   together   with   the   Swedish   team   at   Sahlgrenska  University   Hospital   (Lauritzen   and   Tarnow   2003).   The   newborn  craniofacial   unit   of   Göteborg   has   since   then   developed   extensively.  Gradually,  the  unit  became  the  principal  referral  center  for  craniofacial  surgery   in  Scandinavia.  The   increasing  number  of  patients  allowed   the  team  to  gain  a  considerable  experience  and  to  continuously  improve  its  treatment  strategies.        

Surgical   techniques   and   timing   for   surgery   have   been   changing  over  the  years.  Practically,  every  procedure  used  in  the  early  days  of  the  unit   has   been  modified   or   replaced   by   new  ones.   For   example,   the   pi-­‐

cranioplasty   as  described   by   Jane  (Jane,   Edgerton   et   al.  1978)   has   been  supplemented   with  radial   osteotomies   of  the   frontal   bone   and  out-­‐fracturing   of   the  parietal   bones   to  eliminate   the   residual  frontal   bossing   and   to  give   a   natural   coronal  

profile  (Figure  2).  Similarly,  the  dynamic  cranioplasty  for  brachycephaly  described   in   1996   (Lauritzen,   Friede   et   al.   1996)     derived   from   the  floating  forehead  technique  described  by  Marchac  (Marchac  and  Renier  1979).   The   introduction   of   springs   in   1998   represented   an   important  further  development  for  the  unit.  Spring-­‐assisted  surgery  (SAS)  has,  for  example,   changed   the   treatment   of   sagittal   synostosis   in   younger  children,   replacing   more   extensive   procedures   (Guimaraes-­‐Ferreira,  Gewalli  et  al.  2003).    

Figure  2  The  pi-­‐cranioplasty  as  described  by  Jane  (left).  The  modified  pi-­‐cranioplasty  (right).

Page 17: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

14    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

 A  continuous  and  objective  evaluation  of  surgical  outcomes  must  

be  an   integrated  part  of   the   technical  development.  The  present   thesis  has  the  ambition  to  innovate  the  evaluation  of  surgical  results  allowing  systematic  and  objective  evaluation  of  the  surgical  procedures  used  for  metopic  and  unicoronal  craniosynostosis  (UCS).  

Page 18: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

15    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

GROWTH  OF  THE  NORMAL  SKULL  

5.1 Embryology  

Before   the  closure  of   the  neural   folds,  between  the  24th  and   the  27th  day  of  intrauterine  life,  the  neural  plate  shows  an  enlargement  with  irregularities   at   its   rostral   end,   corresponding   to   the   brain.   The  meninges   develop   concomitantly.   First   a   thick   layer   of   mesenchyme  surrounding   the   primitive   brain   is   visible   (primitive  meninx).   Already  by   the   41st   day,   the   primitive  meninx   can   be   divided   in   two   different  layers:   the   pachymeninges,   or   dura   mater,   and   the   leptomeninges  comprising   the   arachnoid   and   the   pia   mater.   At   this   stage,   a  skeletogeneous   mesenchyme   layer   is   identifiable   between   the   dural  limiting  layer  and  the  subcutaneous  tissue.  By  the  57th  day,  cartilage  and  intramembranous   bone   are   formed   within   the   skeletogeneous   layer  (Muller  and  O'Rahilly  2003).    

The  skull  can  already  at  this  stage  be  divided  in  a  neurocranium,  i.e.   the  part   surrounding   the  brain,  and  a  viscerocranium,   i.e.   the   facial  skeleton.  The  neurocranium  can  be  further  divided  in  a  chondrocranium  and  a  membranous  neurocranium.  The  chondrocranium  corresponds  to  the   cranial   base   and   is   formed   by   endochondral   ossification,   i.e.   via   a  cartilaginous   intermediate   template.   The   membranous   neurocranium  corresponds   to   the   cranial   vault   or   calvaria   and   is   formed   by  intramembranous   ossification,   i.e.   via   the   direct   osteogenic  differentiation  of  mesenchymal  cell  condensations.  

The   fetal   cranial   vault   consists   mainly   of   five   flat   bones   -­‐   two  frontal,  two  parietal  and  one  occipital  -­‐  with  a  minor  contribution  to  the  lateral  walls   from   the   squamous   part   of   the   temporal   bones   and   from  the  greater  wings  of  the  sphenoid  bone.  Development  of  the  skull  from  a  number  of  separate  bones  enables  growth  to  take  place  at  the  margins  

Page 19: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

16    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

of   the  bones   for   as   long   as   the   skull   is   required   to  expand   around   the  growing  brain  (Morriss-­‐Kay  and  Wilkie  2005).    5.2 Normal  sutural  biology  

The  cranial  sutures  are  articulations  in  which  contiguous  margins  of  bone  approximate  each  other  and  are  united  by  a  thin  layer  of  fibrous  tissue  (Figure  3)  (Cohen  2000).      

   It   has   been   shown   in   a   murine   model   that   the   frontal   bones  

originate   from   the   neural   crest,   while   the   parietal   and   interparietal  bones  originate  from  the  mesoderm.  Small  tongues  of  neural  crest  tissue  grow  between   the   two  parietal   bones   and   also   between   these   and   the  interparietal  bones.  Hence   the  coronal  suture  represents   the  boundary  between   mesoderm   and   neural   crest,   while   the   sagittal   and   the  lambdoid   sutures   originate   from   such   a   boundary   and   then   develop  within   mesoderm-­‐derived   tissue   (Figure   4).   The   posterior   frontal  suture,   analogous   to   the   human   metopic   suture,   is   the   only   calvarial  suture  that  does  not  initiate  at  a  neural  crest-­‐mesoderm  interface,  being  bounded  by  two  neural  cell-­‐derived  osteogenic  fronts  (Jiang,  Iseki  et  al.  2002;  Morriss-­‐Kay  and  Wilkie  2005).    

 

Figure  3  Infant  skull  with  open  sutures  

Page 20: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

17    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

 Normal   suture   fusion   is   dependent   on   a   complex   signalling  

cascade.   Tissue   interactions   between   dura   mater   and   cranial   sutures  play  a  main  role  in  this  process.  These  interactions  match  the  growth  of  the  cranial  bone  plates  to  the  expansion  of  the  growing  brain  (Levi,  Wan  et  al.  2012).  In  vitro  and  in  vivo  murine  models  show  that  the  subjacent  dura  mater   is   directly   responsible   for   the   fate   of   the   overlying   cranial  suture,   likely   through   paracrine   mechanisms   (Bradley,   Levine   et   al.  1997;  Warren,  Greenwald  et  al.  2001;  Heller,  Gabbay  et  al.  2007).      

5.3 Cranial  growth  

At  birth,  suture  mobility  allows  passage  through  the  birth  canal.  During   fetal   and   post-­‐natal   life   the   cranial   sutures   represent   growth  sites   where   bone   is   continuously   deposited   while   the   opposite   bones  separate   (Enlow   2000).   This   pattern   of   growth   movement   is   called  displacement,  and  it  is  accompanied  by  another  pattern  of  growth  called  remodelling   or   appositional   growth,   which   is   based   on   bone  reabsorption   by   the   osteoclasts   at   the   inner   surface   of   the   skull   and  bone  deposition  by  the  osteoblasts  on  the  outer  surface.  Physiologically,  this   last   mechanism   is   important   for   adapting   the   curvature   of   the  calvarial  bone  to  the  changing  circumference  of  the  brain  and  it  is  active  even  after  fusion  of  the  cranial  sutures.  Fusion  does  not  normally  occur  until  a   later  stage   in   life,  with   the  exception  of   the  metopic  suture   that  physiologically  fuses  during  the  first  year  of  life  (Vu,  Panchal  et  al.  2001;  Weinzweig,  Kirschner  et   al.   2003;  Fearon  2012),   this  being  probably  a  

Figure   4   Graphic  representation   of   the   neural  crest   (blue)   or   mesodermal  (red)   origin   of   the   cranial  vault  in  a  murine  model  

 

Page 21: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

18    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

consequence   of   its   different   embryological   origin   (Morriss-­‐Kay   and  Wilkie  2005).    

 Figure  5  Increase  of  intracranial  volume  during  the  first  6  years  of  life  

 The   curve   of   cranial   growth   after   birth   is   not   linear.   Growth   is  

most  rapid  during  the  first  months  of  life  (Figure  5).  Intracranial  volume  doubles  during  the  first  9  months  and  triples  during  the  first  72  months  of  life  (Kamdar,  Gomez  et  al.  2009).  By  the  age  of  five  years,  intracranial  volume   normally   reaches   90%   of   that   observed   at   15   years   of   age  (Sgouros,  Hockley  et  al.  1999).              

Page 22: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

19    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

CRANIOSYNOSTOSIS  

 The   term   craniosynostosis   indicates   the   premature,   pathologic,  

partial   or   complete,   fusion  of   one   or  more   of   the   cranial   vault   sutures  (Levi,  Wan  et  al.  2012).      6.1 Etiopathogenesis  

Virchow  proposed   in  1851   the  concept   that   the  calvarial   suture  itself  was   the  primary   locus  of   the  abnormality,   i.e.   the  affected  suture  had   the   intrinsic   capacity   to   fuse   or   stay   patent   independently   of  interactions   with   the   underlying   dura   mater   (Virchow   1851).   Later,  Moss   (Moss   1959)   hypothesized   that   an   abnormal   cranial   base  would  transmit   pathological   tension   to   the   cranial   vault   via   the   dura   mater,  with   the   craniosynostosis   being   the   final   effect   of   this   mechanism.  Modern  research  has  demonstrated  the  role  of  the  dura  mater,  which  is  interacting   with   the   sutures   via   soluble   growth   factors   in   a   paracrine  fashion  (Levine,  Bradley  et  al.  1998).  Altered  signalling  mechanisms  due  to  genetic  mutations  may  therefore  be  the  origin  in  the  pathogenesis  of  craniosynostosis.      

6.2 Genetic  considerations  

MSX2  A  mutation   in   the   gene   encoding   muscle   segment   homeobox   2  

(MSX2)   was   the   first   to   be   associated   to   an   autosomal   dominant  craniosynostosis,   the   Boston-­‐type   craniosynostosis   (Jabs,   Muller   et   al.  1993).   This   is   a   very   rare   condition,   confined   to   a   single   large   family,  characterized  by  variable  craniosynostosis  without  midfacial  hypoplasia  or   hand   and   foot   anomalies   (Warman,   Mulliken   et   al.   1993).   MSX2  encodes   a   homeobox-­‐containing   transcription   factor   that   is   thought   to  

Page 23: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

20    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

preserve   the   suture   space   by   maintaining   preosteoblastic   cells   of   the  osteogenic  front  into  an  undifferentiated  form.  Its  mutation  results  in  an  enhanced   degradation,   which   leads   to   suture   fusion   by   increasing   the  pool  of  osteogenic  cells  (Yoon,  Cho  et  al.  2008).    FGFR    

Mutations  of   the  genes  encoding   for  one  of   the  members  of   the  fibroblast   growth   factor   receptor   (FGFR)   family  have  been   found   in   at  least   8   different   craniofacial   dysostoses   (the   FGFR   related   craniofacial  syndromes).  The  FGFRs  are  a  family  of  transmembrane  tyrosine  kinase  receptors  that  are  vital  in  many  areas  of  skeletal  development.  They  are  formed  by  an  extracellular  immunoglobulin-­‐like  ligand  binding  domain,  a   trans-­‐membrane   domain   and   two   intracellular   sub-­‐domains.   The  extracellular   domain   has   specific   binding   properties   to   the   FGF   in  presence   of   heparin   sulphate   proteoglycan.   Most   of   the   known  mutations   involved   in   cranyosynostosis   syndromes   are   missense  mutations   that   lead   to   a   gain-­‐of-­‐receptor   function,   i.e.   allowing   the  receptor   to   be   activated   independently   of   its   specific   ligand   or  enhancing   the   receptor/ligand   affinity.   The   exact   mechanisms   with  which   mutations   in   the   genes   encoding   for   the   FGFR   result   in   a  premature   suture   closure   are   still   unclear.   Development   of   cranial  sutures  relies  on  cross-­‐talk  between  the  different  FGFRs,  resulting   in  a  delicate   balance   between   osteogenic   cell   proliferation   and  differentiation.   Altered   signalling   by   a   mutated   FGFR   may   result   in  decreased   osteoblast   differentiation   and   apoptosis   with   consequent  suture   closure   (Bonaventure  and  El  Ghouzzi  2003;  Chim,  Manjila  et   al.  2011).    TGF-­‐β  

Transforming  growth  factor-­‐β  (TGF-­‐β)  consists  of  a  super-­‐family  of  growths  factors  that  have  been  found  to  be  relevant  in  cranial  suture  fusion.   In   particular,   it   has   been   proved   in   murine   models   that   the  altered   balance   between   TGF-­‐β1   and   TGF-­‐β3,   which   mediate   dural  

Page 24: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

21    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

stabilizing   signals   to   the   suture,   and   TGF-­‐β2,   which   promote  osteogenesis,  may   be   directly   responsible   for   the   premature   fusion   of  cranial   sutures   (Roth,   Gold   et   al.   1997;   Roth,   Longaker   et   al.   1997).    TWIST-­‐1       Saethre-­‐Chotzen   is   the   only   known   craniofacial   syndrome  associated   with   mutation   of   the   gene   encoding   for   the   TWIST-­‐1  transcription   factor.   TWIST-­‐1   controls   osteogenic   differentiation   in  mesenchymal   cells   by   modulating   FGFR2,   leading   to   activation   of  signalling   pathways   involved   in   osteoblast   differentiation.   Its   genetic  mutation  results  in  the  expansion  of  osteogenic  cells  producing  collagen  and  in  premature  suture  fusion  (Miraoui  and  Marie  2010).    6.3 Types  of  craniosynostosis  

Craniosynostosis   can   be   defined   according   to   several   criteria.  They   can   be   divided   into   syndromic   and   non-­‐syndromic   or   isolated,  depending  on   the  presence  of  associated  defects  of   the  morphogenesis  or  of  a  defined  genetic  mutation.  

Isolated  synostosis  can  be  classified  according  to  the  anatomical  location   of   the   synostosis   or   to   the   clinical   appearance   of   the   skull,  which   is  usually   strictly  dependent  on   the   location  of   the   fused   suture  (Table  1).  

 

Single suture synostosis Clinical nomenclature Sagittal Scaphocepahly Metopic Trigonocephaly Unicoronal Anterior synostotic plagiocephaly Unilambdoid Posterior synostotic plagiocephaly Multiple suture synostosis Bicoronal Brachycephaly Bilambdoid Posterior brachycephaly Combined synostosis Variable

Table  1  Craniosynostosis  and  the  associated  clinical  nomenclature  

Page 25: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

22    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Craniosynsotosis   can  also  be  divided   in  primary  and  secondary.  In   secondary   synostosis,   a   pathological   condition   responsible   for   the  synostosis  can  be  identified.    Craniosynostosis  can  be  simple,   i.e.  when  only  one  suture   is  synostotic,  or  complex  or  multiple,  i.e.  when  two  or  more  sutures  are  synostosed.  In  current  medical  literature  the  term  single  suture  craniosynostosis  (SSC)  is  usually  preferred  to  the  term  simple  synostosis  and  it  will  be  the  one  used  in  this  thesis.    6.4 Epidemiology    

Most   cases   of   SSC   are   sporadic,   with   a   varying   frequency   of  positive   familial   history   depending   on   the   suture   involved.  Craniosynostosis  are  relatively  rare  conditions,  occurring  approximately  in  one  in  2000  -­‐  2500  live  births.  Sagittal  synostosis  is  the  most  common  form  of  SSC  with  an  incidence  of  1  in  5.000  live  births  (45%  of  all  SSC),  followed  by  unilateral   coronal   synostosis   (1   in  11.000   live  births)   and  metopic   synostosis   (1   in   15.000   live   births).   Lambdoid   synostosis   is   a  more  rare  condition  with  an  incidence  of  1  in  200.000  live  births  (2-­‐3%  of   all   SSC)   (Cohen  2000;  Lee,  Hutson  et   al.   2012).  Recent   studies   from  several   craniofacial   centers   have   reported   a   significantly   higher  frequency   of   metopic   synostosis   and   a   change   in   the   spectrum   of  distribution  of  the  craniosynostosis  sub-­‐types  (Cohen  2000;  Selber,  Reid  et   al.   2008;   van   der   Meulen,   van   der   Hulst   et   al.   2009).   Metopic  synostosis   nowadays   accounts   for   about   25%   of   all   cases,   being   the  second  most  common  SSC.  The  estimated  rate  of  nonsyndromic  uni-­‐  and  bicoronal   synostosis   has   been  more   ambiguous,   varying   from   17%   to  24%.   This   is   probably   a   consequence   of   the   increasing   use   of   genetic  investigations  that  allows  for  a  more  precise  classification  of  these  cases.  The   same   consideration   might   be   valid   for   all   non-­‐syndromic  multisutural   synostosis,  with   rates   that   varies   from  7%   to   13%   in   the  latest  studies  (Di  Rocco,  Arnaud  et  al.  2009;  Kolar  2011;  Lee,  Hutson  et  al.  2012).  

