euromem : FROM UNCERTAINTIES TO PARTIAL … · Transformation T From physical space X ......

28
euromem : FROM UNCERTAINTIES TO PARTIAL SAFETY FACTORS CALIBRATION: SAFETY FACTORS CALIBRATION: APPLICATION TO TENSILE MEMBRANE STRUCTURES - Discover the birth of a Eurocode A TRAINING SCHOOL OF COST ACTION TU1303 29 Sep-1 Oct 2015 NANTES (France) Franck SCHOEFS, Professor, Université de Nantes Deputy director of Scientific Interest Network MRGENCI Basis of reliability analysis: Reliability Computation

Transcript of euromem : FROM UNCERTAINTIES TO PARTIAL … · Transformation T From physical space X ......

  • euromem : FROM UNCERTAINTIES TO PARTIAL SAFETY FACTORS CALIBRATION: SAFETY FACTORS CALIBRATION:

    APPLICATION TO TENSILE MEMBRANE STRUCTURES - Discover the birth of a Eurocode

    A TRAINING SCHOOL OF COST ACTION TU130329 Sep-1 Oct 2015 NANTES (France)

    Franck SCHOEFS, Professor, Universit de Nantes

    Deputy director of Scientific Interest Network MRGENCI

    Basis of reliability analysis: Reliability Computation

  • - Concept of load combination factors and partial Safety

    factors.

    - Illustration on simple examples where G writes R S with R

    and S known (pdf).

    Yesterday

    and S known (pdf).

    - Safety assessment for more complex cases (no analytical

    solution or non-linearity of the solution: R=A2 Y).

    - Practical calibration of partial safety factors

    Today

  • 1. Definition of Pf.

    Basis of reliability analysis: Reliability Computation

    2. How to compute a safety estimate?

    3. Another estimates: safety index.

    4. Orders of magnitude in the reference case.

    5. Examples.

  • Aim: Evaluate the probability of failure (tension yield limit)

    Resistances R Limit State : G(R,S)=R - S

    Sollicitations S

    > 0 : Safety

    0 : Failure

    Problem statement

    example: beam in tension

    1. Definition of Pf

    Difficulties and stakes

    Numerical Estmation of a probability of 10-5 (ULS)

    Example for R deterministic (1st dimension in probabilistic space)

    Prob. S

    [ Mpa ]

    R

    Probability of failureS

    4

  • If 2 random variables

    S

    R

    P*: design point (highest probability of occurrence

    on the limit state)

    2. How to compute a safety

    estimate?

    5

    Df,i

    Df,i

    fRi,Si Pf,t

  • fR,S (r,s) = fR(r)*fS(s)

    r

    s Df

    r

    r

    s Df

    r

    III.2

    If pdf of R and S known and if they are independant

    2. How to compute a safety

    estimate?

    Pf = Df fR,S(r,s)dr ds = 1- -+ FS(r) fR(r)dr = -+ FR(s) fS(s)ds

    r r

    fS(s)fR(r)

    E(R)E(S)

    FR(s)

    r,s

    fS(s)ds

    r

    s Df

    s

  • here, S = (Nx , My , Mz)R = (Np , Mp)

    Mz

    Mp

    Np

    R

    S

    III.2

    a xNpN

    b y2

    M + z2MpM

    =0

    (< 0: failure)

    Real study cases

    2. How to compute a safety

    estimate?

    Geometry of beams:

    Length: 5 to 20 mDiameter : 0.5 to 1.5 m

    Environnement marin

    Nx

    Np

    s

    LOADING Np

    Displacement

    N0

    N0Np1

    1

    s x

    y

    z

  • N simulations (computations) : looking for failure cases Xi s.a. = {XiRn|G(Xi)0}

    Computation of G(Xi) : analytical/physical response surface / FEM/ SFEM

    Pf = card( )/N: thats an approximation of

    For these more complex cases (general case)

    Monte carlo simulation (non explicit form of G)

    2. How to compute a safety

    estimate?

    f

    8

  • Pf = card( )/NError: Shooman

    formula

    %erreur = fP~

    1200

    Monte carlo simulation

    (non explicit form)

    2. How to compute a safety

    estimate?

    % e

    rror

    %erreur = f

    f

    P~

    N

    P1200

    ( ) ( )f

    f

    fPN

    PPCOV

    .

