EVAL6480H and EVAL6482H: high power microstepping motor drivers€¦ · April 2015 DocID025458 Rev...

31
April 2015 DocID025458 Rev 2 1/31 31 UM1685 User manual EVAL6480H and EVAL6482H: high power microstepping motor drivers Introduction The EVAL6480H and EVAL6482H are two demonstration boards based on L648x devices implementing a complete stepper motor driver for high power applications. They are designed to operate with a supply voltage ranging from 10.5 V to 85 V and mount eight STD25NF10 MOSFETs with a maximum current of 25 A r.m.s. . In combination with the STEVAL-PCC009V2 demonstration board and the SPINFamily evaluation tool, the boards provide a complete and easy to use evaluation environment allowing the user to investigate all the features of the L648x devices. Both the boards support the daisy chain configuration making them suitable for the evaluation of the devices in multi motor applications. www.st.com

Transcript of EVAL6480H and EVAL6482H: high power microstepping motor drivers€¦ · April 2015 DocID025458 Rev...

April 2015 DocID025458 Rev 2 1/31

31

UM1685User manual

EVAL6480H and EVAL6482H: high power microstepping motordrivers

Introduction

The EVAL6480H and EVAL6482H are two demonstration boards based on L648x devices implementing a complete stepper motor driver for high power applications. They are designed to operate with a supply voltage ranging from 10.5 V to 85 V and mount eight STD25NF10 MOSFETs with a maximum current of 25 A r.m.s..

In combination with the STEVAL-PCC009V2 demonstration board and the SPINFamily evaluation tool, the boards provide a complete and easy to use evaluation environment allowing the user to investigate all the features of the L648x devices. Both the boards support the daisy chain configuration making them suitable for the evaluation of the devices in multi motor applications.

www.st.com

Contents UM1685

2/31 DocID025458 Rev 2

Contents

1 Boards description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 EVAL6480H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Evaluation environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Voltage mode driving (EVAL6480H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Advanced current control (EVAL6482H) . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Overcurrent and stall detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sensing resistors of the EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 How to change the supply configuration of the board . . . . . . . . . . . . 28

6 Daisy chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

DocID025458 Rev 2 3/31

UM1685 List of tables

31

List of tables

Table 1. EVAL6480H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Table 2. EVAL6480H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Table 3. EVAL6480H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Table 4. EVAL6480H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 5. EVAL6480H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 6. EVAL6482H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Table 7. EVAL6482H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Table 8. EVAL6482H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Table 9. EVAL6482H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Table 10. EVAL6482H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Table 11. VCC supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Table 12. VREG supply configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Table 13. VDD supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Table 14. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

List of figures UM1685

4/31 DocID025458 Rev 2

List of figures

Figure 1. EVAL6480H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 2. EVAL6480H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 3. EVAL6480H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 4. EVAL6480H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 5. EVAL6480H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 6. EVAL6480H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 7. EVAL6480H - layout (bottom layer ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 8. EVAL6482H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 9. EVAL6482H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 10. EVAL6482H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 11. EVAL6482H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 12. EVAL6482H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 13. EVAL6482H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 14. EVAL6482H - layout (bottom layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

DocID025458 Rev 2 5/31

UM1685 Boards description

31

1 Boards description

1.1 EVAL6480H

Figure 1. EVAL6480H - jumper and connector location

Table 1. EVAL6480H - electrical specifications

Parameter Value

Supply voltage (VS) 10.5 to 85 V

Maximum output current (each phase) 25 Ar.m.s. at 25 °C(1)

1. Refer to STD25F10 datasheet for details.

External MOSFET Rds(ON) 33 m typical at 25 °C(1)

Gate driver supply voltage (VCC) 7.5 V to 15 V

Logic supply voltage 3.3 V

Logic interface supply voltage 3.3 V or 5 V

Low level logic inputs 0 V

High level logic input VDD(2)

2. All logic inputs are 5 V tolerant.

Operating temperature -25 °C to +125 °C

FLAG LED

Supply managementjumpers

Phase Aconnector

Phase Bconnector

Master SPIconnector

Applicationarea

Slave SPIconnector

External switch connector (SW input)

Motor supply voltagecompensation regulation

(ADCIN input)

Power supply connector(10.5 V - 85 V)

Supply managementconnector

(VS, VSREG, VCCREG and GND)

