Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

16
Evaluation of the Puck Failure Theory for Fiber Reinforced Composites Student Name 20 April 2009 ME7501

description

Evaluation of the Puck Failure Theory for Fiber Reinforced Composites. Student Name 20 April 2009 ME7501. Introduction. Failure Theories Compressive Transverse Stress Shear Stress. Objective. Evaluate the relative performance of Puck’s Failure theory with more traditional theories - PowerPoint PPT Presentation

Transcript of Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Page 1: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Student Name20 April 2009ME7501

Page 2: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Introduction

Failure Theories

Compressive Transverse Stress

Shear Stress

Page 3: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Objective

Evaluate the relative performance of Puck’s Failure theory with more traditional theories

Consider udfrc subjected to Transverse and Shear Loading

Page 4: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Failure Theories

Limit– Max Stress/Strain

Interaction– Tsai-Wu– Hill-Tsai

Separate Mode– Hashin-Rotem– Puck

Page 5: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory

Separate Mode

Based on Coulomb-Mohr theory for the failure of brittle materials– ‘The stresses on the fracture plane are decisive for fracture’

-Otto Mohr 2 modes of failure

– Fiber– Inter-Fiber

Location of fracture

Page 6: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: Inter-Fiber Failure

Page 7: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: Inter-Fiber Failure

D

T

T

D

DTT

T

S

SpS

S

SSSS

S

pp

pp

1

1

2

2

21

21

1

1

21

1

122

2121

21

1

1

11

2

12

2||2

2||221

1

||

2

||

2

c

AR

2121

20 and02

Ac

R 21

2

210 and02

)(2121

)(||

)(

)(||)(

||

21

22120)(

||

22120)(

||

21

1212

0for curve ) ,( of

0for curve ) ,( of

21

21

22

21

22

21

pS

pp

ppSR

p

p

c

SR

SSA

dd

dd

A

T

Failure Mode Failure Equation Conditional Requirement(s)

02 0 A, Mode fp

0 B, Mode fp

2

1cos

0 C, Mode

A

w Rffp

fp

Additional and Intermediate Results:

D

T

T

D

DTT

T

S

SpS

S

SSSS

S

pp

pp

1

1

2

2

21

21

1

1

21

1

122

2121

21

1

1

11

2

12

2||2

2||221

1

||

2

||

2

c

AR

2121

20 and02

Ac

R 21

2

210 and02

)(2121

)(||

)(

)(||)(

||

21

22120)(

||

22120)(

||

21

1212

0for curve ) ,( of

0for curve ) ,( of

21

21

22

21

22

21

pS

pp

ppSR

p

p

c

SR

SSA

dd

dd

A

T

Failure Mode Failure Equation Conditional Requirement(s)

02 0 A, Mode fp

0 B, Mode fp

2

1cos

0 C, Mode

A

w Rffp

fp

Additional and Intermediate Results:

Page 8: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: Master Fracture Body

Page 9: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: AS4/55A

Puck Failure Curves for AS4/55A Composite

0

10

20

30

40

50

60

70

80

-120 -100 -80 -60 -40 -20 0 20 40

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

AS4/55A Data Puck--0.6 Puck--0.5 Puck-0.4

Page 10: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: AS4/55A

Puck Failure Curves for AS4/55A Composite

0

10

20

30

40

50

60

70

80

-120 -100 -80 -60 -40 -20 0 20 40

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

AS4/55A Data Puck--1.75 Puck--1.5 Puck-1.25

55.00for 2022

21

dd

Page 11: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: AS4/55A

Proposed Puck Failure Curve and Fracture Angle for AS4/55A Composite

0

10

20

30

40

50

60

70

80

-120 -100 -80 -60 -40 -20 0 20 40

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Frac

ture

Pla

ne A

ngle

[deg

]

AS4/55A Data Proposed Puck Failure Curve Fracture Plane Angle

55.00for 2022

21

dd [

022

21

dd for 2 ≥ 0] = 1.75

Mode AMode BMode C

Page 12: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Puck Failure Theory: AS4/55A

Failure Curve Comparison for AS4/55A Composite

0

10

20

30

40

50

60

70

80

-120 -100 -80 -60 -40 -20 0 20 40

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

AS4/55A Data Puck Max Stress Hill-Tsai Tsai-Wu

Maximum Shear Stress Point

Page 13: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Conclusions

Good performance leading up to and immediately after maximum shear stress point

Good transitional performance between tensile and compressive transverse stress

Poor performance near maximum compressive stress

Requires test data for optimal performance

Page 14: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

References

Sun, C.T., Quinn, B.J., Tao, J., and Oplinger, D.W., “Comparative Evaluation of Failure Analysis Methods for Composite Laminates”, DOT/FAA/AR-95/109, May 1996.

Puck, A. and Schürmann, H., “Failure analysis of FRP laminates by means of physically based phenomenological models”, Comp. Sci. and Techn. 58 (1998) 1045-1067.

Lutz, G., “Fibrous Composite Failure Criteria - Fact and Fantasy.” CDCM 2006 - Conference on Damage in Composite Materials 2006, Stuttgart, Germany, September 18-19, 2006.

Page 15: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Back-up Slides

Failure Curve Comparison for T800/3900-2 Composite

0

20

40

60

80

100

120

140

-250 -200 -150 -100 -50 0 50 100

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

T800/3900-2 Data Puck Max Stress Hill-Tsai Tsai-Wu

Maximum Shear Stress Point

Page 16: Evaluation of the Puck Failure Theory for Fiber Reinforced Composites

Back-up Slides

Failure Curve Comparison for Scotch-Ply (Type 1002) Composite

0

10

20

30

40

50

60

70

80

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40

Ultimate 2 [MPa]

Ulti

mat

e 2

1 [M

Pa]

Scotch-Ply Data Puck Max Stress Hill-Tsai Tsai-Wu