Page 26: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

23    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

6.5 Morphogenesis  

Skull   growth   occurs   perpendicularly   to   the   cranial   sutures.  Premature  fusion  prevents  separation  of  the  opposing  bones  and  causes  restriction   of   the   growth   vector   perpendicular   to   the   affected   suture.  This   is  accompanied  by  compensatory  growth  both   in  the  other  patent  sutures   and   by   remodelling   (Morriss-­‐Kay   and   Wilkie   2005).   This  mechanism   leads   to   typical   cranial   shapes   that   are   characteristic   for  each  cranial  suture  synostosis  (Figure  6).    

 A   first   description   of   cranial   deformation   secondary   to  

craniosynostosis   was   proposed   by   Virchow   (Virchow   1851),   who  postulated  that  cranial  growth  is  restricted  in  the  plane  perpendicular  to  the  affected  suture  and   is  enhanced   in  a  plane  parallel   to   it   (Virchow’s  law).   Delashaw   et   al.   (Delashaw,   Persing   et   al.   1991)   described   4  principles   of   compensatory   growth   that   better   explain   the   clinical  morphological  findings  in  isolated  suture  craniosynostosis:  

1. cranial   vault   bones   that   are   prematurely   fused   act   as   a   single  bone  plate  with  decreased  growth  potential  

2. asymmetrical  bone  deposition  occurs  at  perimeter  sutures  with  increased  bone  deposition  directed  away  from  the  bone  plate  

3. sutures  adjacent  to  the  synostotic  suture  compensate  in  growth  more  than  sutures  not  adjacent  

4. non-­‐perimeter   sutures   representing   the   continuation   of   a  synostotic  suture  undergo  enhanced  symmetric  bone  deposition  

 Sagittal  synostosis  

Secondary  to  the  synostosis  of  the  sagittal  suture,  the  skull  grows  in  the  anteroposterior  direction  while  growth  is  inhibited  transversally.  This  head  shape  has  been  termed  scaphocephaly.  A  frontal  bossing  and  a  pointed   occipital   area   are   usually   present   at   a   variable   degree.   Some  degree   of   hypertelorism   has   also   been   reported   (Guimaraes-­‐Ferreira,  Gewalli  et  al.  2006).  

Page 27: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

24    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

 Metopic  synostosis     Metopic   synostosis   is   associated  with   a   triangular   shape   of   the  head  when  seen  from  the  bird’s  view,  hence  the  term  trigonocephaly.  A  midline   forehead   ridge   is   typically   present,   together  with   a   bilaterally  recessed   supraorbital   bandeau   and   a   compensatory   increase   of   the  parietal   width.   Hypotelorism   is   present   at   variable   degree   and  accompanied  by  a  typical  deformation  of  the  orbital  shape  (the  so-­‐called  egg-­‐shaped  or  teardrop  orbits).            Unicoronal  synostosis  

Infants   affected   by   UCS   typically   present   with   forehead  asymmetry.   The   forehead   is   flat   on   the   affected   side   while  contralaterally   a   compensatory   bossing   is   present.   Furthermore   these  patients   present   upwards   displacement   of   the   ipsilateral   orbital   roof  with   a   recessed   supraorbital   rim   and   depressed   contralateral  supraorbital  rim.  The  root  of   the  nose   is  deviated  towards  the  affected  side  and,   in  more  extreme  cases,  malar  hypoplasia  with  rotation  of   the  midface  and  chin  towards  the  affected  side  is  also  present  (Marsh,  Gado  et  al.  1986;  Bruneteau  and  Mulliken  1992).      

Figure   6  Three-­‐dimensional  CT   reconstructions   of   a  normal   skull   (center),   and  the   most   common   form   of  SSC  below.  From  left  to  right:  bicoronal,   left-­‐sided   UCS,  sagittal,  right  sided  lambdoid  and  metopic  synostosis.  

 

Page 28: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

25    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Bicoronal  synostosis     In   bicoronal   synostosis,   the   antero-­‐posterior   diameter   of   the  skull   is   reduced   (brachicephaly   comes   from   the   greek   βραχύς,   short).  The   occiput   is   flat,   the   biparietal   diameter   is   wide   and   the   height   is  elevated  (Persing  2008).    Lambdoid  synostosis  

Unilateral   lambdoid   synostosis   is   associated   with   flattening   of  the   parietooccipital   area   and   a   prominence   of   the   mastoid   on   the  affected  side.  Contralaterally,  a  parietooccipital  bulge  is  present  (Huang,  Gruss  et  al.  1996).  This   condition   is  usually  called  posterior   synostotic  plagiocephaly.   The   bilateral   lambdoid   synostosis   it   characterized   by  symmetrical  occipital  flattening.  

   

6.6 The  craniofacial  syndromes  

A   continuously   growing   number   of   syndromes   involving  craniosynostosis   are   delineated.   At   present,   by   entering   the   word  craniosynostosis   on   the   search   engine   of   the   Online   Mendelian  Inheritance   in  Man   (OMIM)   database   of   the   Johns  Hopkins   University,  159   entries   are   encountered.   Among   the   most   commonly   recognized  craniofacial   dysostosis   are   Crouzon,   Apert,   Pfeiffer,   Saethre-­‐Chotzen,  Jackson-­‐Weiss,   and   Muenke   syndrome.   Most   cases   of   syndromic  craniosynostosis   occur   sporadically   and   exhibit   autosomal   dominant  pattern   of   inheritance.   In   craniofacial   syndromes,   the   cranial   vault  usually  presents  with  bicoronal  synostosis,  isolated  or  in  combination  to  other   cranial   suture   synostosis.   The   cranial   base   and   the   upper  viscerocranium   are   variably   involved,   with   consequent   midface  hypoplasia.  Each  of  these  syndromes  is  associated  with  a  specific  set  of  accompanying   anomalies   and   with   precise   genetic   mutations   as  illustrated  in  Table  2  

 

Page 29: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

26    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

6.7 Functional  aspects  

The  cranial  volume  doubles  during  the  first  nine  months  of  life  to  cope  with  the  rapid  brain  growth.  Cranial  sutures  play  a  crucial  role   in  this   process.   In   presence   of   craniosynostosis,   brain   growth   may   be  restricted   since   cranial   expansion   is   potentially   altered,   but  compensatory  mechanisms  such  as  enhanced  growth  at  the  other  patent  sutures   and   remodelling   reduce   the   problem   (Delashaw,   Persing   et   al.  1991;   Morriss-­‐Kay   and   Wilkie   2005).   A   significant   disparity   between  brain  growth  and  cranial  capacity  may  thus  lead  to  elevated  intracranial  pressure.   Although   this   is   more   likely   to   happen   in   the   presence   of  multiple  suture  craniosynostosis  (Renier,  Sainte-­‐Rose  et  al.  1982),  high  intracranial  pressure  in  SSC  has  been  described.  In  the  syndromic  cases,  intracranial   venous   congestion,   hydrocephalus   and   upper   airway  obstruction   might   also   contribute   to   raised   intracranial   pressure  (Tamburrini,  Caldarelli  et  al.  2005).    

Syndrome Type of associated craniosynostosis

Main associated clinical features

Mutated gene

Crouzon Bicoronal Midface hypoplasia FGFR2

Crouzon AN Bicoronal Midface hypoplasia, Acantosis nigricans

FGFR3

Pfeiffer Bicoronal Midface hypoplasia, 3 clinical subtypes

FGFR1/ FGFR2

Jackson-Weiss Bicoronal Broad and medially deviated great toes

FGFR1/ FGFR2

Muenke Uni- or bicoronal Hearing impairment FGFR3

Apert Bicoronal Midface hypoplasia, syndactyly of hands and feet

FGFR2

Saethre-Chotzen Bicoronal Eylid ptosis, low hairline TWIST1/FGFR2

Table  2  Most  common  syndromic  forms  of  craniosynostosis  and  the  mutated  gene      

Page 30: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

27    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

In  most  cases,  the  rise  in  intracranial  pressure  is  not  a  constant,  but   rather   an   intermittent   event,   for   example   during   sleep.   Usually  clinical  symptoms  are  subtle  or  absent  in  SSC  (Renier,  Sainte-­‐Rose  et  al.  1982;   Thompson,   Malcolm   et   al.   1995;   Tamburrini,   Caldarelli   et   al.  2005).  On  the  contrary,  high  intracranial  pressure  is  a  common  finding  in   multiple   suture   synostosis   (Camfield   2000).   Typical   symptoms  include   headache,   emesis,   visual   disturbance   and   decreased   mental  status.      6.8 Neurodevelopment  

SSC   have   been   classically   considered   as   morphologic   disorders  rarely  associated  with  functional  morbidity  (Anderson  and  Geiger  1965;  Shillito  and  Matson  1968).  A  study  from  1993  showed  that  in  presence  of  non-­‐syndromic  synostosis  93%  of  the  patients  had  IQ-­‐scores  ranging  from  borderline  retardation  to  very  superior,  following  the  distribution  of   the   normal   population.   Neither   the   severity   of   the   deformation   nor  the   presence   of   corrective   surgery   seemed   related   to   the   mental  outcomes   (Kapp-­‐Simon,   Figueroa   et   al.   1993).     However,   in   1998   the  same  authors  reported  that  mental  development  in  children  affected  by  SSC   ranged   within   normal   limits   in   infancy,   but   the   rate   of   mental  disorder   increased   significantly   with   age,   and   almost   half   of   these  children   had   some   form   of   learning   difficulties   at   school   age   (Kapp-­‐Simon   1998).   A   higher   rate   of   cognitive   and   behavioral   abnormalities  more   easily   detectable   at   school   age   was   also   reported   in   a   study  focusing  on  a  population  of  children  affected  by  metopic  synostosis.  The  authors   found   a   five   to   six   folds   increase   of   ADHD   compared   to   the  normal  population,  with  almost  50%  of  the  children  in  the  study  being  affected  (Sidoti,  Marsh  et  al.  1996).  Other  studies  have  presented  similar  figures   (Becker,   Petersen   et   al.   2005;   Kapp-­‐Simon,   Speltz   et   al.   2007;  Speltz,   Kapp-­‐Simon   et   al.   2007;   Da   Costa,   Anderson   et   al.   2012;   Starr,  Collett  et  al.  2012).          

Page 31: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

28    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Three   hypotheses   attempt   to   explain   the   association   between  craniosynostosis   and   neurodevelopmental   impairment.     A   first  hypothesis   suggests   that   prolonged   elevation   of   intracranial   pressure  caused   by   the   synostosis,   and   the   subsequent   hypovascularity,   could  lead  to  hypoplasia  of  the  brain  tissue  (Arnaud,  Renier  et  al.  1995;  Cohen  and  Persing  1998).  A  second  hypothesis  is  based  on  magnetic  resonance  images  showing  brain  deformations  secondary   to   the  craniosynostosis.  Aldridge  in  2002  reported  dysmorphic  cortical  and  sub-­‐cortical  features  in  patients  with  sagittal  and  metopic  synostosis   (Aldridge,  Marsh  et  al.  2002).  This  hypothesis  was   recently   further  developed  suggesting   that  the  growth  of  cortical  and  subcortical   tissues  would  be   locally  affected  by   the   restriction   imposed   by   the   synostosis   and   hence   redirected  towards   unaffected   areas   (Speltz,   Kapp-­‐Simon   et   al.   2004).   A   third  hypothesis   postulates   that   both   the   craniosynostosis   and   the   possible  brain  anomalies  could  be  the  expression  of  underlying  neuropathology,  likely  originating  early  in  the  embryologic  development  (Kjaer  1995).    

However   it   remains  unclear   if   the  premature   fusion  of  a  cranial  suture   is   a   cause,   or   rather   a   correlate,   of   the   associated  neurodevelopmental   impairment.   Most   importantly,   there   is   lack   of  evidence   that   the   severity   of   the  malformation,   or   corrective   surgery,  influence   the   risk   for   neuro-­‐developmental   problems   (Kapp-­‐Simon,  Speltz  et  al.  2007).                          

Page 32: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

29    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

TREATMENT  

 7.1 A  brief  historical  perspective  

The   first   scientific   reports   of   surgical   treatment   of  craniosynostosis   came   at   the   end   of   the   19th   century.   Dr.   Odilon  Lannelongue,  Professor  at  the  Faculté  de  Médecine  de  Paris  and  Dr.  L.  C.  Lane,   Professor   of   surgery   at   the   Cooper   Medical   College   of   San  Francisco   reported,   almost   at   the   same   time,   their   experiences   with  suturectomy   in   children   affected   by   craniosynostosis   (Lannelongue  1890;   Lane   1892).   The   goal   of   their   operations   was   to   improve  microcephaly,  an  idea  based  on  the  assumption  that  the  surgical  release  of  the  synostosis  would  allow  a  more  physiological  skull  growth.    

These  first  surgical  attempts  to  correct  cranial  deformities  were  subject   to   hard   criticism   by   Abraham   Jacobi,   the   father   of   American  Pediatrics,   who   stated   «No   ocean   of   soap   and   water   will   clean   those  hands.  No  power  of  corrosive  sublimate  will  disinfect  the  souls»  (Jacobi  1894)  .    

Despite   this   scepticism,   craniotomies   were   still   performed,  advocating   the   importance   of   preventing   functional   sequelae   (Faber  1924).   Ingraham   popularized   the   use   of   bilateral   parasagittal  craniectomies  for  release  of  sagittal  synostosis  (Ingraham,  Alexander  et  al.   1948).   The   fast   re-­‐ossification   rate   encouraged   the   scientific  community   of   the   time   to   explore   more   effective   methods.   Various  interposition  materials  or  chemical  compounds  in  the  craniectomy  lines  were  used  in  the  attempt  to  prevent  the  early  refusion  of  the  craniotomy  (Simmons  and  Peyton  1947;  Ingraham,  Alexander  et  al.  1948;  Anderson  and   Johnson   1956).   Jane   proposed   a  more   complex   osteotomy   design,  resembling  the  shape  of  the  greek  letter  pi  (π),  to  correct  scaphocephaly  (Jane,   Edgerton   et   al.   1978).   Modifications   of   that   pi-­‐cranioplasty   are  still   used   today   in   many   craniofacial   centers   including   our   own.  

Page 33: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

30    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Andersson   in   the   early   sixties   presented   an   extensive   approach   with  remodelling   of   the   frontal   region   to   correct   trigonocepaly   (Anderson,  Gwinn  et  al.  1962).    

In  the  late  sixties,  more  radical  reconstructions  were  developed.  Dr.   Tessier´s   work   (Tessier   1967;   Tessier,   Guiot   et   al.   1967;   Tessier,  Guiot   et   al.   1969)   dramatically   changed   the   approach   to  craniosynostosis   and   to   their   related   facial   anomalies.   The   first  description  of  the  “floating  forehead”  cranioplasty  for  brachycephaly  by  Marchac   and   Renier   (Marchac   and   Renier   1979),   in   which   the   frontal  bone   flap   was   let   free   to   adapt   to   the   underlying   brain   and   dura  advancement,  further  developed  the  principle  of  dynamic  cranioplasties  (Lauritzen,  Friede  et  al.  1996;  Gewalli,  da  Silva  Guimaraes-­‐Ferreira  et  al.  2001)   introduced   by   Jane.   The   advantages   of   this   approach   were   to  produce   both   immediate   and   progressive   cranial   reshaping   and   to  virtually  eliminate  any  extradural  dead  space  after  the  cranioplasty.  

Further   innovations   were   represented   by   the   application   of  distraction  osteogenesis  principles  and  the  introduction  of  SAS.  Codivilla  (Codivilla  1905)  and  Ilizarov  (Ilizarov  1980)  pioneered  and  popularized  distraction  osteogenesis  as  a  safe  and  effective  method  for   lengthening  of   long   bones.   The   first   experimental   mandibular   distraction  osteogenesis  in  a  canine  model  was  reported  by  Snyder  (Snyder,  Levine  et   al.   1973).   McCarthy   (McCarthy,   Schreiber   et   al.   1992)   and   Molina  (Molina   and   Ortiz   Monasterio   1995)   reported   the   first   cases   of  distraction  osteogenesis   of   the  human  mandible   in   the  western  world.  Evolutions   of   these   techniques   today   are   part   of   the   craniofacial  surgeon´s   armamentarium   in   the   treatment   of   mandibular,   midfacial  and  cranial  defects  (Chin  and  Toth  1997;  Yu,  Fearon  et  al.  2004;  Fearon  2008;  Derderian  and  Bartlett  2012;  Derderian,  Bastidas  et  al.  2012).    

Skull   expansion   through   a   spring   placed   across   a   suturectomy  line   in   rabbits  was   reported  by  Persing   in   1986   (Persing,   Babler   et   al.  1986).   Lauritzen   in   1998   reported   the   first   cases   of   SAS   on   children  affected   by   craniosynostosis   (Lauritzen,   Sugawara   et   al.   1998).   The  result  encouraged  the  use  of  springs  in  many  different  conditions.    

Page 34: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

31    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Nowadays,   application   of   springs   after   suturectomy   is   a  widely  used  method  to  treat  sagittal  synostosis  (Guimaraes-­‐Ferreira,  Gewalli  et  al.   2003;   David,   Plikaitis   et   al.   2010;   Taylor   and   Maugans   2011;   van  Veelen   and   Mathijssen   2012).   SAS   had   the   advantage   of   avoiding  extensive  bone  remodelling  and  the  creation  of  dead  space  between  the  dura   mater   and   the   inner   surface   of   the   skull   bones.   SAS   has   been  proven   to   be   effective   also   in   the   treatment   of   bicoronal   synostosis  (Tovetjarn,   Maltese   et   al.   2012),   in   multiple   suture   synostosis  (Tuncbilek,  Kaykcoglu  et  al.  2012),  in  posterior  skull  expansion  (Arnaud,  Marchac   et   al.   2012)   and   in   the   treatment   of   secondary   sagittal  synostosis  (Davis  and  Lauritzen  2008).      7.2 Treatment  of  the  three  most  common  single  suture  

craniosynostosis  in  Göteborg  

Sagittal  synostosis  is  the  SSC  most  commonly  seen  and  treated  at  the  Craniofacial  unit  of  Göteborg.    