BUSY LED

AM14874v1

Boards description UM1685

6/31 DocID025458 Rev 2

Table 2. EVAL6480H - jumper and connector description

Name Type Function

J5 Power supply Main supply voltage

J7 Power output Power bridge A outputs

J8 Power output Power bridge B outputs

J6 Power supply Integrated voltage regulator inputs

J3 SPI Master SPI connector

J4 SPI Slave SPI connector

JP1 Jumper VS to VSREG jumper

JP2 Jumper VSREG to VCC jumper

JP3 Jumper VCC to VCCREG jumper

JP4 Jumper VCCREG to VREG jumper

JP5 Jumper VREG to VDD jumper

JP6 Jumper VDD to 3.3 V from SPI connector jump

JP7 Jumper Daisy chain termination jumper

JP8 Jumper STBY to VS pull-up jumper

TP8 (BUSY/SYNC) Jumper BUSY/SYNC output test point

Table 3. EVAL6480H - master SPI connector pinout (J3)

Pin number Type Description

1 Open drain output L6480 BUSY output

2 Open drain output L6480 FLAG output

3 Ground Ground

4 Supply EXT_VDD (can be used as external logic power supply)

5 Digital outputSPI master IN slave OUT signal (connected to the L6480 SDO output through daisy chain termination jumper JP7)

6 Digital input SPI serial clock signal (connected to L6480 CK input)

7 Digital inputSPI master OUT slave IN signal (connected to L6480 SDI

input)

8 Digital input SPI slave select signal (connected to L6480 CS input)

9 Digital input L6480 step-clock input

10 Digital input L6480 standby/reset input

DocID025458 Rev 2 7/31

UM1685 Boards description

31

Table 4. EVAL6480H - slave SPI connector pinout (J4)

