Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

15
Evaluation of illumination uniformity metrics in design and optimization of light guides Milan Maksimoviċ Focal Optical Systems, Oldenzaal, The Netherlands 113 th Annual Meeting DGaO, 29 May 2 June 2012 , Eindhoven, The Netherlands

Transcript of Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Page 1: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Evaluation of illumination uniformity metrics in design and 

optimization of light guides 

Milan MaksimoviċFocal Optical Systems, Oldenzaal, The Netherlands

113th Annual Meeting DGaO,

29 May ‐ 2 June  2012 , Eindhoven, The Netherlands

Page 2: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Summary and Motivation

• Non‐imaging/ Illumination optics:  – Analytical tools are scarce and  application specific– Heuristics/experience is  driving a force in design– Randomness in computational model (Monte‐Carlo ray tracing )

• Optimization merit function construction and landscape – Intrinsic  roughness in the landscape (computational paradigm)– Merit function is not smooth w.r.t. parameters (intrinsic or accidental ?)– Uniformity metrics: local vs. global sampling – Small subset of traditional local and global algorithms available in commercial software

• Examples of uniformity metrics impact on merit function landscape– Rectangular tapered light guide– Circular tapered light guide– Freeform light guide

• Toward the  ( new) optimization algorithm requirements ?

Page 3: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Transfer Efficiency and Uniformity metrics

• Transfer Efficiency– Output‐to‐input flux ratio T= (Total Flux In )/ (Total Flux Out)

• Uniformity in spatial or angular domain– Illuminance [lm/m2] or Luminance [lm/m2 sr]

• Point‐to‐point (local sampling)– Min‐Max Ratio: U1=Emin/Emax– Contrast: U2=(Emax‐Emin)/(Emax+Emin)

• Point‐background (global sampling)– Min‐Average Ratio: U3 =Emin/Eavg– Relative Standard Deviation: U=σE/Eavg

• Complex pattern structure is not captured– Constraint using contrast sensitivity function and relative standard deviation 

sets minimum perceptible non‐uniformity

Page 4: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Rectangular and circular tapered light guides

• Source– Lambertian radiation pattern (ideal)– Square  source 2x2mm (or 1x1 mm)

• Light guide– Rectangular tapered geometry– PMMA– Input size 1mm (set to source size for 

rectangular lightguide)– Output size 5x 5mm ( small angle conversion)

• Uniformity metrics computed for – 1D dependence : 

• Change length L• Input and output size fixed

– 2D dependence• Change length    and  output size• Input size fixed

• Detector– 28x28 bins– Position at the light guide output – Size equal to output size of the light guide

Estimate transfer efficiency within NA=0.2!

Estimate spatial uniformity !

Estimate angle uniformity !

Page 5: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Uniformity metricsrectangular light guide

Uniformity Metrics in Position Space

20 40 60 80 100 1200.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L [mm]

Rel

ativ

e S

tand

ard

Dev

iatio

n

20 40 60 80 100 1200.75

0.8

0.85

0.9

0.95

1

L [mm]

Min

-Mea

n R

atio

20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

L [mm]

Con

trast

ratio

20 40 60 80 100 1200.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L [mm]

Min

-Max

Rat

io

# of minima= 28 # of minima= 28

# of minima= 24 # of minima= 23

Page 6: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

20 30 40 50 60 70 80 90 100 110 1200.09

0.095

0.1

0.105

0.11

0.115

0.12

L [mm]M

erit

func

tion

20 30 40 50 60 70 80 90 100 110 1200.2

0.4

0.6

0.8

1

L [mm]

Effi

cien

cy

20 30 40 50 60 70 80 90 100 110 1200

0.02

0.04

0.06

0.08

L [mm]

Rel

ativ

e S

tand

ard

Dev

iatio

n

Merit functionrectangular light guide

N

ii

N

iiii VT

ΜF

1

1

2

Shape of merit function landscape dominated by uniformity measure!