Patients  with  sagittal  synostosis  were  previously  operated  with  a  modified   pi-­‐cranioplasty.   The   promising   results   of   springs   encouraged  the   use   of   the   same  principles   to   treat   scaphocephaly.   Today,   patients  who   present   before   6   months   of   age   are   operated   using   SAS   while  patients  older  than  6  months  are  treated  using  the  pi-­‐cranioplasty.  

The  effectiveness  of  SAS  has  been  compared  to   the  modified  pi-­‐cranioplasty  both  in  terms  of  morphological  outcomes  and  with  regards  to   procedure   safety   (Guimaraes-­‐Ferreira,   Gewalli   et   al.   2003).   It   has  been   concluded   even   in   the   long   term   that   both   techniques   achieve   a  good   postoperative   correction,   with   the   cranial   index   being   slightly  closer   to   normal   after   pi-­‐cranioplasty   than   after   SAS.   SAS   is   a  significantly  less  invasive  procedure  in  terms  of  operative  time,  need  of  blood  substitution  and  postoperative  hospital   stay   (Windh,  Davis  et  al.  2008).  

Page 35: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

32    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Metopic   synostosis   is   the   second  most   common   SSC   treated   at  our   unit.   The   surgical   technique   for   treatment   of   this   malformation  consisted   of   a   fronto-­‐obital   remodelling   combined   with   a   bone   graft  inserted   in   the   middle   of   the   supra-­‐orbital   complex   to   correct   the  hypotelorism  (Lauritzen  1995).  The  postoperative  outcomes  have  been  evaluated  by  cephalometric  analysis  and  subjective  criteria  in  a  group  of  15  patients  (Kocabalkan,  Owman-­‐Moll  et  al.  2000).  The  technique  could  achieve   a   good   improvement   in   terms   of   forehead   contour   and  bitemporal   width,   but   more   than   half   of   the   patients   still   had   some  degree   of   hypotelorism.  When   springs   were   introduced   and   regularly  used  for  sagittal  synostosis  at  our  unit,  it  was  thought  that  SAS  could  be  used  also  to  correct  trigonocephaly.  In  the  first  three  patients,  a  simple  suturectomy  followed  by  the  insertion  of  a  spring  in  the  glabellar  region  was  used.   In   the   following  14  patients,  barrel-­‐stave  osteotomies  of   the  frontal   bone  were   also  performed   to   improve   the   frontal   contour.   Still  unsatisfactory   results   in   terms   of   frontal   contour   led   to   the   currently  used   technique,   i.e.   a   more   complex   fronto-­‐orbital   remodelling  combined  with  a  spring  aimed  solely  at  correcting  the  hypotelorism.  The  traditional  cranioplasty  with  bone  grafting  is  still  used  for  patients  older  than  six  months.    

The   third   most   common   SSC   in   our   practice   is   UCS.   This   was  treated  using  a  fronto-­‐orbital  advancement  (FOA)  procedure  until  1997.  The   high   re-­‐operation   rate   for   correction   of   residual   forehead  asymmetry   led   to   implementation   of   a   new   technique,   in   which   the  forehead   and   the   supra-­‐orbital   bandeau   were   substituted   with   a  calvarial  bone  graft.        

Page 36: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

33    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

EVALUATION  OF  SURGICAL  RESULTS  

   An  appropriate  and  objective  evaluation  of  surgical  outcomes   is  

necessary   to   assess   the   ability   of   a   procedure   to   correct   the  morphological  features  of  craniosynostosis  and  to  support  the  choice  of  a  specific  technique.    

In   craniofacial   surgery,   numerous   methods   to   evaluate  postoperative   outcomes   have   been   described.   These   methods   can   be  divided   in  methods  based  on  subjective  evaluation  and  methods  based  on  objective  evaluation.    

Methods   based   on   subjective   evaluations   are   popular   in  craniofacial   surgery.   One   of   the   first   such   methods   reported   was   the  Zide-­‐Alpert  deformity  scale  (ZADS)  (McCarthy,  Epstein  et  al.  1984).  This  method   was   based   on   the   quantitative   evaluation,   by   a   panel   of  observers,  of  craniofacial  disfigurement  on  a   five-­‐point  scale  (from  1  =  normal  to  5  =  gross  deformity).  Other  methods,  particularly  those  used  in   cleft   surgery,   are   instead   based   on   the   judgment   of   postoperative  appearance   on   a   Visual   Analogue   Scale   (VAS)   by   a   panel   (Al-­‐Omari,  Millett   et   al.   2005).   The   Whitaker   scoring   method   to   evaluate  postoperative  results  is  a  commonly  used  system  (Whitaker,  Bartlett  et  al.   1987;   Selber,   Brooks   et   al.   2008).   It   is   based   on   the   need   for  secondary   surgery,   assigning   the   patients   to   one   of   four   different  categories:  category  I,  no  revision;  category  II,  soft-­‐tissue  or  lesser  bone-­‐contouring   revisions   are   desirable;   category   III,   major   alternative  osteotomies   or   bone   grafting   procedures   are   needed;   category   IV,  patients  who  required  craniofacial  procedures  duplicating  or  exceeding  in  extent  the  original  surgery.    These  methods   have   the   advantages   of   focusing   on   important   aspects  such   as   the   patients   overall   appearance   or   the   need   for   further  reoperations,  but  more  objective   indicators  are  needed   for  assessment  

Page 37: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

34    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

of  the  impact  of  surgical  treatment.  Additionally,  subjective  evaluations  suffer   from   observer   bias.   For   example,   the   panels   can   be   variously  composed:  the  treating  surgeons,  health  care  professionals  and  laymen.  The   rater’s   characteristics  may   influence   the  way   facial   appearance   is  judged.  The  surgeon  evaluating  the  need  for  additional  surgery  might  be  inclined   to   under-­‐   or   over-­‐estimate   residual   deformity   depending   on  personal   attitude.   Modifications   of   subjective   methods,   based   on   the  division  of   the   face   in  sub-­‐units  and  the  submission  of  a   list  of  specific  questions  to  the  raters  and  reduction  of  the  scoring  to  a  binary  system  (yes/no),  have  shown  a  good  level  of  “objectivity”  (Versnel,  Mulder  et  al.  2007).  Still,   totally  objective  studies  might  be  a  difficult  goal  to  achieve  with   analysis   predisposed   to   subjective   bias   (Anand,   Campion   et   al.  2013).        

Direct   anthropometry   is   virtually   an   ideal   method   to   evaluate  pre-­‐   and   postoperative   facial   deformity.   Direct   anthropometric  measurements,  e.g.  calculation  of  the  cranial  index,  have  been  the  most  commonly   employed   methods   to   quantitatively   assess   results.  Anthropometry   has   the   advantage   of   avoiding   the   use   of   ionizing  radiation.   Furthermore,   a   large   database   of   normal   values   for  comparative  analysis  is  available  (Farkas  1994).  The  principal  drawback  with   direct   anthropometry   is   that   it   requires   a   very   experienced  examiner  to  accurately  locate  the  anatomical  landmarks.  Furthermore,  it  requires  a  compliant  subject,  so  it  might  be  difficult  to  perform  on  small  children  (Oh,  Wong  et  al.  2008).    

Indirect   anthropometry   based   on   three-­‐dimensional  photography   is   a   promising   tool   to   evaluate   body   deformity   and  postoperative   results   (Oh,  Wong   et   al.   2008;  Heike,   Cunningham   et   al.  2009;   Wilbrand,   Szczukowski   et   al.   2012).   It   has   been   successfully  employed  in  breast  surgery  (Losken,  Fishman  et  al.  2005;  Losken,  Seify  et   al.   2005)   and   many   reports   on   its   use   in   evaluating   craniofacial  deformity   have   been   presented   (Oh,   Wong   et   al.   2008;   Heike,  Cunningham  et  al.  2009;  Wilbrand,  Szczukowski  et  al.  2012).  Compared  

Page 38: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

35    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

to  direct  anthropometry,  digital  three-­‐dimensional  photogrammetry  has  the   advantage   of   an   extremely   rapid   acquisition   time.   Since   the  measurements  are  performed  after  the  data  acquisition,  this  method  do  not   require   the   patients   to   keep   still   for   prolonged   periods,   which   is  particularly   advantageous   when   working   with   small   children.     In  addition,  the  images  are  available  for  repeated  measurements.    Other  non-­‐ionizing  image-­‐based  methods,  like  laser  scanning,  providing  a   detailed   visual   evaluation   of   the   superficial   morphological   features,  give   very   interesting   results   (Plank,   Giavedoni   et   al.   2006;   Djordjevic,  Toma  et  al.  2011).  Such  techniques  evaluate  the  aesthetic  aspect  of  soft  tissue   instead   of   focusing   exclusively   on   the   bone   tissue.   With   laser-­‐based   as   well   as   with   photography-­‐based   imaging   systems,   landmark  localization  might   be   difficult   as   in   the   case   of   landmarks   covered   by  hair  or  defined  in  reference  to  the  underlying  bone.  A  specific  problem  with   laser-­‐based   systems   is   capture   speed;   even   the   newest   systems  cannot  effectively  perform  in  less  than  a  second,  which  can  be  too  long  for   small   children   (Weinberg   and   Kolar   2005).   In   addition   these  methods  have  the  disadvantage  of  requiring  expensive  equipments  and  software.   Most   importantly,   they   have   been   available   for   a   relatively  short  amount  of   time,  so  neither  are   large  databases  available,  nor   is  a  retrospective  study  possible.            

Cephalograms   were   among   the   first   techniques   developed   to  study  craniofacial  growth  and  to  evaluate  surgical  outcomes  (Broadbent  1931;   Brodie   1941).   While   avoiding   exposure   to   ionizing   radiation   is  preferable   in   young   children,   the   precision,   availability,   and   temporal  comparability   of   current   CT-­‐based   measurement   techniques   are  superior  to  alternative  methods.  CT  images  offer  a  detailed  description  of   cranial   morphology   and   thickness.   CT   images   are   not   only   an  important   tool   for   evaluation   of   preoperative   deformity   and  postoperative   outcome,   but   also   allow   planning   of   surgical   treatment.  Measurement  of  anatomical  landmarks  using  CT  scans  has  been  widely  validated  (Waitzman,  Posnick  et  al.  1992;  Richtsmeier,  Paik  et  al.  1995)  

Page 39: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

36    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

and  large  databases  exist  providing  normative  data  (Abbott,  Netherway  et  al.  2000;  Kamdar,  Gomez  et  al.  2009;  Marcus,  Domeshek  et  al.  2009;  Tilotta,  Richard  et  al.  2009).  

In  our  practice,   the   routine  use  of  CT  scanning   for  preoperative  and   follow-­‐up   evaluation   has   replaced   cephalometry,   which   was  regularly  used  until  2004.      

This  thesis  is  based  on  measurements  performed  on  radiographic  images   (cephalograms   and   computed   tomography).   In   the   first   two  studies   a   distance,   i.e.   a   one-­‐dimensional   physical   quantity   was  measured  and  compared.  In  the  third  and  fourth  studies,  the  symmetry  of  an  area,  i.e.  a  two  dimensional  quantity,  representing  the  symmetry  of  the  two  forehead  halves,  was  calculated.  In  the  fifth  study,  a  volume,  i.e.  a  three-­‐dimensional  quantity  was  measured.      

Page 40: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

37    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

AIMS  OF  THE  THESIS  

 The   aim   of   the   present   thesis   was   essentially   to   innovate   the  

evaluation  of  surgical  outcomes  after  correction  of  metopic  and  UCS  and  to  compare  the  new  techniques  to  the  old  ones.  Specifically,   the  aim  of  each  study  was  

 • to   describe,   in   detail,   the   spring-­‐assisted   correction   of  

hypotelorism   in   metopic   synostosis   and   its   effects   on   bony  interorbital  distance  and  on  the  orbital  shape  (study  I)    

• to  compare  postoperative  bony  interorbital  distance  of  patients  affected  by  metopic  synostosis  and  treated  with  SAS  to  that  of  patients  treated  with  traditional  cranioplasty  and  to  an  adequate  control  group  (study  II)  

• to  develop  an  image-­‐based  method  to  evaluate  frontal  symmetry  in   patients   affected   by   UCS   in   a   simple   and   reproducible   way  (study  III)  

•  to   use   the   newly   developed  method   in   Study   III   to   objectively  evaluate   pre-­‐   and   postoperative   frontal   symmetry   in   patients  affected  by  UCS  treated  with  a  full  forehead  replacement  or  with  a  fronto-­‐orbital  advancement  procedure  (study  IV)  

• to  use  a  newly  developed  image-­‐based  computer  tool  to  measure  intracranial   volume   changes   of   patients   affected   by   metopic  synostosis  treated  with  SAS  or  with  traditional  cranioplasty  and  to  compare  the  two  groups  to  a  control  group  (study  V).    

Page 41: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

38    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

MATERIAL  &  METHODS  

 10.1 Patients  &  Controls  

Study   I   is   a   retrospective   study   on   the   first   23   consecutive  patients  operated  for  metopic  synostosis  using  SAS  (1999-­‐2004).  At  the  time,  CT  examinations  were  not  regularly  performed,  and  patients  were  evaluated   with   cephalograms,   which   were   taken   routinely   before  surgery,  at  1  month  and  at  6  months  follow-­‐up  as  well  as  at  three  years  follow-­‐up.   BIOD   from   an   already   published   report   were   used   as  normative   data,   while   measurements   of   the   fronto-­‐orbital   axes   in   a  group   of   10   children   born   with   cleft   lip   and/or   palate   were   used   as  controls.        

In  study  II  &  V,  patients  operated  for  isolated  metopic  synostosis  and   examined   by   computed   tomography   at   Sahlgrenska   University  Hospital   between   2002   and   2009   were   identified   using   The   Göteborg  Craniofacial  Registry.  Seventy-­‐one  patients  were  included  in  study  II:  24  in  the  bone  grafting  group  (BG)  and  47  in  the  spring  group  (S).    In  study  V,  60  patients  were  included  (23  in  the  BG  group  and  37  in  the  S  group).  The  higher  number  of  patients   in   study   II   is  due   to   the   fact   that   it  was  undertaken   after   study   V.   Furthermore,   some   CT   examinations   were  unsuitable  for  calculating  the  intracranial  volume  because  they  were  cut  before  the  vertex,  but  could  still  be  used  to  determine  the  BIOD.  In  both  studies,  patients  with  complete  preoperative  and  follow-­‐up  (at  3  years  of  age)   CT   examinations   were   used   for   the   comparison   between  preoperative  and  follow-­‐up  values  while  patients  with  only  preoperative  or  follow-­‐up  CT  examinations  were  included  in  the  comparison  between  patients  and  the  control  groups.    

Two   gender-­‐   and   age-­‐matched   controls   per   case,   both  preoperatively  and  at  follow-­‐up,  were  identified  from  children  who  had  

Page 42: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

39    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

undergone   CT   examinations   for   neurological   or   post-­‐traumatic  evaluation.   Children   presenting   conditions   that   could   alter   the   cranial  shape   or   volume,   for   example   hydrocephalus   or   large   intracranial  masses,  were  excluded.  This  resulted  in  a  total  of  236  controls  for  study  I  and  198  controls  for  study  V.         In  study  III,  15  patients  operated  on   for  UCS  and  with  complete  preoperative  and  follow-­‐up  examinations  (7  CTs  and  8  cephalometries)  were   used   to   test   the   computer   program.   They   were   chosen  independently  of  the  operation  method  used.        

In   study   IV,   88   consecutive   patients   operated   for   UCS   between  1979  and  2008  were   included.  Of   these,  46  were  operated  with   fronto-­‐orbital  advancement  (FOA,  group  1)  and  42  were  operated  with  forehead  replacement   with   a   calvarial   bone   graft   (group   2).   Complete  radiographic  examinations  had  been  performed  on  a  total  of  66  patients  (54  documented  by   cephalograms  and  12  by  CT   scans;   33  FOA  and  33  frontal  replacement  with  a  bone  graft).  CT  scans  were  available  only  for  patients  in  group  2  (from  2004).  

     

Page 43: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

40    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

10.2 Operative  procedures  

In   study   I,   three   different   operative   methods   had   been   used  (Figure   7).   In   the   first   three   patients,   a   simple   suturectomy   was  performed   from   the   anterior   fontanel   down   through   the   nasofrontal  suture.   In   the   subsequent   14   patients,   together  with   the   craniotomy   a  series   of   barrel-­‐stave   of   osteotomies   was   performed   bilaterally   in   the  frontal   bone   to   improve   the   forehead   convexity.   Finally,   in   the   last   6  patients,   the   superior   part   of   the   frontal   bone  was   removed  while   the  supraorbital   bandeau   was   divided   sagittally   and   advanced   laterally  through   a   temporal   tongue-­‐in-­‐groove.   The   frontal   bone  was   thereafter  split   sagittally   and   repositioned   leaving   a   central   bony   defect.   In   each  case,   a   steel   spring   was   inserted   in   the   glabellar   region   through   two  burr-­‐holes  at  5  mm  from  the  midline.    