Pin number Type Description

1 Open drain output L6480 BUSY output

2 Open drain output L6480 FLAG output

3 Ground Ground

4 Supply EXT_VDD (can be used as external logic power supply)

5 Digital output SPI master IN slave OUT signal (connected to pin 5 of J3)

6 Digital input SPI serial clock signal (connected to L6480 CK input)

7 Digital input SPI master OUT slave IN signal (connected to L6480 SDO output)

8 Digital input SPI slave select signal (connected to L6480 CS input)

9 Digital input L6480 step-clock input

10 Digital input L6480 standby/reset input

Boards description UM1685

8/31 DocID025458 Rev 2

Figure 2. EVAL6480H - schematic part 1/2

SP

I_IN

SP

I_O

UT

App

licat

ion

refe

renc

e

OS

CIN

OS

CO

UT

ST

CK

nCS

CK

SD

IS

DO

BU

SY

F LA

G

nCS

CK

SD

I

BU

SY

BU

SY

FLA

G

FLA

G

nCS

CK

SD

O

ST

BY

_RE

SE

T

ST

BY

_RE

SE

TST

CK

ST

CK

FLA

G

BU

SY

AD

C_

IN

STBY

_RE

SE

T

BU

SY

ST

BY

_RE

SE

T

FLA

G

ST

CK

AD

C_I

N

G_H

S_A

1

G_L

S_A

1

G_H

S_A

2

G_L

S_A

2

G_H

S_B

1

G_H

S_B

2

G_L

S_B

2

G_L

S_B

1

OU

TA

1

OU

TA

2

OU

TB

1

OU

TB

2

ST

BY

AD

C_

IN

VS

VS

_RE

GV

CC

VC

C_R

EG

VR

EG

VD

D

3V3

3V3

VD

DV

DD

VD

DV

DD

3V3

VS

VS

_RE

GV

CC

VC

C_R

EG

VR

EG

VD

D

AD

CIN

1C

522

u/6

V3

JP1

12

VC

C

1

ST

BY

1

U1

L648

0

G_L

S_A

11

OU

T _A

12

G_H

S_A

13

G_L

S_A

238

OU

T_A

237

G_H

S_A

23 6

OU

T_B

118

G_L

S_B

119

OU

T_B

221

G_L

S_B

220

G_H

S_B

117

G_H

S_B

222

PGN

D

2 3

PGN

D

35

AGN

D

16

DG

ND

2 9

V S

6

PGN

D

8

VS

_RE

G12

VCC

10

VC

C_R

EG

11

VR

EG

13

VBO

OT

7

CP9

AD

C_IN

5V

DD

27

STB

Y _R

ES

34

CS

24

SDO

28C

K2 5

SD

I26

OS

C_IN

1 4

OS

C_O

UT

15

SW

33ST C

K32

BU

SY_S

YNC

30

FLA

G31

GN

D

39

N.C

.4

GN

D1

JP3

12

C9

47n

/100

V

C2

220

n/10

0V

JP2

12

J 2 N.M

.1 2 JP7

12

R4 470

C8

100

n/10

0V

C1

470

n/2

5V

J 1 N.M

.1 2

VD

D

1

VS

1

R1

100

C13

10n

/ 6V

3

JP5

12

VR

EG

1

R3

39k

BU

SY

1

C12

100p

/ 6V

3

C7

470n

/ 25V

J31

23

45

67

89

10

J41

23

45

67

89

1 0

JP4

12

JP6

12

C6

100

n/ 2

5V

ST

CK

1

C10

10n

/6V3

R2 39

k

D1

BA

V9

12

3

DL1

LED

- A

MB

ER

2 1

R5

470

C4

100

n/4V

C3

100

n/6V

3

DL2

LED

- RE

D

2 1

FLA

G1

AM14875v1

DocID025458 Rev 2 9/31

UM1685 Boards description

31

Figure 3. EVAL6480H - schematic part 2/2

OP

TIO

N

VS

VS

_RE

GV

CC

_RE

GG

ND

OU

TA

12

OU

TB

12

GN

DVS

App

licat

ion

refe

renc

e

G_H

S_B

2

G_L

S_B

2

G_H

S_B

1

G_L

S_B

1

G_H

S_A

1

G_L

S_A

1

G_H

S_A

2

G_L

S_A

2

OU

TA1

OU

TA2

OU

TB1

OU

TB

2

ST

BY

AD

C_I

N

VSV

SV

S_R

EG

VC

C_R

EG

VS

VS

VS

_RE

GV

SV

DD

VS

VS

JP8

12

Q1

S TD

25N

F10

1

4 3

Q4

STD

25N

F10

1

4

3

C15

220

n/1

00V

D2

BZX5

85- B

3V3

Q5

STD

25N

F10

1

4 3

J8

12

+C

11A

220u

/100

V

Q8

ST

D25

NF

101

4 3

Q2

STD

25N

F10

1

43

C14

220n

/100

V

J 6 N.M

.

1 2 3 4

R9

N.M

.

+C

1122

0u

/100

V

R7

100

k/0

.125

W

Q6

STD

25N

F 10

1

43

R6

100k

/0.1

25W

J5

12

R8

50k/

0.125

W

13

2

Q3

STD

25N

F10

1

4 3

J7

12

Q7

ST

D25

NF

101

4 3

D3

BZX5

85- B

3V6

AM14880v1

Boards description UM1685

10/31 DocID025458 Rev 2

Table 5. EVAL6480H - bill of material

Item Quantity Reference Value Package

1 9VS, VREG, VDD, VCC,

STCK, STBY, FLAG, BUSY, ADCIN

TPTH-RING-1MM (red) TPTH-RING-1MM

2 2 C1,C7 470 nF/25 V CAPC-0603

3 1 C2 220 nF/100 V CAPC-0805

4 1 C3 100 nF/6.3 V CAPC-0603

5 1 C4 100 nF/4 V CAPC-0603

6 1 C5 22 µF/6.3 V CAPC-1206

7 1 C6 100 nF/25 V CAPC-0603

8 1 C8 100 nF/100 V CAPC-0603

9 1 C9 47 nF/100 V CAPC-0805

10 2 C10, C13 10 nF/6.3 V CAPC-0603

11 1 C11 220 µF/100 V CAPES-R18H17

12 1 C11A 220 µF/100 V CAPE-R16H21-P75

13 1 C12 100 pF/6.3 V CAPC-0603

14 1 DL1 LED amber LEDC-0805

15 1 DL2 LED red LEDC-0805

16 1 D1 BAV99 SOT-23

17 1 D2 BZX585-B3V3 SOD523

18 1 D3 BZX585-B3V6 SOD523

19 1 GND TPTH-RING-1MM (black) TPTH-RING-1MM

20 5 JP1, JP3, JP5, JP7, JP8 Jumper CLOSED JP2SO

21 3 JP2, JP4, JP6 Jumper OPEN JP2SO

22 2 J1, J2 N. M. STRIP254P-M-2

23 1 J3Pol. IDC male header vertical

10 poles (black)CON-FLAT-5X2-180M

24 1 J4Pol. IDC male header vertical

10 poles (gray)CON-FLAT-5X2-180M

25 3 J5, J7, J8 Screw connector 2 poles MORSV-508-2P

26 1 J6 N. M. STRIP254P-M-4

27 8Q1, Q2, Q3, Q4, Q5, Q6,

Q7, Q8STD25NF10 DPAK

28 1 R1 100 RESC-0603

29 2 R2, R3 39 k RESC-0603

30 2 R4, R5 470 RESC-0603

31 2 R6, R7 100 k/ 0.125 W RESC-0603

DocID025458 Rev 2 11/31

UM1685 Boards description

31

32 1 R8 33 k/ 0.125 W TRIMM-100X50X110-64W

33 1 R9 N. M. RESC-0603

34 1 U1 L6480 HTSSOP050P-660X110-38-EP

Table 5. EVAL6480H - bill of material (continued)

Item Quantity Reference Value Package

Boards description UM1685

12/31 DocID025458 Rev 2

Figure 4. EVAL6480H - layout (top layer)

Figure 5. EVAL6480H - layout (inner layer 2)

DocID025458 Rev 2 13/31

UM1685 Boards description

31

Figure 6. EVAL6480H - layout (inner layer 3)