Page 7: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

20 30 40 50 60 70 80 90 100 110 1200.09

0.095

0.1

0.105

0.11

0.115

0.12

L [mm]

Mer

it fu

nctio

n L=48.18mmL=45.17mm

L=32.2mm L=35.1mmL=32.2mm L=35.1mmL=32.2mm L=35.1mmL=32.2mm L=35.1mmL=32.2mm L=35.1mmL=32.2mm L=35.1mm

L=45.17mm

L=32.2mm L=35.1mm

L=48.18mmL=45.17mm

L=32.2mm L=35.1mm

20 30 40 50 60 70 80 90 100 110 1200.09

0.095

0.1

0.105

0.11

0.115

0.12

L [mm]

Mer

it fu

nctio

n L=48.18mmL=45.17mm

L=32.2mm L=35.1mm

20 30 40 50 60 70 80 90 100 110 1200.09

0.095

0.1

0.105

0.11

0.115

0.12

L [mm]

Mer

it fu

nctio

n L=48.18mmL=45.17mm

L=32.2mm L=35.1mm

Merit functionrectangular light guide

Page 8: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Transfer efficiency rectangular light guide

# of minima= 32

Transfer efficiency  is smooth with small number of shallow local minima!

Page 9: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Uniformity measure  rectangular light guide

# of minima= 795

# of minima= 650

# of minima= 812

# of minima= 796

Uniformity measure is rough  with large number of shallow local minima!

Page 10: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Transfer efficiency circular light guide

Transfer efficiency  is smooth with small number of shallow local minima!

Page 11: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Uniformity metricscircular light guide

Number of local minima

38

Min-MeanRatio

22263119

Relative Standard Deviation

ContrastMin-Max Ratio

Transfer Efficiency

Page 12: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Freeform light guide

• Source– Lambertian radiation pattern (ideal)– Square source or 1x1 mm

• Light guide– Free-form (radial) geometry– PMMA– Input size fixed at 1 mm radius– Output size fixed at 5mm radius– Length Fixed

• Uniformity metrics computed for – 3D dependence– Parameters: equispaced points along the length– Vertical displacements L1,L2,L3– L1: from 2 to 6mm – L2: from 1 to 5mm– L3: from 1 to 5mm

• Detector– 28x28 bins– Position at the light guide output

L2L1 L3

• Convex and concave shape accessible!• Perturbation of tapered circular light guide !• Search space : >  1200 shapes!

Page 13: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Example freeform light guide

High Transfer Efficiency (98 % ),  bad uniformity!

Low Transfer Efficiency (38 % ), improved  uniformity?

Page 14: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Uniformity metricsfreeform light guide

4

Min-MeanRatio

4711Number of local minima

Relative Standard Deviation

ContrastMin-Max Ratio

• Local minima estimated excluding boundaries of the domain• Multi‐directional search in 3D parameter space

L3=1mm L3=1.4mm L3=1.8mm L3=2.2mm L3=2.6mm

L3=3mm L3=3.4mm L3=3.8mm L3=4.2mm L3=4.6mm

L1

L2

L1

L2

L1

L2

• Cross‐sections: relative standard deviation

L1=from 2 to  5.6 mmL2=from 1 to  5 mm(11x11 points)!

Page 15: Evaluation of illumination uniformity metrics in design and optimization of light guides DGaO 2012

Concluding remarks• Merit function landscape and uniformity measure

– Global and local sampling uniformity measures induce large number of  local minima at all resolutions and for all geometries!

– Relative standard deviation measure has smallest number of local minima of all measures, but still large number !

– Landscape is dominated by  shallow regions  modulated by local minima/maxima roughness !

– Roughness  in the landscape dominated by uniformity measure !

– Random search algorithms may produce sub‐optimal solution: theory necessary for starting point (especially for freeform light guides)!

• Toward the reliable optimization method– Use flux measure and global uniformity sampling in the merit function and local 

sampling measure as a constraint (application specific)!

– Robust (global) optimization techniques needed: asymmetric escape function for escaping trap of local minima?

– Nature of local minima: how many true local minima vs. saddle points?

– Is there a structure in the merit function landscape?