    1~ =

    9

    Number of simulations

    For Pf = 10-3

    Huge computational cots

  • Safety index (Rjanytsine 1949)

    3. Another estimate: safety index

    Failure domain

    1. Transformation TFrom physical space X

    to standard space U

    2. Distance btw O and limitstate (IN STANDARD

    Most probable point = design pointStandard space U:

    Random variables are standard: Normally

    distributed, centered, normalized Failure

    domain

    10

    Hasofer-Lind sefety index: = OP* BUT Pf cannot be deduced direclty (Eurocodes are thus writen by considering )

    Algorthms: rackwith-Fliesser / GRaCE

    Hyperplane:

    approximation

    Physical space:

    state (IN STANDARDSPACE)

    3. APPROXIMATION of Pf

    P*: design point (larger probability of occurrence on the

    limit state)

    : normal cdf

  • Safety index (Rjanytsine 1949)

    3. Another estimate: safety index

    Standard space U:

    Random variables are standard: Normally

    distributed, centered, normalized

    Failure domain

    Failure domain

    1. Transformation TFrom physical space X

    to standard space U

    2. Distance btw O and limitstate (IN STANDARD

    Most probable point = design point

    11

    P*: design point (larger probability of occurrence on the

    limit state)

    : normal cdf

    Hasofer-Lind sefety index: = OP* BUT Pf cannot be deduced direclty (Eurocodes are thus writen by considering )

    Algorthms: rackwith-Fliesser / GRaCE

    Hyperplane:

    approximation

    Physical space:

    state (IN STANDARDSPACE)

    3. APPROXIMATION of Pf

  • What is the design point?

    S

    R

    P*: design point (highest probability of occurrence

    on the limit state)

    3. Another estimate: safety index

    12

    Df,i

    Df,i

    fRi,Si Pf,t

    Ri,Si t

  • Safety index, methods

    Pf(-))))

    3. Another estimate: safety index

    13

    : multinormal cumulative dentity function

  • Pf

    See Eurocode 0

    Simplified relationship btw Pf-

    4. Orders of magnitude in the

    reference case: (linear limit states)

    Source : Corus society

    report

    Pf(-))))

  • 5. Examples

    Academic example: cantilever beam

    Limit state on displacement : G(Z)= L/30-(5/48)*(P*L^3/E*I)

    First study : sensibility / l

    Quantity Mean. m STD

    P 4 [kN] 1 [kN]Mfr * 20 [kN.m] 2 [kN.m]L 5 [m] 0

    Reference study case: l = 5 m

    PL

    P

    Results obtained with COMREL 7.10Prgm POUTRECONSOLV0.ITI

    L 5 [m] 0

    I 10-4 [m4] Cov : 20 %

    E 2.107 [kPa] Cov : 10 %

    FORM-beta= 4.123

    Ll. value, -FORM, Param. Sens., Param. Elas.2 4.872 -0.1304 -0.5351E-013 4.705 -0.2053 -0.13094. 4.459 -0.2898 -0.26005 4.123 -0.3821 -0.46346 3.695 -0.4735 -0.76897 3.182 -0.5482 -1.2068 2.609 -0.5918 -1.8159 2.010 -0.6014 -2.69310 1.416 -0.5840 -4.126

    P -0.19826E 0.09958I 0.97508PAR1 0.00000Sum of a^2 1.00000

    Representative Alphas of Variables FLIM(1) [POUTRECONSOLV0.PTI]

    Z

  • 5. Examples

    Academic example: cantilever beam

    Pf

    l. value, -FORM, Param. Sens., Param. Elas.2 4.872 -0.1304 -0.5351E-013 4.705 -0.2053 -0.13094. 4.459 -0.2898 -0.26005 4.123 -0.3821 -0.46346 3.695 -0.4735 -0.76897 3.182 -0.5482 -1.2068 2.609 -0.5918 -1.8159 2.010 -0.6014 -2.69310 1.416 -0.5840 -4.126

  • 5. Examples

    Academic example: cantilever beam

    Limit state on displacement : FLIM(1){poutre console appui}= l/30-(5/48)*(P*l^3/E*I)

    Second study : sensibility / std(P)

    (P) P -0.37746E 0.13849

    Representative Alphas of Variables FLIM(1) [POUTRECONSOLV0.PTI]

    1 [kN] 4,12

    2 [kN] 3,9

    3 [kN] 3,59

    l. value, -FORM, Param. Sens., Param. Elas.2 4.853 -0.1682 -0.6930E-013 4.613 -0.3232 -0.21024 4.193 -0.5182 -0.49445 3.591 -0.6689 -0.93146 2.896 -0.7007 -1.4527 2.220 -0.6412 -2.0228 1.625 -0.5459 -2.6879 1.129 -0.4477 -3.56810 0.7264 -0.3609 -4.968

    E 0.13849I 0.91561PAR1 0.00000Sum of a^2 1.00000

    P -0.52156E 0.17872I 0.83429PAR1 0.00000Sum of a^2 1.00000

    Representative Alphas of Variables FLIM(1) [POUTRECONSOLV0.PTI]

    STD(P)= 3 kN

  • III.2

    G= L/30-(5/48)*(P*L^3/E*I)

    5. Examples

    Academic example: cantilever beam

    Quantity Mean. m

    P 4 [kN] 1 [kN]