Figure 7. EVAL6480H - layout (bottom layer )

Boards description UM1685

14/31 DocID025458 Rev 2

1.2 EVAL6482H

Figure 8. EVAL6482H - jumper and connector location

Table 6. EVAL6482H - electrical specifications

Parameter Value

Supply voltage (VS) 10.5 to 85 V

Maximum output current (each phase) 6 Ar.m.s. at 25 °C(1)

1. Limited by the mounted sensing resistors.

External MOSFET Rds(ON) 33 m typical at 25 °C(2)

2. Refer to STD25NF10 datasheet for details.

Gate driver supply voltage (VCC) 7.5 V to 15 V

Logic supply voltage 3.3 V

Logic interface supply voltage 3.3 V or 5 V

Low level logic input 0 V

High level logic input VDD(3)

3. All logic inputs are 5 V tolerant.

Operating temperature -25 °C to +125 °C

FLAG LED

Supply managementjumpers

Phase Aconnector

Phase Bconnector

Master SPIconnector

Applicationarea

Slave SPIconnector

External switch connector (SW input)

ADCIN input

Power supply connector(10.5 V - 85 V)

Supply managementconnector

(VS, VSREG, VCCREG and GND)

BUSY LED

AM15181v1

DocID025458 Rev 2 15/31

UM1685 Boards description

31

Table 7. EVAL6482H - jumper and connector description

Name Type Function

J5 Power supply Main supply voltage

J7 Power output Power bridge A outputs

J8 Power output Power bridge B outputs

J6 Power supply Integrated voltage regulator inputs

J3 SPI Master SPI connector

J4 SPI Slave SPI connector

JP1 Jumper VS to VSREG jumper

JP2 Jumper VSREG to VCC jumper

JP3 Jumper VCC to VCCREG jumper

JP4 Jumper VCCREG to VREG jumper

JP5 Jumper VREG to VDD jumper

JP6 Jumper VDD to 3.3 V from SPI connector jumper

JP7 Jumper Daisy chain termination jumper

JP8 Jumper STBY to VS pull-up jumper

Table 8. EVAL6482H - master SPI connector pinout (J3)

Pin number Type Description

1 Open drain output L6482 BUSY output

2 Open drain output L6482 FLAG output

3 Ground Ground

4 Supply EXT_VDD (can be used as external logic power supply)

5 Digital outputSPI master IN slave OUT signal (connected to the L6482 SDO

output through daisy chain termination jumper JP7)

6 Digital input SPI serial clock signal (connected to L6482 CK input)

7 Digital input SPI master OUT slave IN signal (connected to L6482 SDI input)

8 Digital input SPI slave select signal (connected to L6482 CS input)

9 Digital input L6482 step-clock input

10 Digital input L6482 standby/reset input

Boards description UM1685

16/31 DocID025458 Rev 2

Table 9. EVAL6482H - slave SPI connector pinout (J4)

