Evaluating watershed recharge and implications

26
resourceful. naturally. evaluating watershed recharge and implications for supporting surface water uses SWCS Annual Conference Greg Wilson, Evan Christianson, Eric Novotny Barr Engineering Company

description

69th SWCS International Annual Conference “Making Waves in Conservation: Our Life on Land and Its Impact on Water” July 27-30, 2014 Lombard, IL

Transcript of Evaluating watershed recharge and implications

Page 1: Evaluating watershed recharge and implications

resourceful. naturally.

evaluating watershed recharge and implications for supporting surface water uses

SWCS Annual ConferenceGreg Wilson, Evan Christianson, Eric Novotny

Barr Engineering Company

Page 2: Evaluating watershed recharge and implications

resourceful. naturally.

background

• competing demand for groundwater resources– land use/land cover conversion; ↑ popula on

– pattern of increasing drought frequency

– ↑demand to appropriate water for irrigation and waterworks

Page 3: Evaluating watershed recharge and implications

resourceful. naturally.

challenge for watershed management

• how to provide groundwater protection and preservation for beneficial purposes?– wildlife and aquatic life– recreation– domestic & municipal consumption– agriculture– industry and power– navigation

Page 4: Evaluating watershed recharge and implications

resourceful. naturally.

regulation of groundwater appropriation

• MN Dept. of Natural Resources– 1969 permit program to regulate large volume (>million gals a year) groundwater appropriations

– SWUDS database tracks monthly appropriations for each permit (by crop type, where applicable) since 1988

Page 5: Evaluating watershed recharge and implications

resourceful. naturally.

challenge in developing TMDLs for stressors

the maximum amount of a specific pollutant that can 

be discharged to a waterbody and still meet water quality standards

EPA does not believe flow, or lack of flow, is a pollutant 

as defined by CWA

Page 6: Evaluating watershed recharge and implications

resourceful. naturally.

Little Rock Creek

• protected trout stream– impairments for coldwater fish assemblage and nitrate– 45% row crops– mostly corn– 36% irrigated– sand plain                                                                      (west)

– downstream                                                       impoundment

Page 7: Evaluating watershed recharge and implications

resourceful. naturally.

biotic impairment for fish—stressors addressed by TMDL

• groundwater withdrawal has increased significantly over the last decade, likely altering stream flow during the summer months and exacerbated stressors for trout:– dissolved oxygen– nitrate– temperature

Page 8: Evaluating watershed recharge and implications

resourceful. naturally.

TMDL endpoints for each stressor

• Use existing water quality standard for dissolved oxygen (> 7.0 mg/L as a daily minimum)

• Use 10 mg/L nitrate concentration for TMDL endpoint, based on drinking water standard; biotic integrity standard is under development

• Comparison of available temperature data to EPA guidance for chronic and acute effects on trout

Page 9: Evaluating watershed recharge and implications

resourceful. naturally.

nitrate

Page 10: Evaluating watershed recharge and implications

resourceful. naturally.

Summary of WQ monitoring relative to standards—DO

Page 11: Evaluating watershed recharge and implications

resourceful. naturally.

demand for groundwater appropriations

Page 12: Evaluating watershed recharge and implications

resourceful. naturally.

demand for groundwater appropriations

Page 13: Evaluating watershed recharge and implications

resourceful. naturally.

demand for groundwater appropriations

Page 14: Evaluating watershed recharge and implications

resourceful. naturally.

limitations of typical watershed models used for TMDLs

• Hydrologic Response Units (HRUs) or model segments are lumped and model inputs averaged in each subwatershed

• recharge is not spatially referenced to the receiving waters

• groundwater is simulated in one dimension based on average parameters/homogeneous media; assumed to follow surface divides

Page 15: Evaluating watershed recharge and implications

resourceful. naturally.

representation of groundwater in typical watershed models used for TMDLs

Page 16: Evaluating watershed recharge and implications

resourceful. naturally.

what we need from watershed models used for TMDLs

Page 17: Evaluating watershed recharge and implications

resourceful. naturally.

importance of linked surface water-groundwater modeling

• MODFLOW—poor job with surface runoff processes

• SWAT—has “empirical” groundwater equations–MODFLOW accounts for “physics” of flow with finite difference methods

• linked modeling provides best spatial/temporal representation of what is occurring

• recharge for MODFLOW derived from SWAT

Page 18: Evaluating watershed recharge and implications

resourceful. naturally.

description of model linkage

SWAT w/ MODFLOW

Groundwater pumping (can account for spatial locations)

Irrigation

Groundwater Storage

Stream Loss

Page 19: Evaluating watershed recharge and implications

resourceful. naturally.

Note: Filled circles indicate permits issued since 2000.Positive values indicate an increase in pumping

Difference of 1997-1999 Average Pumping Compared to 2006-2008 Average Pumping

Page 20: Evaluating watershed recharge and implications

resourceful. naturally.

hypothetical simulations

• two differences—amount of groundwater pumping and wells being pumped–1997‐1999 average monthly pumping vs. 2006‐2008 average monthly pumping

Page 21: Evaluating watershed recharge and implications

resourceful. naturally.

Note: Filled circles indicate permits issued since 2000.Positive values indicate an increase in pumping

Difference of 1997-1999 Average Pumping Compared to 2006-2008 Average Pumping

Page 22: Evaluating watershed recharge and implications

resourceful. naturally.

hypothetical simulations

Page 23: Evaluating watershed recharge and implications

resourceful. naturally.

implementation strategies

• need to restore groundwater flow and WMA connectivity

• increase                                                                       irrigation                                                                     efficiency

• reduce                                                                 appropriations                                                                     and loads

• DO, nitrate &                                                                     temperature

Page 24: Evaluating watershed recharge and implications

resourceful. naturally.

implementation strategies

• Need to restore groundwater flow and WMA connectivity

• Temperature

Page 25: Evaluating watershed recharge and implications

resourceful. naturally.

summary

• significant increasing trend in appropriations– impacts volumes/flows available for lakes/ streams at critical times

– impacts assimilation capacity/aquatic life, along with recreation/navigation

– sensitivity of surface waters varies significantly throughout the state

• managing use support requires better data and tools/modeling to ID sources and prioritize

Page 26: Evaluating watershed recharge and implications

resourceful. naturally.

questions?Greg [email protected]