    Mfr * 20 [kN.m] 2 [kN.m]

    l 5 [m] 0

    I 10-4 [m4] Cov : 20 %

    E 2.107 [kPa] Cov : 10 %

  • Industrial Example: corrosion of a pipe

    5. Examples

    Source : Corus society

    report

  • 5. Examples

    Industrial Example: corrosion of a pipe

    Analyze correlations too

    Source : rapport socit

    Corus

  • Probabilistic Design (conservatism of codes or absence of code)

    Reliability assessment f structures or structural components designed with a given code ( -> )

    Calibration of partial safety coefficients of a code ( -> )

    New structures

    Formulation and Interest of partial safety factor code format

    Summary

    Calibration of partial safety coefficients of a code ( -> )

    Existing damaged structural assessment

    Requalification of existing structures based on decisional appraoches

    Inspection Maintenance Repair -> IMR optimisation on a given lifetime

    Existing structures

    Structural reliability Methods

  • Mthodes danalyse de risqueMthodes quantitatives

    Tutorial (in French)-20 24 heures en format long-12 16 heures en format court-12 16 heures en format court

    -.

  • Objectif : analyse de risque / RBI

    Structures Tipode utilises comme torchres

    Crte de houle

    Direction de la houle

    P1 P2

    Torchre

  • M2 TPM - Universit de Nantes

    Environnement interaction fluide-structure

    Structure fissure dbouchante

    Donnes de houle

    Efforts rpartis

    Fonction de

    rponse f1

    Fissure de longueur a

    matrice de

    rigidit

    Fonction de rponse

    f2

    Fonction de rponse f3

    Dplacement ou nergie

    potentielle totale

    Approche physique-mcaniste (modles / instrumentation)

    Matriau (pathologie / Inspection) Fiabilit

    Risque

    Performance/Consquence

    IMR

    RBI

    IllustrationsA : Structures ptrolires

    Variables de base Distribution Conditionnement c.o.v

    Troncature

    H, Hauteur de vague extrme Gumbel sachant (Hs,Tstat, ) 8 % [m-2;m+5]

    T, Priode de vague extrme Log-Normale sachant H 10% [m-k ;m+k]k = 3

    Coefficients hydrodynamiques CD, CM, CX, CX,

    Normale - 35% [m-p;m+p]p = 2Longueur de fissure a Exponentielle - 35% [- ; 2 R]

    Probabilits

    IMR

    Processus, analyse stat.

    Fiabilit dpendant

    du temps

    Lois de dommages

    (Paris)

  • M2 TPM - Universit de Nantes

    Modlisation des donnes dentre

    -Jeu de donnes de houle 2 niveaux :

    *Non Expert CS : identifier une distribution H et une distribution T : puis analyse

    hyp corrlation. Soit excell et tests aux moindres carrs sur CdF soit Matlab et tests

    cdf ou pdf : diffrences.

    *Expert CS : identifier une distribution jointe (proj sur chaos)

    -Jeu de donnes de fissures

    identifier une distribution H et une distribution T : puis analyse hyp corrlation. Soit

    IllustrationsA : Structures ptrolires

    identifier une distribution H et une distribution T : puis analyse hyp corrlation. Soit

    excell et tests aux moindres carrs sur CdF soit Matlab et tests cdf ou pdf :

    diffrences.

    05

    1015

    2025

    0

    5

    10

    15

    20

    250

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

  • M2 TPM - Universit de Nantes

    Modlisation des structures

    -Structure tripode:

    * Non Expert CS : poutre console. Fissure = ressort + solution RdM.

    *Expert CS : modle EF + modle EF fissure

    IllustrationsA : Structures ptrolires

  • M2 TPM - Universit de Nantes

    Fiabilit :

    * Non Expert CS : monte carlo + FORM + donnes tripodes (rsultats)

    * Expert CS: monte carlo + FORM + EFS

    -Analyse de sensibilit ltat limite

    IllustrationsA : Structures ptrolires

    Limiter le dplacement au sommet :

    G = Uc U6

    avec Uc = P5P6 / 600 = 0.041 m

    = 0

    = 90 Structure non-fissure

    d

    Limiter lnergie de dformation (ou son volution) :

    G = c d

    Pour comparer la fiabilit : c Uc

  • M2 TPM - Universit de Nantes

    RBI

    * Niveau I et II (courts): Fourniture des PoD PFA (II) ou Analyse des

    graphes (I)

    *Niveau III (long) : fourniture des ROC

    -Sensibilit aux modles de cot (inspection + cout relatif), la

    connaissance experte

    -Fiabilit dpendant du temps / optimisation des inspections (fatigue ou hyp fi = f(t), ..)

    Illustrations

    A : Structures ptrolires

    =0.1 20 =0.1 40

    0 0.2 0.4 0.6 0.8 1

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    =0.1 20

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    0.11

    r

    i1

    ccc =

    f

    r2

    ccc =

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    =0.1 40

    0 0.2 0.4 0.6 0.8 1