Pin number Type Description

1 Open drain output L6482 BUSY output

2 Open drain output L6482 FLAG output

3 Ground Ground

4 Supply EXT_VDD (can be used as external logic power supply)

5 Digital output SPI master IN slave OUT signal (connected to pin 5 of J3)

6 Digital input SPI serial clock signal (connected to L6482 CK input)

7 Digital input SPI master OUT slave IN signal (connected to L6482 SDO output)

8 Digital input SPI slave select signal (connected to L6482 CS input)

9 Digital input L6482 step-clock input

10 Digital input L6482 standby/reset input

DocID025458 Rev 2 17/31

UM1685 Boards description

31

Figure 9. EVAL6482H - schematic part 1/2A

pplic

atio

n re

fere

nce

SP

I_IN

SP

I_O

UT

VS

VC

CV

RE

GV

DD

AD

C_I

N

STB

Y

BU

SY

FLA

G

STC

K

GN

D

BU

SY

FLA

G

SD

O

ST

BY

_RE

SE

T

ST

BY

_RE

SE

TS

TC

K

ST

CK

nCS

CK

AD

C_I

N

ST

BY

_RE

SE

T

SD

I

BU

SY

BU

SY

FLA

G

FLA

G

nCS

CK

BU

SY

ST

BY

_RE

SE

T

FLA

G

ST

CK

AD

C_I

N OS

CIN

FLA

G

OS

CO

UT

BU

SYS

TC

K

nCS

CK

SD

IS

DO

BU

SY

FLA

G

G_L

S_B

1

OU

TA

1

OU

TA

2

OU

TB

1

OU

TB

2

ST

BY

G_H

S_A

1

G_L

S_A

1

AD

C_I

NG

_HS

_A2

G_L

S_A

2

G_H

S_B

1

G_H

S_B

2

G_L

S_B

2

SE

NS

EA

SE

NS

EB

3V3

3V3

VS

VS

_RE

GV

CC

VC

C_R

EG

VR

EG

VD

D

VD

DV

DD

VD

DV

DD

3V3

VS

VS

_RE

GV

CC

VC

C_R

EG

VR

EG

VD

D

R5

470

FLA

G1

R3

39k

ST

BY

1C

410

0n/4

V

C3

100n

/6V

3

J31

23

45

67

89

10

VC

C

1

JP1

12

R1

100

R4 47

0

C13

10n/

6V3

R2 39

k

JP3

12

VR

EG

1

C2

220n

/100

VC

522

u/6V

3

DL1

LED

- A

MB

ER

21

JP2

12

J2 N.M

.1 2

GN

D1

C8

100n

/100

V

J41

23

45

67

89

10

BU

SY

1

D1

BA

V99

12

3

DL2

LED

- R

ED

21

JP5

12

C7

470n

/25V

JP7

12

JP6

12

VD

D

1

J1 N.M

.1 2

C9

47n/

100V

JP4

12

U1

L648

2

G_L

S_A

11

OU

T_A

12

G_H

S_A

13

G_L

S_A

238

OU

T_A

237

G_H

S_A

236

OU

T_B

118

G_L

S_B

119

OU

T_B

221

G_L

S_B

220

G_H

S_B

117

G_H

S_B

222

SE

NS

EB

23

SE

NS

EA

35

AG

ND

16

DG

ND

29

VS6

PG

ND

8

VS

_RE

G12

VC

C10

VC

C_R

EG

11

VR

EG

13

VB

OO

T

7

CP9

AD

C_I

N5

VD

D27

ST

BY

_RE

S34

CS

24

SD

O28

CK

25

SD

I26

OS

C_I

N14

OS

C_O

UT

15

SW

33

ST

CK

32

BU

SY

_SY

NC

30

FLA

G31

GN

D

39

ST

CK

1

C10

10n/

6V3

AD

CIN

1

C1

470n

/25V

C12

100p

/6V

3

C6

100n

/25V

VS

1

AM15182v1

Boards description UM1685

18/31 DocID025458 Rev 2

Figure 10. EVAL6482H - schematic part 2/2

App

licat

ion

refe

renc

e

OP

TIO

N

VS

VS

_RE

GV

CC

_RE

GG

ND

OU

TA

12

OU

TB

12

GN

DVS

G_H

S_B

2

G_L

S_B

2

G_H

S_B

1

G_L

S_B

1

G_H

S_A

1

G_L

S_A

1

G_H

S_A

2

G_L

S_A

2

ST

BY

OU

TA

1O

UT

A2

OU

TB

1O

UT

B2

AD

C_I

N

SE

NS

EA

SE

NS

EB

VS

VS

VD

D

VS

VS

VS

_RE

GV

CC

_RE

GV

S

VS

VS

_RE

GV

S

Q8

ST

D25

NF

101

4 3Q

4S

TD

25N

F10

14 3

+C

1122

0u/1

00V

C15

220n

/100

V

+C

11A

220u

/100

V

D2

BZ

X58

5-B

3V3

R7

100k

/0.1

25W

R19

0R1/

2WR

180R

1/2W

R17

50k/

0.12

5W

13

2

Q1

ST

D25

NF

101

4 3

R9 N.M

.

Q6

ST

D25

NF

101

4 3

J5

12

Q3

ST

D25

NF

101

4 3

R6

100k

/0.1

25W

J6 N.M

.

