Evaluate IEEE 802.11e EDCA Performance Tyler Ngo CMPE 257.

15
Evaluate IEEE 802.11e EDCA Performance Tyler Ngo CMPE 257
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    229
  • download

    3

Transcript of Evaluate IEEE 802.11e EDCA Performance Tyler Ngo CMPE 257.

Evaluate IEEE 802.11e EDCA Performance

Tyler Ngo

CMPE 257

EDCA vs. DCF

EDCA classifies traffic flows in different access categories (AC). Modifiable MAC parameters include:

– Arbitration Interframe Space (AIFS) replaces the DIFS in IEEE 802.11.– Minimum Contention Window (CWmin).– Maximum Contention Window (CWmax).– Transmission Opportunity (TXOP).

Shorter CW and AIFS for higher-priority traffic.

AC CWmin CWmax AIFSN Max TXOP Background (AC_BK) 31 1023 7 0 Best Effort (AC_BE) 31 1023 3 0

Video (AC_VI) 15 31 2 3.008ms Voice (AC_VO) 7 15 2 1.504ms

Legacy DCF 15 1023 2 0

Analytical Modeling Transmission Probability

Let W = CWmin, then CWmax = W * 2m, where m is the maximum backoff stage.

Let ρc be the probability that a packet of class c encounters a collision on the channel. Let τc be the probability that a station of class c transmit in a random

chosen slot. Then:

Analytical Modeling Throughput

Let ρtr be the probability that there is at least one transmission in the considered slot time. Then:

Let ρs,i be the probability that a transmission of a packet of node i occurring on the channel is successful. Let τj be the probability that a node j transmit data (j ≠ i, j = [1, n]). Then:

Analytical Modeling Throughput, Cont.

Let Ts,c be the average time that a node of class c senses the channel busy because of a successful transmission, TC,c be the average time that a node of class c senses the channel busy during a collision. Let E[P] be the expected packet length, H = PHYhdr + MAChdr be the packet header, δ be the propagation delay, and α be the length of a slot time. Then:

The throughput of node i, Si is then:

Simulation Modeling

Controlled Parameters:– Loss Model: Log Distance

Exponent = 3 Reference Distance = 1 Reference Loss: 46.67

– Delay Model: Random, Uniform variable; Constant speed.– Nist Error Rate Model– Transmission Range

Energy Detection Threshold: -96.0 CCA Mode1 Threshold: -99.0 Tx Power End/Start: 16.0206

– Routing Protocol: OLSR– TCP Protocol: New Reno– Data Rate: 5MB/s– Run time = ~100s– TCP Packet Size = 1024– UDP Packet Size = 120

Topology 1

Traffic: 6 7; 9 1; 3 8; 5 2 Total run duration: 100s

Topology 1

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

X

Y

Topology 1: N6to7 TCP/BE; Others UDP/BE or AC_VO

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

Packet ID

Del

ay

Stationary:BE

Stationary:BE/AC_VO

Mobility:BE

Mobility:BE/AC_VO

Topology 1: N6to7 TCP/AC_VO; Others UDP/BE

0

0.005

0.01

0.015

0.02

0.025

0.03

0 200 400 600 800 1000 1200 1400 1600

Packet ID

Del

ay (

s)

Mobility

Stationary

Topology 2

Traffic:– 6 7; – 9 1; – 3 8; – 5 2;

Total run duration: 100s

Topology 2

-200

-150

-100

-50

0

50

100

150

200

250

300

350

-200 -150 -100 -50 0 50 100 150 200 250 300

X-Pos

Y-Po

s

Topology 2: N6to7 TCP/BE; Others UDP/BE or AC_VO

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200 250 300 350 400

Packet ID

Del

ay (

s)

Stationary: BE

Mobile: BE

Stationary: BE/AC_VO

Mobility: BE/AC_VO

Topology 2: N6to7 TCP/AC_VO; Others UDP/BE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000 1200

Packet ID

Del

ay (

s)

Stationary

Mobility

Topology 3

Traffic: – 6 7; – 9 1; – 3 8; – 5 2;

Total run duration: 100s Mobile environment only

– Gaussian Markov Mobility Model

Topology 3: N6to7 TCP/BE or AC_VO; Others UDP/BE or AC_VO

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800

Packet ID

Delay

(s)

BE

TCP: BE; UDP: AC_VO

TCP: AC_VO; UDP: BE

Conclusion

Higher-priority tagging improves throughputs. But…

What are the rules for tagging? TCP starvation is the main issue.