     

In  study  II  and  V,  the  spring  technique  (S  group)  corresponds  to  the   last   technique  described  in  study  I.  The  cranioplasty  with  the  bone  grafting   is   described   as   follows:   the   superior   two   thirds   of   the   frontal  bone   were   removed   after   dissection   of   the   dura   mater   through   burr  holes.   The   supraorbital   bandeau   was   removed   at   the   level   of   the  nasofrontal   suture   and   divided   along   the   fused  metopic   suture   in   two  halves.  An  osteotomy  was  performed  sagittally  through  the  nasofrontal  

Figure  7  The  three  different  operation  methods  described  in  study  I.  From  left  to  right:  Suturectomy,  suturectomy  and  barrel-­‐stave  osteotomies,  fronto-­‐orbital  remodelling.  In  each  case,  a  spring  was  inserted  in  the  glabellar  region.  

Page 44: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

41    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

suture   for   about  5-­‐10  mm   in  order   to  partially   separate   the  nasal   and  ethmoidal   bones.   A   calvarial   bone   graft   15   mm   wide   was   interposed  between   the   two   halves   of   the   supraorbital   bandeau   and   the   whole  complex  was   repositioned   and   rigidly   fixated.   The   calvarial   bone   graft  was  v-­‐shaped   in   its  caudal  aspect,  and   the  v  was   inserted  between   the  cranial   aspect   of   the   nasal   bone   in   order   to   maintain   the   gap.   A   few  barrel-­‐stave   osteotomies   were   carried   out   on   the   parietal   bones  perpendicularly   to   the   coronary   sutures,   followed   by   out-­‐fracturing   of  the   staves.   Finally,   the   remaining   frontal   bone   fragments   were   rigidly  fixated  (Figure  8).    

Figure   8   The   surgical   techniques   described   in   study   II   and   V.   Left:   fronto-­‐orbital  remodelling  and  bone  grafting.  Right:  fronto-­‐orbital  remodelling  and  spring  insertion.  

 The  operative  procedures  utilized  in  study  IV  were:  

 Fronto-­‐orbital  advancement    A   fronto-­‐orbital   bandeau   was   advanced   on   the   affected   side   with   a  tongue-­‐in-­‐groove  osteotomy  in  the  temporal  area,  while   it  was  pivoted  on   the   contralateral   side.   The   superior   part   of   the   frontal   bone   was  rotated  180°,  repositioned  and  fixated.    Calvarial  bone  graft    In   the   search   for  a   suitable  bone  graft   to   serve  as  a  new   forehead,   the  whole  cranial  vault  was  inspected  with  a  lead  template  curved  according  to   the  desired  shape.  The  bone  graft  was  designed  so   that   it  allowed  a  

Page 45: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

42    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

raise   of   the   supraorbital   rim   on   the   non-­‐affected   side   (Figure   9).   The  frontal   bone   and   the   supraorbital   bar   were   removed   en   bloc   and  switched   with   the   bone   graft.   The   orbital   rim   and   roof   on   the   non-­‐affected   side   were   osteotomized,   lifted   and   adapted   to   the   new  supraorbital   bar.   The   orbital   rim   on   the   affected   side   was   moved  anteriorly   by   osteotomy   and   green-­‐stick   fracturing.   Osteotomies   and  green-­‐stick   fracturing  of   the  most   superior  part  of   the   frontal  bone  on  the  affected  side  were  sometimes  performed  to  allow  better  fixation  to  the  bone  graft  (Figure  9).      

       10.3 Measurements  and  Computer  programs  

    In  study  I,  the  BIOD  was  measured  as  the  distance  between  the  left  and   the   right   cephalometric   landmark   orbitale   medius   (orm),   i.e.   the  point   on   the   medial   orbital   margin   closest   to   the   midline   in  cephalometry   images   (Friede,   Alberius   et   al.   1990).   Trigonocephaly   is  typically   associated  with   a   particular   orbital   shape.   Anderson   in   1962  described   the   radiographic   shape   of   the   orbits   in   trigonocephaly   as  “being  oval  or  egg-­‐shaped  with   the   longer  axis  extending  upwards  and  medially  from  the  inferolateral  orbital  margins”  (Anderson,  Gwinn  et  al.  1962).  It  was  noted  that  after  SAS  orbital  shape  normalized.  To  be  able  

Figure  9  The  surgical  techniques  described   in   study   IV.   Left:  fronto-­‐orbital   advancement.  Right:   substitution   of   the   frontal  region   en   bloc   with   a   calvarial  bone   graft   and   elevation   of   the  superior  orbital  rim.  

 

Page 46: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

43    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

to  express  the  effect  of  springs  on  orbital  shape,  a  novel  parameter  was  introduced,   the   frontoorbital   axis   angle.   The   fronto-­‐orbital   axis   was  defined   as   the   long   axis   passing   through   the   highest   point   of   the  superior   rim   and   the   lowest   point   of   the   inferior   orbital   rim.   The  frontoorbital   axes   angle   was   defined   as   the   angle   of   intersection  between   the   right   and   left   frontoorbital   axes,   and   it   was   assigned   as  positive  if  crossing  below  the  orbits  and  negative  if  above  (Figure  10).            

passing through the highest point of the supe-rior rim and the lowest point of the inferiororbital rim).

Present methods of treating trigonocephalyoften result in undercorrection of the hypotelor-ism and a lack of correction of the orbital shape.Implantable springs were developed at our unitand first reported in 1998,10 and have been ap-plied since to both syndromic and nonsyn-dromic craniosynostosis.11–13 These springs ap-pear to be powerful tools for correction ofhypotelorism. The present study was performedto analyze this new technique, using steel wiresprings in conjunction with an anterior cranio-plasty.

PATIENTS AND METHODSA retrospective study of 23 metopic synostosis

patients was undertaken. Patients were operatedon using the presented technique between 1999and 2004. This population represented 53.5 per-cent of the patients (n ! 43) affected by metopicsynostosis treated at our unit in the same period.The remaining 20 patients were considered to betoo old (i.e., their bone that was too rigid for thespring procedure), and were operated on bymeans of our previously reported statictechnique.14,15 The age range was 3 to 8 months(mean, 4.2 months), whereas the age of the pa-tients operated on with the classic techniqueranged from 7 to 48 months (mean, 17 months).Cephalograms were obtained immediately before

surgery. Then, a postoperative image was obtainedafter a mean period of 1.7 months, and a secondpostoperative image was obtained after 5 months.In due course, a last cephalogram was obtainedwhen the patients were 3 years old.

The bony interorbital distance (measured asthe distance between the closest points in the twomedial orbital walls) was analyzed on frontalcephalograms with values corrected for magnifi-cation. These measurements were obtained byone of the authors. Postoperative bony interor-bital distances were compared with normativedata, matched to the closest range of age, obtainedfrom children born with cleft lip–cleft palatewho were considered to have a normal skullmorphology.16

The frontoorbital axis was assessed on cepha-lograms as a straight line passing through thehighest point of the superior rim and the lowestpoint of the inferior orbital rim. The angle ofintersection between the right and left frontoor-bital axes was measured (and assigned as positiveif crossing below the orbits and negative if above)(Fig. 1).

These measurements were obtained by allthree authors independently, and a mean of thevalues was given for each patient, both preoper-atively and postoperatively. The mean was thencompared with the mean obtained with the samemethod from cephalograms of 10 children bornwith cleft lip–cleft palate (controls).

Fig. 1. Cephalograms with frontoorbital axis and frontoorbital axis angle of a trigonoce-phalic patient (left) and of a normal child (right). Note the almost vertical axis of the orbits inthe trigonocephalic patient.

Plastic and Reconstructive Surgery • March 2007

978

Figure  10  Fronto-­‐orbital  axes  in  a  child  with  metopic  synostosis  (left)  and  control  (right).  In  normal  children  the  axes  are  crossing  below  the  orbital  area,   whereas   in   children   with   metopic   synostosis   the   axes   cross  superiorly  to  the  orbits.  

Page 47: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

44    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

In   study   II,   the   BIOD   was   measured   on   CT   scans   as   described   by  Waitzman   (Waitzman,   Posnick   et   al.   1992).   The   program   used   to  perform   the  measurements  was  Centricity  Enterprise  Web  ©  2010  GE  Healthcare   IT,   Little   Chalfont,   UK.   The   axial   slice   that   exhibited   the  greatest  ocular  globe  diameter  was  selected  for  the  measurements,  and  the  anterior  bony   interorbital  distance  was  measured  using   the  digital  ruler   available   in   the   program   (Figure   11).   The   measurements   were  repeated  three  times  and  the  mean  was  used  for  statistical  analysis.  

In   study   III,   a   novel   computer   based   method   was   created   in  MATLAB   version   7.11.0.584   (2010b)(MathWorks   inc.,   MA,   USA).   The  program  compared  the  shape  of   the  two  halves  of   the   forehead  from  a  center-­‐point  O,   i.e.   the  point  where   the  bony  nasal   septum  projects  on  the   forehead,   to   the   open   coronal   suture   on   the   unaffected   side   (End-­‐point)   and  a   corresponding  point  on   the  affected   side   (p),   at   the   same  distance  from  O  as  the  end-­‐point.  The  program  calculated  the  difference  between  the  sides  by  finding  the  minimal  mismatch  area  (MA)  when  the  two   curves   representing   the   edges   of   the   halves   of   the   forehead  were  superimposed.  The  MA  was  related  to  the  skull  area  SA  (outlined  by  the  contour   of   the   forehead   and   a   line   between   the   open   coronary   suture  and   the   corresponding  point  on   the  affected   side)   to   create  a  measure  independent  of  growth  from  time  of  surgery  to  time  of  follow-­‐up  (Figure  

Figure   11  The  bony  interorbital  distance  calculated   in  an  axial  CT  slice.  Left:  child  with  metopic  synostosis.  Right:  control.  

Page 48: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

45    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

12).   The   symmetry   ratio   (SR)   was   defined   as  !" = !"!"∙ 1000 .   The  

Absolute  symmetry  change  (ASC)  was  defined  as  the  difference  between  the  preoperative  SR  and  the  postoperative  SR  (!"!"#$! − !"!"#$"!).    The  

relative   symmetry   change   (!"!)  was   defined   as  !"!"#$!!!"!"#$"!!"!"#$!

.  As  RSC  

approached  the  value  of  1,  it  indicated  a  very  successful  operation.  RSC  =  1  meant  perfect  symmetry.  A  negative  RSC   indicated   that   the   forehead  was  more  asymmetrical  after  surgery.  

 

 Figure   12   Cephalometry  of   a   child  with   left-­‐sided  UCS.   Left:   The   center-­‐point  O,   the  end-­‐point   and   the  point  p   are   shown.  The   SA  area   is   colored   in  blue.  Right.  The   two  curves  are  superimposed  and  the  MA  area  is  colored  in  white  

   The   program   was   tested   on   a   cylindrical   phantom   and   on   a  

symmetrical   elliptical   phantom   to   validate   its   ability   to   evaluate  symmetry.   Thereafter   it   was   tested   on   15   clinical   images   (8  cephalometries  and  7  CT).  

 In  study  IV,  The  MATLAB  tool  previously  described  was  used  to  

measure  the  SR  and  the  relative  symmetry  change  on  patients  operated  for   isolated   UCS   between   1979   and   2008.   A   comparison   was   made  between  the  two  different  operation  methods.  

Page 49: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

46    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

       In   study   V,   a   previously   described   MATLAB   tool   was   used   to  measure  the  total  intracranial  volume  (TIV)  and  the  frontal  intracranial  volume  (FIV),  i.e.  the  intracranial  volume  in  front  of  the  coronal  sutures,  as  well  as  the  FIV/TIV  ratio,  in  patients  operated  for  metopic  synostosis  (Figure  13).    

 Figure   13   Left:   3D   reconstruction   of   the   total   intracranial   volume.   Right:   3D  reconstruction  of  the  frontal  intracranial  volume,  i.e.  the  portion  of  intracranial  volume  anterior  to  the  coronal  suture.    

    The   program  performed   semiautomatic   segmentation   of   axial   CT  slices   and   used   functions   such   as   region   growing,   watershed   and  thresholding   to   allow   exclusion   of   bone   tissue   and   extra-­‐cranial   soft  tissues.   Intracranial   volume   was   then   calculated   by   the   Cavalieri’s  principle,  i.e.  as  the  sum  of  each  slice  area  multiplied  by  slice  thickness,  from  vertex  to  foramen  magnum  (Wikberg,  Bernhardt  et  al.  2012).              

Page 50: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

47    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

10.4 Statistical  methods  

In   study   I,   Student’s   independent   samples   t-­‐test   was   used   to  compare   the   pre-­‐   and   postoperative   BIOD   and   the   fronto-­‐orbital   axes  angle  in  the  metopic  synostosis  group  to  that  of  the  controls.  

 In   study   II   and   V,   Student’s   paired   sample   t-­‐test   was   used   to  

compare   preoperative   and   follow-­‐up   values   in   each   group   of   patients.  Student’s  independent  samples  t-­‐test  was  used  to  compare  preoperative  and   follow-­‐up   values   between   the  metopic   synostosis   groups   and   the  control   groups.   Student’s   independent   samples   t-­‐test  was   also   used   to  compare  the  values  at  follow-­‐up  between  the  BG  group  and  the  S  group.    The  relationship  between  age  at  surgery  and  values  at  follow-­‐up  within  each  group  was  investigated  using  Pearson  product-­‐moment  correlation  coefficient.         In  study  III,   for  each   image  the  relative  standard  deviations  and  the  mean  SR,  RSC  and  ASR  were  calculated.       In  study  IV,  Student’s  paired  sample  t-­‐test  was  used  to  compare  the   mean   pre-­‐   and   postoperative   values   from   patients   treated   with  either   technique.   Student’s   independent   samples   t-­‐test   was   used   to  compare   the   mean   RSC   of   patients   treated   with   the   FOA   to   that   of  patients  treated  with  forehead  remodelling.    

Pearsons  chi-­‐square  test  was  used  to  compare  reoperation  rates.  P-­‐values  <  0.05  were  considered  significant  in  all  studies.    Statistical   analysis   was   performed   using   SPSS   version   19.0.0   (IBM©  SPSS®  Statistics,  SPSS  Inc.  Chicago,  IL.)        

Page 51: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

48    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

RESULTS  

 Springs  have  the  ability  to  change  the  orbital  shape  in  metopic  synostosis  (study  I)  

     

The  mean  preoperative  frontoorbital  axis  angle  was  -­‐4  ±  14  (mean  ±  SD)  degrees,  while  it  was  +  48  ±  8  degrees  on  the  control  group  (p  <  0.001).  Postoperatively,  the  mean  frontoorbital  axes  angle  increased  to  +  28  ±11  degrees  (p  <  0.001)  (Figure  14).  The  results  of  the  statistical  analysis  were  not  previously  published.    Springs  correct  hypotelorism  in  metopic  synostosis  (study  I  &  II)      

The  mean  preoperative  BIOD  measured  on  posteroanterior  cephalograms  was  significantly  smaller  than  controls  (Table  3)  (p  <  0.001),  while  at  5  months  follow-­‐up  there  was  no  significant  difference  (p  >>  0.2).      

Figure  14  Frontoorbital  axes  in  a  patient  with  metopic  synostosis  before  and  during  treatment  with  SAS  

Page 52: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

49    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

 Preoperatively,  children  with  metopic  synostosis  have  significantly  smaller  BIOD  than  controls  (study  II).    

 Both   the   BG   group   and   the   S   group   had   a   significantly   smaller  

preoperative   anterior   bony   interorbital   distance   when   compared   to  their  respective  control  group  (Table  4)  (p<  0.001  in  both  cases).     PREOPERATIVE   N Age at CT, months Age at op, months Pre op biod, mm  

BG 19 9.0 ± 2.9 9.8 ± 2.5 14.7 ± 1.0

Controls p-value

38

8.8 ± 2.9

- 18.8 ± 1.4 < 0.001

S 30 4.2 ± 0.8 4.3 ± 0.9 13.8 ± 1.6

Controls p-value

60 3.7 ± 1.1 - 18.6 ± 1.4 < 0.001

 Table  4  Summary  of  the  preoperative  data  in  Study  II  (mean  ±  SD)     At   follow-­‐up   BIOD   was   significantly   improved   in   both   groups,   but   only  children  operated  with  SAS  reached  normal  values  (study  II).      

The  mean  BIOD   in   the   S   group   did   not   significantly   differ   from  the  control  group   (p  =  0.3),  while   the  mean  postoperative  BIOD   in   the  

Age range months BIOD, mean ± SD mm

Age range months BIOD, mean ± SD mm

Age range months BIOD, mean ± SD mm

Metopic     3 – 8

10.6 ± 1.4 4 – 9

15.7 ± 3.8 6 – 13

16.2 ± 3.8

Control 0 – 4 14.9 ± 1.4

5 – 8 16.0 ± 2.1

9 – 12 16.6 ± 2.2

Table  3  Upper  row:  mean  bony  interorbital  distance  in  children  affected  by  metopic  synostosis  before  treatment  (left),  1.5  months  after  surgery  (center)  and  5  months  after  surgery  (right).  Lower  row:  BIOD  in  controls  within  the  nearest  age  range      

Page 53: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

50    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

BG   group   was   significantly   smaller   when   compared   both   to   the  respective  control  group  and  to  the  S  group  (Table  5)  (p  <  0.001  in  both  cases).    