1 2 3 4

R21

0R1/

2W

Q5

ST

D25

NF

101

4 3

JP8

12

Q2

ST

D25

NF

101

4 3

J812

R20

0R1/

2W

C14

220n

/100

V

J7

12

D3

BZ

X58

5-B

3V6

Q7

ST

D25

NF

101

4 3

AM15183v1

DocID025458 Rev 2 19/31

UM1685 Boards description

31

Table 10. EVAL6482H - bill of material

Item Quantity Reference Value Package

1 9VS, VREG, VDD, VCC,

STCK, STBY, FLAG, BUSY, ADCIN

TPTH-RING (red) TPTH-RING-1MM

2 1 GND TP-RING (black) TPTH-RING-1MM

3 2 C1,C7 470 nF/25 V CAPC-0603

4 3 C2, C14, C15 220 nF/100 V CAPC-0805

5 1 C3 100 nF/6.3 V CAPC-0603

6 1 C4 100 nF/4 V CAPC-0603

7 1 C5 22 µF/6.3 V CAPC-1206

8 1 C6 100 nF/25 V CAPC-0603

9 1 C8 100 nF/100 V CAPC-0603

10 1 C9 47 nF/100 V CAPC-0805

11 2 C10, C13 10 nF/6.3 V CAPC-0603

12 1 C11 220 µF/100 V CAPES-R18H17

13 1 C11A 220 µF/100 V CAPE-R16H21-P75

14 1 C12 100 pF/6.3 V CAPC-0603

15 1 DL1 LED amber LEDC-0805

16 1 DL2 LED red LEDC-0805

17 1 D1 BAV99 SOT-23

18 1 D2 BZX585-B3V3 SOD523

19 1 D3 BZX585-B3V6 SOD523

20 5 JP1, JP3, JP5, JP7, JP8 Jumper CLOSED JP2SO

21 3 JP2, JP4, JP6 Jumper OPEN JP2SO

22 2 J1, J2 N. M. STRIP254P-M-2

23 1 J3Pol. IDC male header vertical

10 poles (black)CON-FLAT-5X2-180M

24 1 J4Pol. IDC male header vertical

10 poles (gray)CON-FLAT-5X2-180M

25 3 J5, J7, J8 Screw connector 2 poles MORSV-508-2P

26 1 J6 N. M. STRIP254P-M-4

27 8Q1, Q2, Q3, Q4, Q5, Q6,

Q7, Q8STD25NF10 DPAK

28 1 R1 100 RESC-0603

29 2 R2, R3 39 k RESC-0603

30 2 R4, R5 470 RESC-0603

31 2 R6, R7 100 k/ 0.125 W RESC-0603

Boards description UM1685

20/31 DocID025458 Rev 2

32 1 R9 N. M. RESC-0603

33 1 R17 50 k/ 0.125 W TRIMM-100X50X110-64W

34 4 R18, R19, R20, R21 0.1 /2W RESC-2010

35 1 U1 L6482 HTSSOP050P-660X110-38-EP

Table 10. EVAL6482H - bill of material (continued)

Item Quantity Reference Value Package

DocID025458 Rev 2 21/31

UM1685 Boards description

31

Figure 11. EVAL6482H - layout (top layer)

Figure 12. EVAL6482H - layout (inner layer 2)

AM15185v1

AM15187v1

Boards description UM1685

22/31 DocID025458 Rev 2

Figure 14. EVAL6482H - layout (bottom layer)

Figure 13. EVAL6482H - layout (inner layer 3)

AM15188v1

AM15189v1

DocID025458 Rev 2 23/31

UM1685 Evaluation environment setup

31

2 Evaluation environment setup

The evaluation environment is composed by:

One or more EVAL6480H or EVAL6482H device

One STEVAL-PCC009V2 demonstration board

A USB cable

A stepper motor with a small mechanical load (unloaded stepper motors suffer of strong resonance issues)

A power supply with an output voltage within the operative range of the evaluation board

A PC with a Microsoft© Windows® 7 or Windows XP operating system and with a free USB port

The SPINFamily evaluation tool (the last version can be downloaded from the STMicroelectronics® website).

In order to start using the evaluation environment the following steps are required:

1. Install the SPINFamily evaluation tool.

2. Start the SPINFamily evaluation tool (by default it is in Start menu > All programs > STMicroelectronics > SPINFamily Evaluation Tool).

3. Select the proper device when requested by the application.

4. Plug the STEVAL-PCC009V2 demonstration board to a free USB port.

5. Wait a few seconds for board initialization.

6. Connect the SPI_IN connector (black) of the demonstration board to the 10-pin connector of the STEVAL-PCC009V2 board using the provided cable. For connecting more devices to the same board, please consult Section 6: Daisy chaining on page 29.

7. Power up the demonstration boards. The FLAG LED should turn on.

8. Click on the button with the USB symbol to connect the STEVAL-PCC009V2 board to the PC and initialize the evaluation environment.The application automatically identifies the number of demonstration boards connected.

9. The evaluation environment is ready.

Before start working with the demonstration board, the device must be configured according to the indications described in Section 3: Device configuration.

Warning: Important - the device configuration is mandatory. The default configuration is not operative.

Device configuration UM1685

24/31 DocID025458 Rev 2

3 Device configuration

This section offers an overview of the basic configuration steps which are required for make the demonstration board operative. More details about the configuration of the gate driving circuitry and the control algorithms are available in the AN4354 “L648x devices: gate drivers setup”.

Warning: Important - the device configuration is mandatory. The default configuration is not operative.

Important - before changing the device configuration verify that the device is in high impedance status (power stage is disabled).

3.1 Voltage mode driving (EVAL6480H)

The configuration parameters of the voltage mode driving can be obtained through the BEMF compensation tool embedded in the SPINFamily software.

A wrong setup of these parameters could cause several issues, in particular:

The phase current decreases with the speed and the motor will stall.

The wrong voltage is applied to the motor and the system is very noisy.

The phase current reaches the overcurrent limit.

The BEMF compensation form uses the application parameters as inputs in order to evaluate the proper device setup.

The required inputs are:

Supply voltage.

Target phase current (r.m.s. value) at different motion conditions (acceleration, deceleration, constant speed and holding).

Target operating speed (maximum speed).

Motor characteristics.

The motor characteristics are: electrical constant (Ke), phase inductance and resistance. The inductance and the resistance of the phase are given in the motor datasheet. The Ke is rarely given in the specification and must be measured.

In the help section of the SPINFamily software a step by step procedure is explained. The same procedure can also be found in the application note “AN4144: Voltage mode control operation and parameter optimization” on www.st.com.

Click on the “evaluate” button to get the suggested setup for the voltage mode driving. Then click on “write” button to copy the data into the registers of the L6480 device.

DocID025458 Rev 2 25/31

UM1685 Device configuration

31

3.2 Advanced current control (EVAL6482H)

The following configuration gives good results with most of motors:

Minimum ON time = 4 µs.

Minimum OFF time = 21 µs.

Max fast decay = 10 µs.

Max fast decay at step change = 16 µs.

Target switching time = 48 µs.

Predictive current control enabled.

The impact of the timing parameters are explained in the application note “AN4158: Peak current control with automatic decay adjustment and predictive current control: basics and setup” on www.st.com.

The target phase current is set through the TVAL registers. The TVAL determinates the reference voltage (i.e. the voltage drop on the sense resistors) corresponding to the peak of the current sine wave (microstepping operation):

Equation 1

Ipeak = TVAL_X / Rsense = TVAL_X / 0.05

The sensing resistors can be changed as described in Section 5: How to change the supply configuration of the board.

3.3 Gate drivers

The configuration of the gate driving circuitry depends on the external MOSFETs characteristics. The demonstration boards mount the STD25NF10 Power MOSFETs.

Warning: Important - a wrong gate driving setup may cause spurious overcurrent failures even if no load is connected to the power stage.

According to the STD25NF10 datasheet the total gate charge required to turn on the MOSFET is about 55 nC.

The charge supplied by the device at each commutation is equal to the gate current (Igate) multiplied by the controlled current time (tcc). With a gate current of 64 mA and a controller current time of 1000 ns, 64 nC are provided to the gate. The gate current can be changed in order to speed up or slow down the commutation speed (i.e. the slew rate of the power stage outputs); in this case the controlled current time should be changed accordingly.

The boards are designed to operate with a VCC voltage of 15 V, so the corresponding value for the integrated regulator should be set. The UVLO threshold should be 11 V.

At each commutation some voltage oscillations are generated. This noise could trigger the overcurrent protection. This event is avoided by adding a blanking time after each commutation.

A blanking time of 500 ns prevents the occurrence of spurious overcurrent detection in most operative conditions.

Device configuration UM1685

26/31 DocID025458 Rev 2

In conclusion the suggested configuration for the demonstration boards is following:

VCC value = 15 V.

UVLO threshold = 11 V (10 V on boot).

Gate current = 64 mA.

Controlled current time = 1 s.

Dead time = 250 ns.

Blanking time = 500 ns.

Turn OFF boost time = disabled.

3.4 Overcurrent and stall detection thresholds

The overcurrent protection and the stall detection (EVAL6480H only) are implemented by measuring the drain-source voltage of the MOSFETs, hence their value is a voltage and not a current.

The protection thresholds are set according to the voltage drop caused by the target triggering current on the MOSFET RdsON at the expected operating temperature (in fact this parameter increases with temperature).

During the preliminary stages of evaluation, the max. value of 1000 mV can be set for both protections. The default value of 281.25 mV has a good probability to trigger the overcurrent alarm.

Warning: Important - it is strongly discouraged to disable the overcurrent shutdown. It may result in critical failures.

3.5 Speed profile

The max. speed parameter is the maximum speed the motor will run. By default, it is about 1000 step/s. That means, if you send a command to run at 2000 step/s, the motor speed is limited at 1000 step/s.

This is an important safety feature in the final application, but not necessarily useful to evaluate the device performances. Setting the parameter to high values (e.g. 6000 step/s) allows evaluating the maximum speed which can be achieved by the application under test through the speed tracking command (Run), but it probably limits the possibility to use positioning commands (Move, GoTo, etc.).

The Full-step speed parameter indicates the speed at which the system switches from microstepping to full step operation.

In voltage mode driving devices (EVAL6480H), it is always recommended to operate in microstepping and not to switch to the full step. Hence, this parameter should be greater than the maximum speed.

DocID025458 Rev 2 27/31

UM1685 Sensing resistors of the EVAL6482H

31

4 Sensing resistors of the EVAL6482H

The output current range of the board is determined by the sensing resistors as indicated in Equation 2 and Equation 3:

Equation 2

Ipeak,min = 7.8 mV / Rsense

Equation 3

Ipeak,max = 1 V / Rsense

Where 7.8 mV and 1 V are the minimum and the maximum value of the TVAL registers.