 

 

Table  5  Summary  of  the  postoperative  data  in  Study  II  (mean  ±  SD)  

The   BIOD   at   follow-­‐up   is   not   influenced   by   the   age   at   which   surgery   is  performed  (study  II).    

The   Pearson   product-­‐moment   correlation   coefficient   did   not  show  a  significant  correlation  between  the  variables  age  at  surgery  and  postoperative  BIOD  within  either  group   (p  =  0.1   for   the  BG  group  and  0.3  for  the  S  group).    

Three   patients  were   excluded   from   study   II   because   they  were  operated  at  three  years  of  age.  Their  preoperative  BIOD  were  16.6  mm  (36   months   of   age),   17.1   mm   (36   months   of   age)   and   17.4   mm   (34  months  of  age).    

The  presented  computer  tool  is  able  to  measure  forehead  symmetry  in  UCS  with  good  precision  (study  III).  

 For  every  run  on  the  cylindrical  or  on  the  elliptical  phantom  the  

program   calculated   the   SR   as   0,   i.e.   evaluated   the   images   as   perfectly  symmetrical.   In  measurements  performed   in  cephalometric   images   the  

FOLLOW-UP N Age at CT, months Post op BIOD, mm

BG 23 36.5 ± 1.2 17.6 ± 1.8

Controls p-value

46 36.6 ± 2.5 20.0 ± 1.1 < 0.001

S 46 37.1 ± 1.6 19.7 ± 2.9

Controls p-value

92 37.4 ± 3.5 20.2 ±1.3 = 0.3

Page 54: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

51    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

relative  standard  deviation  was  generally  higher  than  in  measurements  performed  in  CT  images  (Tables  6  and  7).  The  relative  SD  also  increases  when  SR  decreased,  either  as  a  results  of  a  relatively  little  improvement  of   surgery   or   as   a   consequence   of   a   small   pre-­‐operative   asymmetry  (Figure  15).  

   

             Table  6  Relative  Symmetry  Change,  RSC,  and  Absolute  Symmetry  Change,  ASC,  values  for  CT  images  

RSC SD (%) ASC SD (%)

8 0.82 3.83 36.11 10.48

9 0.85 3.74 39.22 9.00

10 0.90 4.63 25.37 9.99

11 -0.36 24.24 -10.54 20.74

12 0.94 1.38 73.94 5.32

13 0.79 3.85 34.54 7.00

14 0.95 2.15 54.01 7.33

15 0.84 5.39 22.65 14.42

 Table  7  Relative  symmetry  change,  RSC,  and  Absolute  symmetry  change,  ASC,  values  for  cephalometry

RSC SD (%) ASC SD (%)

1 0.56 2.41 18.03 2.68

2 0.90 0.37 53.81 1.51

3 0.99 0.38 57.84 1.06

4 0.75 1.34 32.51 1.84

5 0.98 0.26 48.59 0.33

6 0.93 0.36 63.40 0.64

7 0.75 1.48 16.29 2.72

Page 55: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

52    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

   Figure   15   The   relative   standard   deviation   was   higher   for   measurements   done   in  cephalometry   images   than   in   CT   images.   The   relative   standard   deviation   increased  when  SR  decreased.

 RSC  is  a  more  objective  estimator  of  the  postoperative  improvement.  

 A  more  successful  operation  was  represented  by  a  value  close  to  

one  in  RSC  and  a  high  value  in  ASC.  The  ASC  (=  SRpreop  -­‐  SRpostop)  is  strictly  dependent   on   the   degree   of   preoperative   symmetry,   while   RSC   (=  !"!"#!!"  !  !"!"#$!!"

!"!"#!!"  )   is   more   independent   and   hence   a   more   objective  

estimator  of  the  postoperative  improvement.        

The   substitution   of   the   frontal   region   in   UCS   results   in   a   better  postoperative   forehead   symmetry   than   a   fronto-­‐orbital   advancement  procedure  (study  IV).  

 Both   the   fronto-­‐orbital   advancement   and   the   forehead  

remodelling   significantly   reduced   the   SR   (p   <   0.001   in   both   cases).  

Page 56: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

53    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Forehead  remodelling  improved  RSC  significantly  more  than  FOA  (Table  8)  (mean  RSC  =  0.80  vs.  0.64,  p  =  0.02).  

   

Group 1 Group 2

n Mean SRPreop (± SD)

33

57.8 (± 21.6)

33

52.7 (±18.5)

Mean SRPostop(± SD) 15.9 (± 12.2) 9.4 (± 6.8)

Mean RSC (± SD) 0.64 (± 0.37) 0.8 (± 0.14)

 Table   8   The   preoperative   SR   values   were   identical   in   the   two   groups   of   patients.  Forehead  remodelling  (group  2)  improved  the  symmetry  significantly  more  than  FOA  (group  1) Intracranial   volume   in   children  with  metopic   synostosis   is   equivalent   to  intracranial   volume   in   normal   children,   but   it   is   differently   distributed  (study  V)      

Preoperatively,   the   mean   TIV   for   children   with   metopic  synostosis  was  not  significantly  different  to  that  of  the  control  groups  (p  =  0.7  with  95  percent  CI  -­‐0.18  –  0.09  L  for  the  BT  group;  p  =  1.0,  95    

 

n Age at CT, months

Age at op, months

TIV, L FIV, L Ratio FIV/TIV

BG 16 8.7 ± 3.3 9.0 ± 2.9 0.995 ± 0.137 0.103 ± 0.019 0.104 ± 0.013

Controls p-value

32 8.8 ± 3.1 - 1.015 ± 0.175 0.7

0.144 ± 0.032 < 0.001

0.142 ± 0.021 < 0.001

S 26 4.0 ± 0.8 4.2 ± 0.8 0.789 ± 0.070 0.076 ± 0.013 0.097 ± 0.012

Controls p-value

52 3.7 ± 1.0 - 0.790 ± 0.120 1.0

0.115 ± 0.024 < 0.001

0.146 ± 0.019 < 0.001

Table  9  Summary  of  preoperative  data  (mean  ±  SD)    

Page 57: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

54    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

percent  CI   -­‐0.04  –  0.04  L   for   the  S   group),  while   the  FIV  and   the   ratio  FIV/TIV  were  significantly   less  than  in  the  controls  (p  <  0.001  for  both  groups)  (Table  9).      Postoperatively,  the  distribution  of  intracranial  volume  is  more  similar  to  that  of  normal  children  (study  V).  

 

      Paired-­‐samples   t-­‐test   showed   that  TIV  and  FIV  were   significantly  greater  at  follow-­‐up  in  both  groups  (p  <  0.001  in  all  cases).  The  FIV/TIV  ratio   was   improved   in   both   groups   (p   =   0.058   for   the   BG   group,   p   <  0.001  for  the  S  group).  At  follow-­‐up,  both  groups  had  significantly  lower  FIV   and   FIV/TIV   ratio   than   their   respective   controls   (Table   10)   (p   <  0.001  in  both  cases).      

Postoperatively,   the   TIV   in   children   operated   for   metopic   synostosis   is  lower  than  that  in  normal  children  (study  V).    

At   follow-­‐up,   both   groups   showed   a   TIV   that   was   significantly  lower  than  in  the  respective  controls  (BT  group:  p  =  0.002;  S  group:  p  =  0.001)    

n Age at CT, months TIV, L FIV, L Ratio FIV/TIV

BG 22 36.3 ± 1.2 1.270 ± 0.101 0.141 ± 0.023 0.111 ± 0.018

Controls p-value

44 36.1 ± 2.7 1.356 ± 0.103 0.002

0.184 ± 0.032 < 0.001

0.135 ± 0.017 < 0.001

S 35 37.1 ± 1.6 1.263 ± 0.123 0.141 ± 0.034 0.111 ± 0.020

Controls p-value

70 38.0 ± 2.7 1.346 ± 0.115 0.001

0.182 ± 0.032 < 0.001

0.135 ± 0.016 < 0.001

Table  10.  Summary  of  data  from  the  3-­‐year  follow-­‐up  (mean  ±  SD)    

Page 58: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

55    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

The   two   techniques   do   not   differ   in   changing   the   distribution   of  intracranial  volume  (study  V).    

  At  3-­‐year   follow-­‐up,   there  was  no  significant  difference   in  TIV,  or  in  the  FIV/TIV  ratio,  between  the  BT  group  and  the  S  group  (p  >  0.5  in  all  cases).    

The   age   at   which   surgery   is   performed   does   not   influence   the   outcome  (study  V).    

  The  Pearson  test  did  not  show  any  significant  correlation  between  age  at  surgery  and  ratio  at   follow-­‐up  (p  =  0.7  for  the  BT  group  and  p  =  0.9  for  the  S  group).    

   

Page 59: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

56    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

DISCUSSION  

Over   the  years,   the   techniques  used   to   treat  craniosynostosis  at  

our  unit  have  been  changed.   In   this  process,   an  objective  evaluation   is  important  to  compare  the  surgical  results.  

 The   first   part   of   this   thesis   focuses   on   the   correction   of  

hypotelorism   in  metopic   synostosis,  which   is   still   a   controversial   issue  among   craniofacial   surgeons.     Some   authors   state   that   directly  addressing   the   hypotelorism   may   be   unnecessary   since   the   fronto-­‐orbital  reshaping  alone  would  release  the  growth  restriction  and  hence  promote   indirect,   secondary   correction,   especially   if   surgery   is  undertaken  at  an  early  age  (Fearon,  Kolar  et  al.  1996;  Hinojosa,  Esparza  et  al.  2002;  Di  Rocco,  Frassanito  et  al.  2012).  Previous  reports  are  often  flawed   by   low   numbers,   inadequate   methodology   or   small   control  populations.   Posnick   presented   a   series   of   10   patients   operated   with  fronto-­‐orbital   reshaping   and   bone   grafting   (Posnick,   Lin   et   al.   1994).  Interorbital   distances   were   assessed   on   CT   scans   and   compared   to  normative  data,  resulting  in  a  significant  average  improvement,  but  not  a   complete   correction.   Fearon   et   al.   presented   a   series   of   16   patients  operated  for  metopic  synostosis  in  which  no  attempt  to  directly  correct  hypotelorism   was   made.   Their   results   were   based   on   objective  anthropometric   measurements   (intercanthal   width)   and   on   CT  measurements   (interorbital   width).   A   significant   improvement   of  hypotelorism   was   reported   in   all   cases,   however   width   was   below  normative  data  (Fearon,  Kolar  et  al.  1996).  Hinojosa  reported  a  series  of  28  patients  of  which  only  18  were  evaluated  as  having  hypotelorism.  Of  these,   7   were   operated   without   directly   addressing   the   hypotelorism  while   for   the   remaining   11   direct   surgical   correction   of   hypotelorism  was   performed   with   a   sagittal   osteotomy   through   the   naso-­‐frontal  junction   and   the   interposition   of   a   bone   graft.   An   improvement   of  

Page 60: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

57    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

interorbital  distance  measured  on  CT  scan  was  reported  in  all  patients,  but  none  from  the  group  where  hypotelorism  was  not  directly  corrected  reached   normal   values.   Hilling   et   al.   presented   a   series   of   45   patients  operated   for   metopic   synostosis,   in   which   the   correction   of  hypotelorism  was  attempted  only  in  those  patients  with  a  more  severe  form.  The  outcomes  were   judged  on  clinical  photographies  by  a  panel,  and   an   incomplete   correction   of   hypotelorism   was   reported.   Van   der  Meulen   reported   the   analysis   of   the   cephalograms   of   a   series   of   92  operated  patients  in  which  the  hypotelorism  was  not  directly  corrected.  A  tendency  towards  some  degree  of  postoperative  auto-­‐correction  of  the  hypotelorism   was   suggested   (van   der   Meulen,   Nazir   et   al.   2008).   Di  Rocco   described   a   personal   technique   where   hypotelorism   was  corrected   indirectly,   i.e.   by   sagittal   osteotomy   from   the  midline   of   the  supraorbital  bar  through  the  nasofrontal  junction  (Di  Rocco,  Frassanito  et  al.  2012),  however,  an  evaluation  of  the  postoperative  results  was  not  presented.        

 A  supra-­‐orbital  bar  remodelling  and  a  sagittal  osteotomy  through  

the  naso-­‐frontal  junction  with  the  interposition  of  a  bone  graft  to  widen  the  supraorbital  bandeau  and  support  the  lateral  displacement  was  the  approach   used   to   treat   metopic   synostosis   at   our   unit   as   well   as   in  several   other   centers.   The   technique   showed   to   correct   hypotelorism  only   to   some   extent   (Kocabalkan,   Owman-­‐Moll   et   al.   2000).   Springs  started   to   be   used   to   correct   hypotelorism   in   metopic   synostosis   in  1998.  The  first  consecutive  23  patients  are  described  in  study  I.  The  first  three  patients  were  treated  by  suturectomy  and  spring  insertion  alone.  Thereafter,  a  more  extensive  forehead  remodelling  was  implemented,  in  combination  with  a  spring  aiming  at  correction  of   the  hypotelorism.   In  study  I,  the  BIOD  was  measured  in  postero-­‐anterior  cephalograms  as  the  distance   Orm-­‐Orm.   Our   results   showed   a   significant   postoperative  improvement   of   the   hypotelorism.   Also,   the   fronto-­‐orbital   axes   angle  was   introduced   as   a   new  parameter.   The   frontoorbital   axes   angle  was  positive   in  normal   infants  and  negative   in  trigonocephalic  children  (i.e.  

Page 61: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

58    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

crossing  superiorly  to  the  orbits).  After  treatment,  the  frontoorbital  axes  angle  had  increased  to  positive  values,  and  the  orbits  had  a  more  natural  shape.   In  study   II,  BIOD   in  patients  affected  by  metopic  synostosis  and  operated   with   the   spring   technique   (S   group)   were   compared   to   the  BIOD  of  patients  operated  with  the  fronto-­‐orbital  remodelling  and  bone  grafting   (BG   group),   and   to   that   of   an   adequate   control   group.   In   this  study,   the   BIOD   was   measured   on   axial   CT   examinations.   The   results  showed   that,   at   follow-­‐up,   BIOD   of   patients   operated  with   springs   did  not   differ   significantly   from   the   control   group.   BIOD  was   on   the   other  hand  not  completely  corrected  in  the  group  of  patients  that  underwent  supraorbital   advancement   and   bone   grafting.   Compared   to   previous  studies   this   study   hade   a   large   population,   an   objective  measurement  was  performed  and  it  had  a  gender  and  age  matched  control  population.  Hence,  direct  comparison  of  the  mean  values  could  be  done  without  any  extensive  statistical  manipulation.  

 The   BIOD   in   the   S   group   showed   a  much   higher   postoperative  

variability,  as  expressed  by  the  larger  standard  deviation.  This  is  not  an  unexpected   finding  with   spring-­‐assisted   surgery.   Springs   are   powerful  tools,  strongly  dependent  on  factors  such  as  the  spring  force,  the  quality  of  the  bone,  the  implantation  site  and  the  surgeon.  It  was  surprising  not  to  find  any  correlation  between  the  age  at  which  surgery  was  performed  and  the  BIOD  at  follow-­‐up,  as  we  would  have  expected.  This  might  be  a  consequence  of  the  small  age-­‐span  at  which  surgery  was  performed.  

Since   the   two   surgical   techniques   were   used   in   groups   with  different   ages   they   cannot   be   directly   compared,   as   would   have   been  possible   if   patients   had   been   randomly   assigned   to   one   of   the   two  groups.  Our  results  simply  show  that  spring-­‐assisted  surgery  performed  before   six   months   of   age,   although   with   some   variability,   corrects  hypotelorism   to   normal   values,   while   the   cranioplasty   with   bone  grafting  performed  at  an  older  age  result  in  undercorrected  BIOD.  These  results  do  not  contradict  that  self-­‐correction  can  play  a  role  as  suggested  by  several  authors  (Fearon,  Kolar  et  al.  1996;  van  der  Meulen,  Nazir  et  

Page 62: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

59    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

al.  2008;  Di  Rocco,  Frassanito  et  al.  2012).  However  until  now  no  other  group   has   presented   normalization   of   BIOD   and   one   possible  explanation  to  the  complete  correction  with  SAS  could  be  the  effects  that  springs  have  on  patent  cranial  sutures.    In  study  I  it  was  speculated  that  after   release   of   the  metopic   suture,   the   continuous   spreading   force   of  the   spring   applied   over   the   glabellar   region   could   indirectly   promote  ethmoid  sutural  expansion.  A  successive  study  showed  that  springs  have  the  ability  to  transmit  expansile  force  across  the  fronto-­‐ethmoid  suture,  thus   performing   a   form  of   sutural   distraction   rather   than   producing   a  plastic  deformation  of  the  bony  structures  (Davis  and  Lauritzen  2009).    

It  can  be  concluded  that  hypotelorism  due  to  metopic  synostosis  is   well   corrected   with   spring-­‐assisted   surgery   performed   before   6  months  of  age.  Whether  this  is  due  to  the  young  age  at  which  surgery  is  performed   or   to   the   springs   themselves   remains   to   be   determined.  Further   research   is   necessary   to   expand   our   knowledge   on   spring-­‐assisted   surgery,   in   particular   on  which   steps   of   the   surgery   or  which  associated   conditions   generates   the   observed   variability,   in   order   to  systematically  achieve  the  best  results.  

    The  second  part  of  this  thesis  was  centred  on  the  evaluation  of  the  symmetry   of   the   frontal   contour   as   a   new   method   to   evaluate  postoperative   outcomes   after   correction   of   UCS.   There   are   no   clear  criteria   on   how   to   evaluate   outcomes   in   UCS   independent   of   the  evaluator.   The   Whitaker   classification,   together   with   similar   methods  based   on   the   evaluation   of   clinical   photography   by   a   panel,   is   widely  used  in  long-­‐term  retrospective  analyses  (Hilling,  Mathijssen  et  al.  2006;  Selber,   Brooks   et   al.   2008;   Mesa,   Fang   et   al.   2011;   Seruya,   Oh   et   al.  2011).   The   method   has   limitations   such   as   providing   qualitative   data  and  being  subjected  to  observer  bias.  More  objective  methods  have  been  presented.   Anthropometry   has   been   used   to   evaluate   pre-­‐   and  postoperative   status   and   to   compare   techniques   (Meara,   Burvin   et   al.  2003).  Oh  reported  a  series  of  15  patients  older  than  10  years  operated  

Page 63: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

60    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

for   UCS,   which   were   evaluated   by   indirect   anthropometry   on   three-­‐dimensional   digital   images   (Oh,   Wong   et   al.   2008).   The   method   has  shown  many   advantages   compared   to   other   quantitative  methods,   but  the   study   was   limited   to   the   evaluation   of   the   postoperative   status.  Measurements   on   three-­‐dimensional   CT   have   been   used   to   document  deformity  in  UCS,  providing  objective  data  for  evaluation  (Kane,  Kim  et  al.   2000;  Becker,   Fundakowski   et   al.   2006).   The   aim  of   our   evaluation  was   to   compare   patients   operated   with   different   techniques   and   in  different   periods.   Patients   operated   with   the   fronto-­‐orbital  advancement   had   all   been   examined   by   cepahlograms.   Of   the   42  patients   that   underwent   the   frontal   reconstruction  with  bone   grafting,  30  were  evaluated  with  cephalograms  and  12  with  CT  scans.  Therefore,  we  created  a  program  to  provide  a  quantitative  evaluation  of   forehead  symmetry   from   both   CT   and   cephalograms.   The   reliability   of   the  program   was   tested   on   images   of   symmetrical   phantoms   and   on   15  patients   before   and   after   treatment   and   evaluated   either   by  cephalograms   or   CT.   In   measurements   done   in   cephalograms   the  relative  standard  deviation  was  generally  higher  than  in  measurements  done   in   CT   images.   This   is   due   to   the   poor   contrast   in   some   of   the  cephalograms,  which  caused  some  problems  in  automatically  detecting  the  outermost  edge  of  the  cranium  so  that  segmentation  had  to  be  done  manually.   Still,   for   the   expected   range   of   SR   the   relative   standard  deviation   remained   low   even   for   cephalograms,   thus   allowing  measurement  of   the   symmetry   independently  of  whether  patients  had  been  examined  by  cephalograms  or  CT  scans.  The   relative   standard   deviation   increased   when   the   SR  decreased,   i.e.  with   very   good   symmetry,   and   when   the   low   definition   makes   the  placement  of  the  O  and  the  end-­‐point  more  difficult.  

    The  paper  describes   two  measures  aimed  to  evaluate   the  success  of  operation  for  deformed  skulls:  the  Absolute  Symmetry  Change  (ASC)  and   Relative   Symmetry   Change   (RSC).   The   two   measures   do   not  evaluate   an   operation   to   be   successful   equally.   RSC   is   preferable   for  

Page 64: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

61    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

evaluation  of  clinical  outcome,  since  it  is  normalized  with  the  SR  before  operation  and  has  thereby  an  upper  limit  of  success,   i.e.  RSC  equal  to  1  means   a   perfect   operation.   An   RSC   of   0   means   no   difference   and   a  negative  RSC  means  that  the  forehead  is  more  asymmetric  after  surgery.    

In   study   IV,   the  program  was  used   to  evaluate   the  symmetry  of  the   forehead   in   the   two   groups   of   patients   operated   with   different  surgical  techniques.  

Our   measurements   show   that   forehead   asymmetry   was  significantly   reduced   by   both   the   techniques,   but   that   forehead  replacement  with   a   calvarial   bone   graft   resulted   in   significantly  better  symmetry.    

 Whether   the   unilateral   FOA   or   the   bilateral   FOA   would   be   the  

best  technique  to  correct   forehead  deformity  in  UCS  has  been  a  matter  of  discussion   (Sgouros,  Goldin  et  al.  1996;  Hansen,  Padwa  et  al.  1997).  The  present  study  shows  that  forehead  advancement  does  not  take  into  account   the   different   shape   and   convexity   of   the   two   halves   of   the  forehead  and  supraorbital  bar.  Residual   frontal  asymmetry   is  often  the  single  most  obvious  deformity  after  surgical   correction   (Meara,  Burvin  et  al.  2003).  

Reoperation   rate   was   significantly   higher   in   patients   operated  with   FOA   than   in   patients   operated  with   forehead   reconstruction.   The  result  of  the  present  study  supports  the  idea  that  the  lower  reoperation  rate  in  patients  operated  with  forehead  remodelling  is  due  to  the  better  symmetry  achieved  with  this  method.    

We   conclude   that   a   free   bone   graft   harvested   from   the   calvaria  and   used   as   a   new   forehead/supraorbital   bar   complex   gives   better  forehead   symmetry   and   lowers   the   reoperation   rate   as   compared   to  FOA  and  is  therefore  a  better  method  for  treatment  of  UCS.  The  new  tool  introduced   for   measurement   of   forehead   symmetry   makes   objective  evaluation  of  the  result  of  surgery  for  unicoronal  synostosis  possible.      

Page 65: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

62    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

In  the  literature,  there  is  contrasting  evidence  as  to  whether  the  intracranial   volume   in   patients   with   isolated   metopic   synostosis   is  different   from  that   in  the  normal  population  (Gault,  Renier  et  al.  1990;  Posnick,  Armstrong  et  al.  1995;  Sgouros,  Hockley  et  al.  1999;  Anderson,  Netherway  et  al.  2004;  Sgouros  2005)  Previous  studies  have  suggested  that  children  with  metopic  synostosis  have   intracranial  volumes   larger  than   -­‐   or   within   the   range   of   -­‐   the   normal   population.(Posnick,  Armstrong   et   al.   1995;   Sgouros,   Hockley   et   al.   1999)   Many   of   these  previous  studies  have  suffered  from  problems  of  small  numbers  of  cases  and   inadequate   controls.   More   recent   reports,   with   higher   number   of  patients   and   better   methodological   consistency,   have   found   evidence  that   (at   least   in   the   male   population)   intracranial   volume   in  trigonocephalic  children   is  significantly  reduced.(Anderson,  Netherway  et  al.  2004)  Still,  an  extensive  statistical  effort  was  needed  to  support  the  result.      

Our   results   indicate   that   children  with  metopic   synostosis   have  normal  intracranial  volumes—at  least  up  to  the  ninth  month  of  life.  This  may   be   a   direct   consequence   of   the   biparietal   widening.   This  compensatory   deformation   associated   with   the   narrow   shape   of   the  forehead   makes   the   total   intracranial   volume   equivalent   to   that   in  normal   children,   but   the   distribution   of   this   volume   is   abnormal.   Our  study   shows   that   in  metopic   synostosis,   the   proportion   of   intracranial  volume  anterior  to  the  coronal  sutures  is  about  30%  lower  than  normal.  This   is   not   a   surprising   finding,   since   a   reduction   in   the   intercoronal  diameter   compared   to   the   interparietal  diameter   in   these   children  has  been  documented  previously.(Posnick,  Lin  et  al.  1994;  Bottero,  Lajeunie  et   al.   1998;   Shimoji,   Shimabukuro   et   al.   2002;  Ruiz-­‐Correa,   Starr   et   al.  2008)        

Our   results   also   show   that   the   remodelling   of   the   forehead  redistributed   intracranial   volume,   reflected   by   a   significant  improvement  in  the  FIV/TIV  ratio.  At  follow-­‐up,  however,  this  ratio  did  

Page 66: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

63    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

not   reach   normal   values.   Whether   this   is   due   to   surgical   under-­‐correction   or   to   some   form   of   postoperative   “relapse”   needs   to   be  investigated   further.   A   series   of   immediate   postoperative   CT   scans  would  be   informative   for   this  evaluation.  The   results  also   showed   that  the   two   methods   used   did   not   differ   much   in   their   ability   to   correct  volume  distribution.  This  is  not  surprising,  since  the  two  cranioplasties  are  fairly  similar  and  the  use  of  a  bone  graft  or  a  spring  is  mainly  aimed  at  correction  of  the  hypotelorism.      

We   conclude   that,   at   least   up   to   9   months   of   age,   the   TIV   in  children   with   metopic   synostosis   is   similar   to   that   in   the   normal  population,   while   the   FIV/TIV   ratio   is   significantly   reduced.   Both  surgical   techniques   changed   the   distribution   of   intracranial   volume  toward  that  of  the  normal  population,  but  at  three  years  of  age,  children  operated   for   metopic   synostosis   had   significantly   lower   intracranial  volumes  compared  to  normal  children.      

In  paper  V,  TIV  and  FIV  were  obtained  using  precisely  the  same  methods   in   cases   and   controls.   The   patient   material   was   large   and  uniform,  and  our  control  population  consisted  of  sufficient  numbers  of  gender-­‐  and  age-­‐matched  individuals.  For  the  first  time  in  any  study,  we  have  measured   the   TIV   and   the   fraction   of   the   intracranial   volume,   in  front  of   the   coronal   sutures,   that   is   the  primary   target   for   the   surgical  procedure.        

In  the  five  papers  presented,  the  evaluation  of  surgical  outcomes  was  based  on   radiographic   imaging.  The   risks  associated  with  medical  radiation   represent   an   obvious   drawback.   Exposure   to   ionizing  radiation   is   of   even   greater   concern   in   children,   due   to   greater   organ  sensivity,  to  their  smaller  body  dimensions  and  to  the  greater  number  of  remaining  years  of  life  during  which  pathology  can  develop.  However,  it  has  been  demonstrated  that  low-­‐dose  protocol  imaging,  such  as  the  one  routinely  used  for  our  patients  (100  kV,  30  mA),  results  in  an  absorbed  

Page 67: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

64    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

dose   per   scan   that   is   comparable   to   1   to   2   months   of   background  radiation.  Low  dose  protocols  have  demonstrated  acceptable  accuracy.  Even  with  nearly  90%  reduction  of  mAs,  osseous  details  such  as  suture  patency   can   be   accurately   assessed.   In   this   aspect,   the   risk   to   benefit  ratio   support   the   routine   use   of   CT   scanning   in   craniofacial   surgery  (Domeshek,   Mukundan   et   al.   2009).   Furthermore,   until   a   satisfactory  non-­‐ionizing   image-­‐based   method   is   established,   it   will   be   difficult   to  meaningfully   compare   the   outcomes   of   the  many   techniques   currently  available  for  the  treatment  of  SSC.                          

   

Page 68: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

65    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

CONCLUSIONS  

  In   summary,   this   thesis   has   presented   evidence   to   support   the  following  conclusions    

1. A   new   operative   method   to   correct   hypotelorism   in   metopic  synostosis   with   the   use   of   springs   is   described.   Springs   have  shown   the   ability   to   correct   hypotelorism   and   to   change   the  orbital  shape  in  metopic  synostosis.  

 2. BIOD   in   patients   affected   by   metopic   synostosis   and   operated  

with   SAS   before   six   months   of   age   is   normalized,   while   it   is  undercorrected   in   patients   operated   with   fronto-­‐orbital  remodelling  and  bone  grafting.  

 3. A  program  to  evaluate   forehead  symmetry   in  patients  with  UCS  

before  and  after   treatment  has  been  developed   for  both  CT  and  cephalometry   images.   The   method   is   simple   to   use   and  independent   of   head   rotation   at   the   time   of   image   acquisition.  Results  are  more  reliable  with  CT  images  than  cephalograms.  

 

4. In  children  affected  by  UCS,  the  substitution  of  the  forehead  and  supraorbital  bar  with  a  calvarial  bone  graft  gives  better  forehead  symmetry  and  lower  reoperation  rate  than  FOA  and  is  therefore  a  better  method  for  treatment  of  UCS.    

 

5. At  least  up  to  9  months  of  age,  the  TIV  in  children  with  metopic  synostosis   is   similar   to   that   in   the  normal  population,  while   the  FIC/TIV   ratio   is   significantly   reduced.   Both   surgical   techniques  change  the  distribution  of  intracranial  volume  toward  that  of  the  normal   population,   but   at   three   years   of   age,   children   operated  for   metopic   synostosis   have   significantly   lower   intracranial  volumes  than  normal  children.  

Page 69: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

66    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

 ACKNOWLEDGEMENTS  

I  would  like  to  express  my  greatest  gratitude  to  Lars  Kölby,  my  tutor,  for  the   endless   patience   and   the   unbelievable   energy.   Without   his  supervision  this  thesis  would  have  never  been  completed.    A   special   thank  goes   to  Claes  Lauritzen,  who  made  all   of   this  possible,  first  by  accepting  me  as  a  fellow  in  2004,  and  thereafter  to  recommend  me  for  my  present  job.      Unending  gratitude  goes  also   to  Peter  Tarnow,   for   the  continuous  help  and   the   valuable   advises   throughout   the   writing   of   the   thesis   and  through  the  daily  carrying  out  of  our  work.    I  am  obliged  and  thankful  to  my  chief  Prof.  Anna  Elander  for  the  support  and  help,  and  all  my  colleagues  at  the  plastic  surgery  department.  They  had   to   work   much   harder   so   that   I   could   sit   down   and   work   on   my  project.  Thank  you  guys.    I   wish   to   thank   Annelie   Lindström,   Emma   Wikberg,   Jacob   Heydorn  Lagerlöf   and   Prof.   Peter   Bernhardt,   from   the  Department   of   Radiation  Physics,  for  the  fruitful  collaboration.    I   am   very   thankful   to   Niclas   Löfgren   and   Åsa   Bell,   medical  photographers,  for  the  extra  work  they  had  to  do  and  the  nice  job  they  have  done.    It  has  been  a  great  pleasure  to  get  help,  once  again,  by  my  dearest  friend  Paolo  Badalamenti,  at  www.primafactory.com.  Grazie  amico  mio.    Finally,   I   would   like   to   thank   my   family   for   the   support   and   endless  loving.    I   acknowledge  Wilhelm   och  Martina   Lundgrens   Vetenskapsfond,   Anna  och   Edwin   Bergers   Stiftelse   and   Göteborgs   Läkaresällskap   for   the  financial  support.    

Page 70: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

67    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

REFERENCES  

 Abbott,  A.  H.,  D.  J.  Netherway,  et  al.  (2000).  "CT-­‐determined  intracranial  

volume  for  a  normal  population."  The  Journal  of  craniofacial  surgery  11(3):  211-­‐223.  

Al-­‐Omari,  I.,  D.  T.  Millett,  et  al.  (2005).  "Methods  of  assessment  of  cleft-­‐related  facial  deformity:  a  review."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  42(2):  145-­‐156.  

Albright,  A.  L.  and  R.  P.  Byrd  (1981).  "Suture  pathology  in  craniosynostosis."  Journal  of  neurosurgery  54(3):  384-­‐387.  

Aldridge,  K.,  J.  L.  Marsh,  et  al.  (2002).  "Central  nervous  system  phenotypes  in  craniosynostosis."  Journal  of  anatomy  201(1):  31-­‐39.  

Anand,  A.,  N.  J.  Campion,  et  al.  (2013).  "Analysis  of  cosmetic  results  of  metopic  synostosis:  concordance  and  interobserver  variability."  The  Journal  of  craniofacial  surgery  24(1):  304-­‐308.  

Anderson,  F.  M.  and  L.  Geiger  (1965).  "Craniosynostosis:  A  Survey  of  204  Cases."  Journal  of  neurosurgery  22:  229-­‐240.  

Anderson,  F.  M.,  J.  L.  Gwinn,  et  al.  (1962).  "Trigonocephaly.  Identity  and  surgical  treatment."  Journal  of  neurosurgery  19:  723-­‐730.  

Anderson,  F.  M.  and  F.  L.  Johnson  (1956).  "Craniosynostosis;  a  modification  in  surgical  treatment."  Surgery  40(5):  961-­‐970.  

Anderson,  P.  J.,  D.  J.  Netherway,  et  al.  (2004).  "Intracranial  volume  measurement  of  metopic  craniosynostosis."  The  Journal  of  craniofacial  surgery  15(6):  1014-­‐1016;  discussion  1017-­‐1018.  

Arnaud,  E.,  A.  Marchac,  et  al.  (2012).  "Spring-­‐assisted  posterior  skull  expansion  without  osteotomies."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  28(9):  1545-­‐1549.  

Arnaud,  E.,  D.  Renier,  et  al.  (1995).  "Prognosis  for  mental  function  in  scaphocephaly."  Journal  of  neurosurgery  83(3):  476-­‐479.  

Becker,  D.  B.,  C.  E.  Fundakowski,  et  al.  (2006).  "Long-­‐term  osseous  morphologic  outcome  of  surgically  treated  unilateral  coronal  craniosynostosis."  Plastic  and  reconstructive  surgery  117(3):  929-­‐935.  

Page 71: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

68    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Becker,  D.  B.,  J.  D.  Petersen,  et  al.  (2005).  "Speech,  cognitive,  and  behavioral  outcomes  in  nonsyndromic  craniosynostosis."  Plastic  and  reconstructive  surgery  116(2):  400-­‐407.  

Bonaventure,  J.  and  V.  El  Ghouzzi  (2003).  "Molecular  and  cellular  bases  of  syndromic  craniosynostoses."  Expert  reviews  in  molecular  medicine  5(4):  1-­‐17.  

Bottero,  L.,  E.  Lajeunie,  et  al.  (1998).  "Functional  outcome  after  surgery  for  trigonocephaly."  Plastic  and  reconstructive  surgery  102(4):  952-­‐958;  discussion  959-­‐960.  

Bradley,  J.  P.,  J.  P.  Levine,  et  al.  (1997).  "Studies  in  cranial  suture  biology:  regional  dura  mater  determines  in  vitro  cranial  suture  fusion."  Plastic  and  reconstructive  surgery  100(5):  1091-­‐1099;  discussion;  1100-­‐1092.  

Broadbent,  B.  H.  (1931).  "A  new  x-­‐ray  technique  and  its  application  to  orhodontia."  Angle  Orthod  1:  45-­‐66.  

Brodie,  A.  G.  (1941).  "On  the  growth  pattern  of  human  head."  Am  J  Anat  68:  209-­‐262.  

Bruneteau,  R.  J.  and  J.  B.  Mulliken  (1992).  "Frontal  plagiocephaly:  synostotic,  compensational,  or  deformational."  Plastic  and  reconstructive  surgery  89(1):  21-­‐31;  discussion  32-­‐23.  

Camfield,  P.  R.  (2000).  Neurologic  Aspects  of  Craniosynostosis.  Craniosynostosis:  Diagnosis,  Evaluation  and  Managment.  .  M.  M.  Cohen,  Jr.  New  York,  Oxford  University  Press.  

Chim,  H.,  S.  Manjila,  et  al.  (2011).  "Molecular  signaling  in  pathogenesis  of  craniosynostosis:  the  role  of  fibroblast  growth  factor  and  transforming  growth  factor-­‐beta."  Neurosurgical  focus  31(2):  E7.  

Chin,  M.  and  B.  A.  Toth  (1997).  "Le  Fort  III  advancement  with  gradual  distraction  using  internal  devices."  Plastic  and  reconstructive  surgery  100(4):  819-­‐830;  discussion  831-­‐812.  

Codivilla,  A.  (1905).  "On  the  means  of  lengthening,  in  the  lower  limbs,  the  muscles  and  tissues  which  are  shortened  through  deformity.  ."  Am.  J.  Orthop.  Surg.  2:  353.  

Cohen,  M.  M.,  Jr.  (2000).  Epidemiology  of  Craniosynostosis  Craniosynostosis:  Diagnosis,  Evaluation  and  Managment.  .  M.  M.  Cohen,  Jr.  New  York,  Oxford  University  Press.  

Cohen,  M.  M.,  Jr.  (2000).  Sutural  Biology.  Craniosynostosis:  Diagnosis,  Evaluation  and  Managment.  .  M.  M.  Cohen,  Jr.  New  York,  Oxford  University  Press.  

Page 72: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

69    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Cohen,  S.  R.  and  J.  A.  Persing  (1998).  "Intracranial  pressure  in  single-­‐suture  craniosynostosis."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  35(3):  194-­‐196.  

Crouzon,  O.  (1912).  "Dysostose  cranio-­‐faciale  hèrèditarie.  ."  Bull  Soc  Med  Hop  Paris  33:  545-­‐555.  

Da  Costa,  A.  C.,  V.  A.  Anderson,  et  al.  (2012).  "Neurodevelopmental  functioning  of  infants  with  untreated  single-­‐suture  craniosynostosis  during  early  infancy."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  28(6):  869-­‐877.  

David,  L.  R.,  C.  M.  Plikaitis,  et  al.  (2010).  "Outcome  analysis  of  our  first  75  spring-­‐assisted  surgeries  for  scaphocephaly."  The  Journal  of  craniofacial  surgery  21(1):  3-­‐9.  

Davis,  C.  and  C.  G.  Lauritzen  (2008).  "Spring-­‐assisted  remodeling  for  ventricular  shunt-­‐induced  cranial  deformity."  The  Journal  of  craniofacial  surgery  19(3):  588-­‐592.  

Davis,  C.  and  C.  G.  Lauritzen  (2009).  "Frontobasal  suture  distraction  corrects  hypotelorism  in  metopic  synostosis."  The  Journal  of  craniofacial  surgery  20(1):  121-­‐124.  

Delashaw,  J.  B.,  J.  A.  Persing,  et  al.  (1991).  "Cranial  deformation  in  craniosynostosis.  A  new  explanation."  Neurosurgery  clinics  of  North  America  2(3):  611-­‐620.  

Derderian,  C.  A.  and  S.  P.  Bartlett  (2012).  "Open  cranial  vault  remodeling:  the  evolving  role  of  distraction  osteogenesis."  The  Journal  of  craniofacial  surgery  23(1):  229-­‐234.  

Derderian,  C.  A.,  N.  Bastidas,  et  al.  (2012).  "Posterior  cranial  vault  expansion  using  distraction  osteogenesis."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  28(9):  1551-­‐1556.  

Di  Rocco,  C.,  P.  Frassanito,  et  al.  (2012).  "The  shell  technique:  bilateral  fronto-­‐orbital  reshaping  in  trigonocephaly."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery.  

Di  Rocco,  F.,  E.  Arnaud,  et  al.  (2009).  "Evolution  in  the  frequency  of  nonsyndromic  craniosynostosis."  Journal  of  neurosurgery.  Pediatrics  4(1):  21-­‐25.  

Page 73: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

70    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Djordjevic,  J.,  A.  M.  Toma,  et  al.  (2011).  "Three-­‐dimensional  quantification  of  facial  symmetry  in  adolescents  using  laser  surface  scanning."  European  journal  of  orthodontics.  

Domeshek,  L.  F.,  S.  Mukundan,  Jr.,  et  al.  (2009).  "Increasing  concern  regarding  computed  tomography  irradiation  in  craniofacial  surgery."  Plastic  and  reconstructive  surgery  123(4):  1313-­‐1320.  

Enlow,  D.  H.  (2000).  Normal  Craniofacial  Growth.  Craniosynostosis:  Diagnosis,  Evaluation  and  Management.  Ed  2nd.  M.  M.  Cohen,  Jr.  New  York,  Oxford  University  Press.  

Faber,  H.  K.  (1924).  "The  Importance  of  Early  Diagnosis  in  Oxycephaly  and  Allied  Cranial  Deformities,  with  Reference  to  the  Prevention  of  Blindness  and  Other  Sequelae."  California  and  western  medicine  22(11):  542-­‐545.  

Farkas,  L.  G.  (1994).  Anthropometry  of  the  head  and  face.  New  York,  Raven  Press.  

Fearon,  J.  A.  (2008).  "Midterm  follow-­‐up  of  midface  distraction."  Plastic  and  reconstructive  surgery  122(2):  674-­‐675.  

Fearon,  J.  A.  (2012).  "Discussion:  cognitive  and  behavioral  functioning  in  82  patients  with  trigonocephaly."  Plastic  and  reconstructive  surgery  130(4):  894-­‐896.  

Fearon,  J.  A.,  J.  C.  Kolar,  et  al.  (1996).  "Trigonocephaly-­‐associated  hypotelorism:  is  treatment  necessary?"  Plastic  and  reconstructive  surgery  97(3):  503-­‐509;  discussion  510-­‐511.  

Friede,  H.,  P.  Alberius,  et  al.  (1990).  "Trigonocephaly:  clinical  and  cephalometric  assessment  of  craniofacial  morphology  in  operated  and  nontreated  patients."  The  Cleft  palate  journal  27(4):  362-­‐367;  discussion  368.  

Gault,  D.  T.,  D.  Renier,  et  al.  (1990).  "Intracranial  volume  in  children  with  craniosynostosis."  The  Journal  of  craniofacial  surgery  1(1):  1-­‐3.  

Gewalli,  F.,  J.  P.  da  Silva  Guimaraes-­‐Ferreira,  et  al.  (2001).  "Long-­‐term  follow-­‐up  of  dynamic  cranioplasty  for  brachycephaly-­‐-­‐non-­‐syndromal  bicoronal  synostosis."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery  /  Nordisk  plastikkirurgisk  forening  [and]  Nordisk  klubb  for  handkirurgi  35(2):  157-­‐164.  

Guimaraes-­‐Ferreira,  J.,  F.  Gewalli,  et  al.  (2006).  "Sagittal  synostosis:  I.  Preoperative  morphology  of  the  skull."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery  /  Nordisk  

Page 74: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

71    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

plastikkirurgisk  forening  [and]  Nordisk  klubb  for  handkirurgi  40(4):  193-­‐199.  

Guimaraes-­‐Ferreira,  J.,  F.  Gewalli,  et  al.  (2003).  "Spring-­‐mediated  cranioplasty  compared  with  the  modified  pi-­‐plasty  for  sagittal  synostosis."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery  /  Nordisk  plastikkirurgisk  forening  [and]  Nordisk  klubb  for  handkirurgi  37(4):  208-­‐215.  

Hansen,  M.,  B.  L.  Padwa,  et  al.  (1997).  "Synostotic  frontal  plagiocephaly:  anthropometric  comparison  of  three  techniques  for  surgical  correction."  Plastic  and  reconstructive  surgery  100(6):  1387-­‐1395.  

Heike,  C.  L.,  M.  L.  Cunningham,  et  al.  (2009).  "Picture  perfect?  Reliability  of  craniofacial  anthropometry  using  three-­‐dimensional  digital  stereophotogrammetry."  Plastic  and  reconstructive  surgery  124(4):  1261-­‐1272.  

Heller,  J.  B.,  J.  S.  Gabbay,  et  al.  (2007).  "Cranial  suture  response  to  stress:  expression  patterns  of  Noggin  and  Runx2."  Plastic  and  reconstructive  surgery  119(7):  2037-­‐2045.  

Hilling,  D.  E.,  I.  M.  Mathijssen,  et  al.  (2006).  "Long-­‐term  aesthetic  results  of  frontoorbital  correction  for  frontal  plagiocephaly."  Journal  of  neurosurgery  105(1  Suppl):  21-­‐25.  

Hinojosa,  J.,  J.  Esparza,  et  al.  (2002).  "Surgical  treatment  of  trigonocephalies  and  associated  hypoteleorbitism."  Neurocirugia  13(6):  437-­‐445.  

Huang,  M.  H.,  J.  S.  Gruss,  et  al.  (1996).  "The  differential  diagnosis  of  posterior  plagiocephaly:  true  lambdoid  synostosis  versus  positional  molding."  Plastic  and  reconstructive  surgery  98(5):  765-­‐774;  discussion  775-­‐766.  

Ilizarov,  G.  A.,  Devyatov,  A.  A.,  and  Kamerin,  V.  K.  (1980).  "Plastic  reconstruction  of  longitudinal  bone  defects  by  means  of  compression  and  subsequent  distraction.  ."  Acta  Chir.  Plast.  22:  32,.  

Ingraham,  F.  D.,  E.  Alexander,  Jr.,  et  al.  (1948).  "Clinical  studies  in  craniosynostosis  analysis  of  50  cases  and  description  of  a  method  of  surgical  treatment."  Surgery  24(3):  518-­‐541.  

Jabs,  E.  W.,  U.  Muller,  et  al.  (1993).  "A  mutation  in  the  homeodomain  of  the  human  MSX2  gene  in  a  family  affected  with  autosomal  dominant  craniosynostosis."  Cell  75(3):  443-­‐450.  

Page 75: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

72    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Jacobi,  A.  (1894).  "Non  nocere."  Med  Red  45:  609-­‐618.  Jane,  J.  A.,  M.  T.  Edgerton,  et  al.  (1978).  "Immediate  correction  of  sagittal  

synostosis."  Journal  of  neurosurgery  49(5):  705-­‐710.  Jiang,  X.,  S.  Iseki,  et  al.  (2002).  "Tissue  origins  and  interactions  in  the  

mammalian  skull  vault."  Developmental  biology  241(1):  106-­‐116.  

Jones,  B.  M.  (1991).  "Dr  Paul  Tessier."  Annals  of  the  Royal  College  of  Surgeons  of  England  73(6):  346-­‐347.  

Kamdar,  M.  R.,  R.  A.  Gomez,  et  al.  (2009).  "Intracranial  volumes  in  a  large  series  of  healthy  children."  Plastic  and  reconstructive  surgery  124(6):  2072-­‐2075.  

Kane,  A.  A.,  Y.  O.  Kim,  et  al.  (2000).  "Quantification  of  osseous  facial  dysmorphology  in  untreated  unilateral  coronal  synostosis."  Plastic  and  reconstructive  surgery  106(2):  251-­‐258.  

Kapp-­‐Simon,  K.  A.  (1998).  "Mental  development  and  learning  disorders  in  children  with  single  suture  craniosynostosis."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  35(3):  197-­‐203.  

Kapp-­‐Simon,  K.  A.,  A.  Figueroa,  et  al.  (1993).  "Longitudinal  assessment  of  mental  development  in  infants  with  nonsyndromic  craniosynostosis  with  and  without  cranial  release  and  reconstruction."  Plastic  and  reconstructive  surgery  92(5):  831-­‐839;  discussion  840-­‐831.  

Kapp-­‐Simon,  K.  A.,  M.  L.  Speltz,  et  al.  (2007).  "Neurodevelopment  of  children  with  single  suture  craniosynostosis:  a  review."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  23(3):  269-­‐281.  

Kjaer,  I.  (1995).  "Human  prenatal  craniofacial  development  related  to  brain  development  under  normal  and  pathologic  conditions."  Acta  odontologica  Scandinavica  53(3):  135-­‐143.  

Kocabalkan,  O.,  P.  Owman-­‐Moll,  et  al.  (2000).  "Evaluation  of  a  surgical  technique  for  trigonocephaly."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery  /  Nordisk  plastikkirurgisk  forening  [and]  Nordisk  klubb  for  handkirurgi  34(1):  33-­‐42.  

Kolar,  J.  C.  (2011).  "An  epidemiological  study  of  nonsyndromal  craniosynostoses."  The  Journal  of  craniofacial  surgery  22(1):  47-­‐49.  

Page 76: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

73    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Lane,  L.  C.  (1892).  "Pioneer  craniectomy  for  relief  of  mental  imbecility  due  to  premature  sutural  closure  and  microcephalus."  J.A.M.A.  18(49).  

Lannelongue,  O.  M.  (1890).  "De  la  craniectomie  dans  la  microcéphalie."  Compt  Rend  Seances  Acad  Sci.  110:  1382–  1138.  

Lauritzen,  C.  (1995).  "The  Goteborg  protocol  for  treatment  of  craniosynostosis."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery.  Supplementum  27:  11-­‐17.  

Lauritzen,  C.,  H.  Friede,  et  al.  (1996).  "Dynamic  cranioplasty  for  brachycephaly."  Plastic  and  reconstructive  surgery  98(1):  7-­‐14;  discussion  15-­‐16.  

Lauritzen,  C.,  Y.  Sugawara,  et  al.  (1998).  "Spring  mediated  dynamic  craniofacial  reshaping.  Case  report."  Scandinavian  journal  of  plastic  and  reconstructive  surgery  and  hand  surgery  /  Nordisk  plastikkirurgisk  forening  [and]  Nordisk  klubb  for  handkirurgi  32(3):  331-­‐338.  

Lauritzen,  C.  and  P.  Tarnow  (2003).  "Craniofacial  surgery  over  30  years  in  Goteborg."  Scandinavian  journal  of  surgery  :  SJS  :  official  organ  for  the  Finnish  Surgical  Society  and  the  Scandinavian  Surgical  Society  92(4):  274-­‐280.  

Lee,  H.  Q.,  J.  M.  Hutson,  et  al.  (2012).  "Changing  epidemiology  of  nonsyndromic  craniosynostosis  and  revisiting  the  risk  factors."  The  Journal  of  craniofacial  surgery  23(5):  1245-­‐1251.  

Levi,  B.,  D.  C.  Wan,  et  al.  (2012).  "Cranial  suture  biology:  from  pathways  to  patient  care."  The  Journal  of  craniofacial  surgery  23(1):  13-­‐19.  

Levine,  J.  P.,  J.  P.  Bradley,  et  al.  (1998).  "Studies  in  cranial  suture  biology:  regional  dura  mater  determines  overlying  suture  biology."  Plastic  and  reconstructive  surgery  101(6):  1441-­‐1447.  

Losken,  A.,  I.  Fishman,  et  al.  (2005).  "An  objective  evaluation  of  breast  symmetry  and  shape  differences  using  3-­‐dimensional  images."  Annals  of  plastic  surgery  55(6):  571-­‐575.  

Losken,  A.,  H.  Seify,  et  al.  (2005).  "Validating  three-­‐dimensional  imaging  of  the  breast."  Annals  of  plastic  surgery  54(5):  471-­‐476;  discussion  477-­‐478.  

Marchac,  D.  and  D.  Renier  (1979).  "[The  "floating  forehead".  Early  treatment  of  craniofacial  stenosis]."  Annales  de  chirurgie  plastique  24(2):  121-­‐126.  

Page 77: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

74    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Marcus,  J.  R.,  L.  F.  Domeshek,  et  al.  (2009).  "Use  of  a  three-­‐dimensional,  normative  database  of  pediatric  craniofacial  morphology  for  modern  anthropometric  analysis."  Plastic  and  reconstructive  surgery  124(6):  2076-­‐2084.  

Marsh,  J.  L.,  M.  H.  Gado,  et  al.  (1986).  "Osseous  anatomy  of  unilateral  coronal  synostosis."  The  Cleft  palate  journal  23(2):  87-­‐100.  

McCarthy,  J.  G.,  F.  Epstein,  et  al.  (1984).  "Early  surgery  for  craniofacial  synostosis:  an  8-­‐year  experience."  Plastic  and  reconstructive  surgery  73(4):  521-­‐533.  

McCarthy,  J.  G.,  J.  Schreiber,  et  al.  (1992).  "Lengthening  the  human  mandible  by  gradual  distraction."  Plastic  and  reconstructive  surgery  89(1):  1-­‐8;  discussion  9-­‐10.  

Meara,  J.  G.,  R.  Burvin,  et  al.  (2003).  "Anthropometric  study  of  synostotic  frontal  plagiocephaly:  before  and  after  fronto-­‐orbital  advancement  with  correction  of  nasal  angulation."  Plastic  and  reconstructive  surgery  112(3):  731-­‐738.  

Mesa,  J.  M.,  F.  Fang,  et  al.  (2011).  "Reconstruction  of  unicoronal  plagiocephaly  with  a  hypercorrection  surgical  technique."  Neurosurgical  focus  31(2):  E4.  

Miraoui,  H.  and  P.  J.  Marie  (2010).  "Pivotal  role  of  Twist  in  skeletal  biology  and  pathology."  Gene  468(1-­‐2):  1-­‐7.  

Molina,  F.  and  F.  Ortiz  Monasterio  (1995).  "Mandibular  elongation  and  remodeling  by  distraction:  a  farewell  to  major  osteotomies."  Plastic  and  reconstructive  surgery  96(4):  825-­‐840;  discussion  841-­‐822.  

Morriss-­‐Kay,  G.  M.  and  A.  O.  Wilkie  (2005).  "Growth  of  the  normal  skull  vault  and  its  alteration  in  craniosynostosis:  insights  from  human  genetics  and  experimental  studies."  Journal  of  anatomy  207(5):  637-­‐653.  

Moss,  M.  L.  (1959).  "The  pathogenesis  of  premature  cranial  synostosis  in  man."  Acta  anatomica  37:  351-­‐370.  

Muller,  F.  and  R.  O'Rahilly  (2003).  "Segmentation  in  staged  human  embryos:  the  occipitocervical  region  revisited."  Journal  of  anatomy  203(3):  297-­‐315.  

Oh,  A.  K.,  J.  Wong,  et  al.  (2008).  "Facial  asymmetry  in  unilateral  coronal  synostosis:  long-­‐term  results  after  fronto-­‐orbital  advancement."  Plastic  and  reconstructive  surgery  121(2):  545-­‐562.  

Page 78: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

75    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Persing,  J.  A.  (2008).  "MOC-­‐PS(SM)  CME  article:  management  considerations  in  the  treatment  of  craniosynostosis."  Plastic  and  reconstructive  surgery  121(4  Suppl):  1-­‐11.  

Persing,  J.  A.,  W.  J.  Babler,  et  al.  (1986).  "Skull  expansion  in  experimental  craniosynostosis."  Plastic  and  reconstructive  surgery  78(5):  594-­‐603.  

Plank,  L.  H.,  B.  Giavedoni,  et  al.  (2006).  "Comparison  of  infant  head  shape  changes  in  deformational  plagiocephaly  following  treatment  with  a  cranial  remolding  orthosis  using  a  noninvasive  laser  shape  digitizer."  The  Journal  of  craniofacial  surgery  17(6):  1084-­‐1091.  

Posnick,  J.  C.,  D.  Armstrong,  et  al.  (1995).  "Metopic  and  sagittal  synostosis:  intracranial  volume  measurements  prior  to  and  after  cranio-­‐orbital  reshaping  in  childhood."  Plastic  and  reconstructive  surgery  96(2):  299-­‐309;  discussion  310-­‐295.  

Posnick,  J.  C.,  K.  Y.  Lin,  et  al.  (1994).  "Metopic  synostosis:  quantitative  assessment  of  presenting  deformity  and  surgical  results  based  on  CT  scans."  Plastic  and  reconstructive  surgery  93(1):  16-­‐24.  

Renier,  D.,  C.  Sainte-­‐Rose,  et  al.  (1982).  "Intracranial  pressure  in  craniostenosis."  Journal  of  neurosurgery  57(3):  370-­‐377.  

Richtsmeier,  J.  T.,  C.  H.  Paik,  et  al.  (1995).  "Precision,  repeatability,  and  validation  of  the  localization  of  cranial  landmarks  using  computed  tomography  scans."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  32(3):  217-­‐227.  

Roth,  D.  A.,  L.  I.  Gold,  et  al.  (1997).  "Immunolocalization  of  transforming  growth  factor  beta  1,  beta  2,  and  beta  3  and  insulin-­‐like  growth  factor  I  in  premature  cranial  suture  fusion."  Plastic  and  reconstructive  surgery  99(2):  300-­‐309;  discussion  310-­‐306.  

Roth,  D.  A.,  M.  T.  Longaker,  et  al.  (1997).  "Studies  in  cranial  suture  biology:  Part  I.  Increased  immunoreactivity  for  TGF-­‐beta  isoforms  (beta  1,  beta  2,  and  beta  3)  during  rat  cranial  suture  fusion."  Journal  of  bone  and  mineral  research  :  the  official  journal  of  the  American  Society  for  Bone  and  Mineral  Research  12(3):  311-­‐321.  

Ruiz-­‐Correa,  S.,  J.  R.  Starr,  et  al.  (2008).  "New  severity  indices  for  quantifying  single-­‐suture  metopic  craniosynostosis."  Neurosurgery  63(2):  318-­‐324;  discussion  324-­‐315.  

Page 79: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

76    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Selber,  J.,  R.  R.  Reid,  et  al.  (2008).  "The  changing  epidemiologic  spectrum  of  single-­‐suture  synostoses."  Plastic  and  reconstructive  surgery  122(2):  527-­‐533.  

Selber,  J.  C.,  C.  Brooks,  et  al.  (2008).  "Long-­‐term  results  following  fronto-­‐orbital  reconstruction  in  nonsyndromic  unicoronal  synostosis."  Plastic  and  reconstructive  surgery  121(5):  251e-­‐260e.  

Seruya,  M.,  A.  K.  Oh,  et  al.  (2011).  "Long-­‐term  outcomes  of  primary  craniofacial  reconstruction  for  craniosynostosis:  a  12-­‐year  experience."  Plastic  and  reconstructive  surgery  127(6):  2397-­‐2406.  

Sgouros,  S.  (2005).  "Skull  vault  growth  in  craniosynostosis."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  21(10):  861-­‐870.  

Sgouros,  S.,  J.  H.  Goldin,  et  al.  (1996).  "Surgery  for  unilateral  coronal  synostosis  (plagiocephaly):  unilateral  or  bilateral  correction?"  The  Journal  of  craniofacial  surgery  7(4):  284-­‐289.  

Sgouros,  S.,  A.  D.  Hockley,  et  al.  (1999).  "Intracranial  volume  change  in  craniosynostosis."  Journal  of  neurosurgery  91(4):  617-­‐625.  

Shillito,  J.,  Jr.  and  D.  D.  Matson  (1968).  "Craniosynostosis:  a  review  of  519  surgical  patients."  Pediatrics  41(4):  829-­‐853.  

Shimoji,  T.,  S.  Shimabukuro,  et  al.  (2002).  "Mild  trigonocephaly  with  clinical  symptoms:  analysis  of  surgical  results  in  65  patients."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  18(5):  215-­‐224.  

Sidoti,  E.  J.,  Jr.,  J.  L.  Marsh,  et  al.  (1996).  "Long-­‐term  studies  of  metopic  synostosis:  frequency  of  cognitive  impairment  and  behavioral  disturbances."  Plastic  and  reconstructive  surgery  97(2):  276-­‐281.  

Simmons,  D.  R.  and  W.  T.  Peyton  (1947).  "Premature  closure  of  the  cranial  sutures."  The  Journal  of  pediatrics  31(5):  528-­‐547.  

Snyder,  C.  C.,  G.  A.  Levine,  et  al.  (1973).  "Mandibular  lengthening  by  gradual  distraction.  Preliminary  report."  Plastic  and  reconstructive  surgery  51(5):  506-­‐508.  

Speltz,  M.  L.,  K.  Kapp-­‐Simon,  et  al.  (2007).  "Neurodevelopment  of  infants  with  single-­‐suture  craniosynostosis:  presurgery  comparisons  with  case-­‐matched  controls."  Plastic  and  reconstructive  surgery  119(6):  1874-­‐1881.  

Page 80: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

77    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Speltz,  M.  L.,  K.  A.  Kapp-­‐Simon,  et  al.  (2004).  "Single-­‐suture  craniosynostosis:  a  review  of  neurobehavioral  research  and  theory."  Journal  of  pediatric  psychology  29(8):  651-­‐668.  

Starr,  J.  R.,  B.  R.  Collett,  et  al.  (2012).  "Multicenter  study  of  neurodevelopment  in  3-­‐year-­‐old  children  with  and  without  single-­‐suture  craniosynostosis."  Archives  of  pediatrics  &  adolescent  medicine  166(6):  536-­‐542.  

Tamburrini,  G.,  M.  Caldarelli,  et  al.  (2005).  "Intracranial  pressure  monitoring  in  children  with  single  suture  and  complex  craniosynostosis:  a  review."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  21(10):  913-­‐921.  

Taylor,  J.  A.  and  T.  A.  Maugans  (2011).  "Comparison  of  spring-­‐mediated  cranioplasty  to  minimally  invasive  strip  craniectomy  and  barrel  staving  for  early  treatment  of  sagittal  craniosynostosis."  The  Journal  of  craniofacial  surgery  22(4):  1225-­‐1229.  

Tessier,  P.  (1967).  "[Total  facial  osteotomy.  Crouzon's  syndrome,  Apert's  syndrome:  oxycephaly,  scaphocephaly,  turricephaly]."  Annales  de  chirurgie  plastique  12(4):  273-­‐286.  

Tessier,  P.,  G.  Guiot,  et  al.  (1967).  "[Cranio-­‐naso-­‐orbito-­‐facial  osteotomies.  Hypertelorism]."  Annales  de  chirurgie  plastique  12(2):  103-­‐118.  

Tessier,  P.,  G.  Guiot,  et  al.  (1969).  "Hypertelorism:  cranio-­‐naso-­‐orbito-­‐facial  and  subethmoid  osteotomy."  Panminerva  medica  11(3):  102-­‐116.  

Thompson,  D.  N.,  G.  P.  Malcolm,  et  al.  (1995).  "Intracranial  pressure  in  single-­‐suture  craniosynostosis."  Pediatric  neurosurgery  22(5):  235-­‐240.  

Tilotta,  F.,  F.  Richard,  et  al.  (2009).  "Construction  and  analysis  of  a  head  CT-­‐scan  database  for  craniofacial  reconstruction."  Forensic  science  international  191(1-­‐3):  112  e111-­‐112.  

Tovetjärn,  R.,  G.  Maltese,  et  al.  (2012).  "Spring-­‐assisted  cranioplasty  for  bicoronal  synostosis."  The  Journal  of  craniofacial  surgery  23(4):  977-­‐981.  

Tuncbilek,  G.,  A.  Kaykcoglu,  et  al.  (2012).  "Spring-­‐mediated  cranioplasty  in  patients  with  multiple-­‐suture  synostosis  and  cloverleaf  skull  deformity."  The  Journal  of  craniofacial  surgery  23(2):  374-­‐377.  

Page 81: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

78    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

van  der  Meulen,  J.,  R.  van  der  Hulst,  et  al.  (2009).  "The  increase  of  metopic  synostosis:  a  pan-­‐European  observation."  The  Journal  of  craniofacial  surgery  20(2):  283-­‐286.  

van  der  Meulen,  J.  J.,  P.  R.  Nazir,  et  al.  (2008).  "Bitemporal  depressions  after  cranioplasty  for  trigonocephaly:  a  long-­‐term  evaluation  of  (supra)  orbital  growth  in  92  patients."  The  Journal  of  craniofacial  surgery  19(1):  72-­‐79.  

van  Veelen,  M.  L.  and  I.  M.  Mathijssen  (2012).  "Spring-­‐assisted  correction  of  sagittal  suture  synostosis."  Child's  nervous  system  :  ChNS  :  official  journal  of  the  International  Society  for  Pediatric  Neurosurgery  28(9):  1347-­‐1351.  

Versnel,  S.  L.,  P.  G.  Mulder,  et  al.  (2007).  "Measuring  surgical  outcomes  in  congenital  craniofacial  surgery:  an  objective  approach."  The  Journal  of  craniofacial  surgery  18(1):  120-­‐126.  

Virchow,  R.  (1851).  "Uber  den  Cretinismus,  namentlich  in  Franken,  und  uber  pathologische  Schadelformen."  Verh.  Phys.  Med  Gesellsch.  Wurzburg  2:  230-­‐271.  

Vu,  H.  L.,  J.  Panchal,  et  al.  (2001).  "The  timing  of  physiologic  closure  of  the  metopic  suture:  a  review  of  159  patients  using  reconstructed  3D  CT  scans  of  the  craniofacial  region."  The  Journal  of  craniofacial  surgery  12(6):  527-­‐532.  

Waitzman,  A.  A.,  J.  C.  Posnick,  et  al.  (1992).  "Craniofacial  skeletal  measurements  based  on  computed  tomography:  Part  I.  Accuracy  and  reproducibility."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  29(2):  112-­‐117.  

Waitzman,  A.  A.,  J.  C.  Posnick,  et  al.  (1992).  "Craniofacial  skeletal  measurements  based  on  computed  tomography:  Part  II.  Normal  values  and  growth  trends."  The  Cleft  palate-­‐craniofacial  journal  :  official  publication  of  the  American  Cleft  Palate-­‐Craniofacial  Association  29(2):  118-­‐128.  

Warman,  M.  L.,  J.  B.  Mulliken,  et  al.  (1993).  "Newly  recognized  autosomal  dominant  disorder  with  craniosynostosis."  American  journal  of  medical  genetics  46(4):  444-­‐449.  

Warren,  S.  M.,  J.  A.  Greenwald,  et  al.  (2001).  "New  developments  in  cranial  suture  research."  Plastic  and  reconstructive  surgery  107(2):  523-­‐540.  

Page 82: EVALUATION*OF* SURGICAL*OUTCOMES*IN* … › bitstream › 2077 › 31999 › 1 › gupea_2077_31999_1.pdfEVALUATION*OF* SURGICAL*OUTCOMES*IN* CRANIOSYNOSTOSIS* * ** Quantitative*assessments*in*

79    

EVALUATION  OF  SURGICAL  OUTCOMES  IN  CRANIOSYNOSTOSIS    

Weinberg,  S.  M.  and  J.  C.  Kolar  (2005).  "Three-­‐dimensional  surface  imaging:  limitations  and  considerations  from  the  anthropometric  perspective."  The  Journal  of  craniofacial  surgery  16(5):  847-­‐851.  

Weinzweig,  J.,  R.  E.  Kirschner,  et  al.  (2003).  "Metopic  synostosis:  Defining  the  temporal  sequence  of  normal  suture  fusion  and  differentiating  it  from  synostosis  on  the  basis  of  computed  tomography  images."  Plastic  and  reconstructive  surgery  112(5):  1211-­‐1218.  

Whitaker,  L.  A.,  S.  P.  Bartlett,  et  al.  (1987).  "Craniosynostosis:  an  analysis  of  the  timing,  treatment,  and  complications  in  164  consecutive  patients."  Plastic  and  reconstructive  surgery  80(2):  195-­‐212.  

Wikberg,  E.,  P.  Bernhardt,  et  al.  (2012).  "A  new  computer  tool  for  systematic  evaluation  of  intracranial  volume  and  its  capacity  to  evaluate  the  result  of  the  operation  for  metopic  synostosis."  Journal  of  plastic  surgery  and  hand  surgery.  

Wilbrand,  J.  F.,  A.  Szczukowski,  et  al.  (2012).  "Objectification  of  cranial  vault  correction  for  craniosynostosis  by  three-­‐dimensional  photography."  Journal  of  cranio-­‐maxillo-­‐facial  surgery  :  official  publication  of  the  European  Association  for  Cranio-­‐Maxillo-­‐Facial  Surgery  40(8):  726-­‐730.  

Windh,  P.,  C.  Davis,  et  al.  (2008).  "Spring-­‐assisted  cranioplasty  vs  pi-­‐plasty  for  sagittal  synostosis-­‐-­‐a  long  term  follow-­‐up  study."  The  Journal  of  craniofacial  surgery  19(1):  59-­‐64.  

Yoon,  W.  J.,  Y.  D.  Cho,  et  al.  (2008).  "The  Boston-­‐type  craniosynostosis  mutation  MSX2  (P148H)  results  in  enhanced  susceptibility  of  MSX2  to  ubiquitin-­‐dependent  degradation."  The  Journal  of  biological  chemistry  283(47):  32751-­‐32761.  

Yu,  J.  C.,  J.  Fearon,  et  al.  (2004).  "Distraction  Osteogenesis  of  the  Craniofacial  Skeleton."  Plastic  and  reconstructive  surgery  114(1):  1E-­‐20E.