However the actual output current is usually limited by the power rating of the sensing resistors:

Equation 4

Note: The power rating of the sensing resistor determining the maximum output current is 50% of the nominal one.

If the operative range resulting from the sensing resistors which are mounted on the board is not suitable for the application, it is possible to change these components in order to fit the requirements.

The sensing resistors should make the current control to operate with a peak reference voltage between 0.2 and 0.1 volts. This way the power dissipation on the sensing resistor is not excessive and the offset of the sensing circuitry does not affect the performance of the current control algorithm.

Equation 5

Rsense = 0.2 V / Ipeak

Iout l imitPd maxRsense------------------= (r.m.s. value)

How to change the supply configuration of the board UM1685

28/31 DocID025458 Rev 2

5 How to change the supply configuration of the board

The configuration of the supply voltages can be changed through the jumpers from J1 to J6 as listed in Table 11, Table 12 and Table 13.

Note: When the VCC voltage of 7.5 V is used, the charge pump diodes should be replaced with low-drop ones (suggested part BAR43SFILM). Otherwise the resulting boot voltage could be lower than the respective UVLO threshold and the device is not operative.

When the VSREG pin is not shorted to the VS (JP1 is open) particular care must be taken in order to avoid that the VBOOT voltage falls below the VSREG one (e.g. VS is floating and VSREG is supplied). In this case the internal ESD diode is turned on and the device could be damaged.

Adding a low drop diode between the VSREG and VS protects the internal ESD diode from this event (the diodes of the charge pump must also be low drop type).

When the VCCREG pin is not shorted to the VCC (JP3 is open) particular care must be taken in order to avoid that the VCC voltage falls below the VCCREG one. In this case the internal ESD diode is turned on and the device could be damaged.

Adding a low drop diode between the VCCREG and VCC protects the internal ESD diode from this event.

Table 11. VCC supply configurations

Configuration JP1 JP2 VSREG range Notes

Internally generated from VS

Closed Open VCC + 3 V ÷ 85 VDefault.

VCC value is determined by the internal regulator configuration.

Internally generated from a voltage source different

from VS

Open Open VCC + 3 V ÷ VS

VCC value is determined by the internal regulator configuration.

External protection diode could be required (see following text below table).

Externally supplied (equal to VSREG)

Open Closed 7.5 V ÷ 15 VExternal protection diode could be required

(see following text below table).

Table 12. VREG supply configurations

Configuration JP3 JP4 VCCREG range Notes

Internally generated from VCC

Closed Open VCC Default.

Internally generated from a voltage source different

from VCC

Open Open 6.3 V ÷ VCCExternal protection diode could be required

(see following text below table).

Externally supplied (equal to VCCREG)

Open Closed 3.3 VExternal protection diode could be required

(see following text below table).

DocID025458 Rev 2 29/31

UM1685 Daisy chaining

31

6 Daisy chaining

More demonstration boards can be connected in daisy chain mode.

To drive two or more boards in daisy chain configuration:

1. Connect the STEVAL-PCC009V2 board 10-pin connector to the SPI_IN connector of the first demonstration board through the 10-pole flat cable.

2. Open the termination jumper (see Section 1.1: EVAL6480H on page 5 and Section 1.2: EVAL6482H on page 14).

3. Connect the SPI_OUT connector of the first demonstration board to the SPI_IN of the next one through the 10-pole flat cable.

4. Repeat point 2 and 3 for all the others board of the chain but the last one.

5. Check the termination jumpers of the demonstration boards: all the jumpers but the last one should be opened.

Note: Increasing the number of devices connected in chain could degrade SPI communication performances. If communication issues occur, try to reduce the SPI clock speed.

Table 13. VDD supply configurations

Configuration JP5 JP6 VDD range Notes

Supplied by VREG Closed Open 3.3 V Default, 3.3 V logic.

Supplied by SPI connectors

Open Closed 3.3 V or 5 V 3.3 V when connected to the STEVAL-PCC009V2

Supplied by VDD test point

Open Open 3.3 V or 5 V Must be 3.3 V if connected to the STEVAL-PCC009V2

Revision history UM1685

30/31 DocID025458 Rev 2

7 Revision history

Table 14. Document revision history

Date Revision Changes

28-Nov-2013 1 Initial release.

08-Apr-2015 2

Updated Section : Introduction on page 1 (replaced “cSPIN™” and “cSPIN™ family” by “L648x”).

Updated Figure 4: EVAL6480H - layout (top layer) on page 12 to Figure 7: EVAL6480H - layout (bottom layer ) on page 13 (converted to greyscale).

Removed Figure 11. EVAL6482H - layout (silkscreen) from page 20.

Updated title of the AN4354 (replaced “cSPIN™ family” by “L648x devices:”) in Section 3: Device configuration on page 24.

Minor modifications throughout document.

DocID025458 Rev 2 31/31

UM1685

31

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved