EUROfusion - Aix-Marseille...

61
EUROfusion EUROfusion Integrated Tokamak Modelling: current status and future direction for ITER operation By Xavier LITAUDON [email protected] ITER INTERNATIONAL SCHOOL 2014

Transcript of EUROfusion - Aix-Marseille...

Page 1: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionEUROfusion

Integrated Tokamak Modelling: current status and future direction for ITER operation

By Xavier [email protected]

ITER INTERNATIONAL SCHOOL 2014

Page 2: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionACKNOWLEDGMENTS

A. Becoulet, D. Campbell, J. Citrin ,

G. Falchetto , J. Garcia, G. Giruzzi,

G.T. Hoang, G.M.D. Hogeweij, F. Imbeaux,

D. Kalupin , S. Kim, C. Kessel, D. McDonald,

D. Moreau, Y. S. Na, V. Parail, S. Pinches, F.

Poli, M. Romanelli, P . Strand,

I. Voitsekhovitch

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 2

Page 3: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionOUTLINE

INTEGRATED MODELLING IN FUSION & ITER

PLASMA OPERATIONAL SCENARIO:

I) DEFINITION

II) PHYSICS & COMPUTATIONAL CHALLENGES

III) MODELLING OF ITER SCENARIOS

RECENT DEVELOPMENT OF INTEGRATED MODELLING PLATFORM & SUITE OF CODES

CONCLUSION AND PROSPECTS X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 3

Page 4: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

TOWARDS A FUSION TOKAMAK REACTOR

self-heating

bootstrap

A scientific and technical challenge

WITH ITER , FUSION ENTERS IN THE NUCLEAR ERA

Pfusion /Padd DD

~400s

0%

20%

Tore Supra

Q ~ 0.7

2s

10%

20%

JET

Q ~ 10

400-3600s

70%

10-50%

ITER

Q ~ 30

Continuous

80 to 90%

50-80%

DEMO

duration

JT60-SA

DD

~100s

0%

>60%

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 4

EAST

Page 5: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionIMPORTANCE OF MODELLING IN NUCLEAR ERA

Bringing Fusion to its “Reactor Era” requires an innovative programme of “discharge mastering”, combining:

Nuclear device with safety issue

Design, safety case and preparation of operation with systematic modelling

Limited experimental time for empirical approach Real time control of the magnetic/kinetic configuration (non-linear and time

effects)

Real time control of components integrityHigh-level algorithms and control schemes

a consistent set of simulation tools:

� first principles (“PFlops”)� integrated modelling (“CPU hours”)

� fast simulators (“~ 10 ms”)

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 5

[Becoulet & Hoang PPCF 2008 and Joffrin et al PPCF 2003 ]

Page 6: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionITER PHYSICS AND TECHNOLOGY GOALS

Physics Goals:

• ITER is designed to produce a plasma dominated by α-particle heating

• produce a significant fusion power amplification factor (Q ≥ 10) in long-pulse operation

• aim to achieve steady-state operation of a tokamak (Q = 5)

• retain the possibility of exploring ‘controlled ignition’ (Q ≥ 30)

| PAGE 6

50 MW

500 MW

Technology Goals:

• demonstrate integrated operation of technologies for afusion power plant

• test components required for a fusion power plant

• test concepts for a tritium breeding blanket

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014

Page 7: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

ITER OPERATIONAL

SCENARIOS

Inductive

Q ≥ 10 Ip~15MA 400s

Hybrid

Q ~5-10 Ip~12MA 1000s

Non-inductive

Q~5 Ip~9MA 3000s

Active research activity

Integration of physics & technology

Inon-inductive /Ip Ibootstrap /Ip

50%

7%

20%

100%

50%

20%

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 7

Page 8: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionVARIOUS PHASES IN THE PLASMA SCENARIO

Fusion Power

Plasma Current

Inductive Flux

D-T Fuelling

Plasma Density

αααα-particle Fraction

Additional Power

Pfus

ne

Paux

fHe

Ip

φOH

DTRefuel

Burn Bur

nTe

rmin

atio

nC

urre

ntR

ampd

own

PF

Res

etan

d R

ecoo

l

PF

Mag

netiz

atio

n

CurrentRampup

-200 1400

Begin Pulse End Pulse

Hea

ting

Plasma Initiation

0 tSOF tSOB 600 700 900Time(s)

IP0

EC(2MW)

φSOB

φEOB

φSOP

ΓDT

neB

5 %

PFB

ISOD

(~400s)

PF

Res

etA

nd R

ecoo

l

Pol

. Fie

ldM

agne

tizat

ion

Bre

akdo

wn

Cur

rent

Ram

p U

p

Hea

ting

Bur

nte

rmin

atio

nC

urre

ntR

amp

Dow

n

Time(s)

CurrentFlat Top

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 8

Page 9: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EXAMPLE OF SCENARIO: JET PLASMA

JET #67687

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 9

Page 10: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

S.H. Kim et al, PPCF2009

MODELLING OF ITER SCENARIO : 15MA H-MODE

Tokamak simulation: free-boundary equilibrium (DINA -CH) & transport evolution (CRONOS)

ITER

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 10

Page 11: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

NUMERICAL TOKAMAK: ALL COUPLINGS, ALL NON-LINEARITIES

[Politzer et al NF 05]

Different time scale: fast (blue) & Slow (red) αααα-heating dominant in burning reactor

Actuators

Plasma

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 11

Page 12: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

INTEGRATED MODELLING (IM): SET OF CODES COUPLED TOGETHER TO MODEL ‘PLASMA + TOKAMAK’

IM covers different physical regions & time scale:Core and edge regions to the separatrixThe scrape off layer (SOL) region and its connection with the divertor

The effects of external circuits and systems in controlling the plasma

Interaction with the plasma facing components (PFCs)

IM encompasses different levels of sophistication:First principles models (e.g. microscale) to explore details of the physics

Reduced models (e.g. macroscale) for efficient computations; fidelity to first principles models, instead of being expressed empirically

Empirical models (scaling laws from large data base)

Integrated modelling covers :Interpretative & predictive capabilities

The full discharge from initiation to termination and inter-discharge effects e.g. conditioning and tritium retention

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 12

Page 13: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionINTEGRATED MODELLING FOR MAGNETIC FUSION

Magnetic Fusion Experiments mix:

sophisticated physics: multi-physics, multi-scale time and space, often

highly non-linear behaviors & couplings

complex devices: coils, H&CD systems, Fuelling & Pumping, Cooling,

diagnostics, …

complex control algorithms: performance & safety

Performance means mastering all aspects together

In preparation to ITER, several initiatives were ta ken

along these lines:

more dedicated experiments to validate simulation modules and models

more systematic real-time controls on experiments

a dedicated modeling architecture for Integrated Tokamak Modelli ngX. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 13

Page 14: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionMODELLING APPLICATIONS FOR ITER

During ITER design:

Design is based on a combination of theoretical understanding +

experimental observations where theory/modelling is incomplete

During ITER construction:

Focus on enhancing the physics understanding through development of theoretical and computational models and validating them against

experimental observations

Apply new understanding to planning the ITER experimental programme

During ITER operation:

Predictive modelling of each plasma from beginning to end , including analysis of control requirementsInterpretative analysis of each plasma to evaluate/validate models

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 14W. Houlberg, S. Pinches, D. Campbell

Page 15: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

IM SUPPORT OF THE ITER FACILITY: EXPERIMENTAL PLANNING

Scenario studies for all ITER phases:H, He, D and D-T Phases full dischargeAll scenarios from inductive to non-inductive

Campaign planning:Experimental proposals are to be systematically supported by modelling

Session planning:More detailed modelling assessment over the expected parameter range

Pulse development:Simulation from initiation to termination, including system limitations Pulses expected to be composed of segments (e.g. start-up, several sequential flat-top, shutdown)

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 15W. Houlberg et al

Page 16: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

IM SUPPORT OF THE ITER FACILITY: REAL-TIME CONTROL

Control strategies & Feedback models :Evaluate plasma response times, sensitivity of plasma parameters to actuators, impact of eventsEvaluate control models, gains and response times using idealized sensors

Input to control algorithms:Effectiveness of sensors and actuators, response times, secondary responsesEstimated ranges for tunable parameters in various control algorithms (PID, SIMO, MIMO …) under a range of conditions

Testing control algorithms:Simulate plasma behavior using control algorithmsSynthetic diagnostics linked to actuators

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 16

Page 17: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionIM SUPPORT OF THE ITER FACILITY : ANALYSIS

Real-time analysis:Display of physics parameters using fast conversion of diagnostic signalsSimultaneous display of modelled results in control rooms

Post-processing:More rigorous conversion of diagnostic signals emphasizing consistency in analysis, uncertainties (error bars), …Systematic inter-shot and overnight processing validated tools

Model validation and improvement:More detailed, more extensive modelling & long-term analyses

Forecasting:Live prediction from present state (similar to weather forecasting)

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 17W. Houlberg et al

Page 18: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionOUTLINE

INTEGRATED MODELLING IN FUSION & ITER

PLASMA OPERATIONAL SCENARIO:

I) DEFINITION

II) PHYSICS & COMPUTATIONAL CHALLENGES

III) MODELLING OF ITER SCENARIOS

RECENT DEVELOPMENT OF INTEGRATED MODELLING PLATFORM & SUITE OF CODES

CONCLUSION AND PROSPECTS X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 18

Page 19: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR

Geometry: magnetic equilibrium

at least 2-D (plasma shaping, separatrix) – 3D for stellarators

self-consistent with current and pressure evolutionFluid equations (1-D)

time evolution of flux surface averaged ne, ni, Te, Ti, j, V, impurities

Sources

heat, injected matter, current, momentum, impurities, wall (neutrals,

sputtering and recycling)

Losses

diffusion/convection of heat and particles

pumping / neutralisation

radiation (bremsstrahlung, synchrotron, line radiation)viscosity

Link to machine data bases (for application to expe riments and validation of the models)

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 19

Page 20: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionITER SCENARIO DESIGN: PHYSICS CHALLENGES

Experimental scenarios exist, but are they extrapol able to ITER ?

different dimensionless parameter rangedifferent properties of sources (e.g., rotation, fast particles) & large fraction of alpha heating different control requirementsdifferent level of self-organization

Scenario design by integrated tokamak modelling:a more and more indispensable tool, that starts to be efficientneither first-principle nor empirical transport models fully reliablepedesta l is critical: progress on both models and databaseexperimental validation of code modulesinterplay with MHDcore- edge coupling : routine inclusion of W transport and radiation in ITER core integrated modelling

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 20G. Giruzzi, PPCF 2011

Page 21: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionITER SCENARIO DESIGN: PHYSICS CHALLENGES

Coupling of all spatial plasma

domains (core, edge, scrape-off

layer & divertor)

Dynamic coupling of individual

physics models relevant to each

domain

Interaction between plasma and

PFCs

Coupling of plasma with external

circuits, H&CD, fuelling, pumping

and other systems to confine and

control plasma

Synthetic diagnostics

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 21S. Pinches et al

Poloidal fieldnull (X-

Core(grid suppressed)

Private flux

Scrape-offlayer (SOL)

Divertor

Inner divertor target

Chamberwall

oMagnetic axis

(O-point)

ρρρρ

Poloidalnull (X-point)

Core(grid suppressed)

oMagnetic axis

(O-point)

ρρρρ

Poloidalnull (X-point)

Core(grid suppressed)

oMagnetic axis

(O-point)Poloidalnull (X-point)

Core

Divertor domeOuter divertor target

oMagnetic axis

(O-point)

Edge(closed gridded

region)

Edge(closed gridded

region)

Edge(closed gridded

region)

Edge(closed gridded

region)

ρρρρ

Inside: closed field linesOutside: open field lines

Separatrix surfaceInside: closed field linesOutside: open field lines

Page 22: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

ITER SCENARIO DESIGN: CORE AND EDGE INTEGRATION

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 22

Modelling power & particle exhaust

Control transient & stationary power loadsControl of fast particle lossesControl of particle exhaust & recycling according to fuelling requirements, capacity of Tritium extraction plant & necessary Helium removal

simultaneously with

Modelling of core fusion performance

– control of kinetic & magnetic energy(confinement & stability) including impurities

boundaryconditions core

plasma

Coreconditions

Page 23: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

ITER SCENARIO DESIGN: COMPUTATIONALCHALLENGES

Challenges related to intrinsic computational compl exity:wide variety of physics models integration of physics and technology : antennas, machine descriptionfirst-principle turbulence codes, edge codes, 3-D non-linear MHD codesinclusion of transients and controls in free-boundary simulationsinclusion of all the transport channels extremely complexinclude description of actuators, controls, diagnosticscompromise between accuracy and approximations

Challenges related to code integration:integration of tens of codes, global reliability with number of modules ?codes of different nature, language, generation, speedcomplexity of software architecture / use on massively parallel computersspeed and memory optimization: imperative to bridge gap between speed and accuracyusers: many physicists, with different backgrounds

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 23G. Giruzzi, PPCF 2011

Page 24: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

MAIN CHALLENGES : WIDE RANGE OF TIME AND RADIAL SCALES

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 24

10-3 10-2 10-1 100 101 102 103 104 105 106second

ELMs - DisruptionHeat

MHD Energy confinement Current diffusionPlasma

Particles Particle confinement

ITERMost present day

Cooling of PFC Total thermalization

Wall inventory PFC lifetime

PWI issues

Reactor

Page 25: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

HIERARCHY OF INTEGRATED MODELLING CODES AND MODELS

0-D codes: solution of 0-D core thermal equilibrium equationfast, give a working point, used in optimisation loops for machine design

0.5-D codes: 0-D tool + profile effects, fast calculation (~ 1 min)compute time evolution with simplified profiles and actuatorsprofile peaking time evolution with simplified equilibrium

1.5-D codes: 1.5-D: 1-D flux surface average profiles and 2-D magnetic equilibriumfull space-time solution, with 2-D equilibria (free or fixed boundary) and detailed description of the actuators (H&CD, sources ), diagnostics

� fixed boundary: plasma boundary given, B field computed in the plasma

� free boundary: B field computed in and outside the plasma from coils currents X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 25

Page 26: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion0-D SCENARIO MODELLING TOOLS

Physics constraints on He confinement, heat transport, plasma shape, CD efficiency, density limit, MHD, etc.

Technology constraints on divertor heat load, blanket properties, pumping, superconducting magnetic field, neutronics, conversion to electric energy, mechanics, etc.

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 26

computation of a "working point" for space-averaged plasma and machine parameters, with no time evolutionsolution of 0-D core thermal equilibrium equation

↑↑↑↑↑↑↑

+++=++ condlinesynbremaddOH PPPPPPPα

heating alpha ohmic add. brems- synchrotron atom. Line convection/losses heating strahlung radiation radiation /diffusion

G. Giruzzi, Master on Fusion Energy

Page 27: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion0-D SCENARIO MODELLING TOOLS

output: PopCon plots (Plasma operation Con tours)example: HELIOS code (J. Johner, Fusion Sci. Techn. 59 (2011) 308)

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 27

System codes for machine design : � possible automatic search of an

optimum working point� optimisation may include cost !� example: PROCESS code [Ward,

Pl. Phys. Contr. Fus. 52, 2010 124033] or SYCOMORE (Imbeaux FEC 2014)

� analogous codes exist in USA, Japan, etc.

ITER baselinescenario

Page 28: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

ITER HYBRID OPERATIONAL DOMAIN FROM SIMPLIFIED 0-5D MODELING

ITER hybrid scenario : q0>1 for 1000s and QDT, QDT>5Narrow operating domain: it requires high confinement and peaked density profile to reach a critical value of bootsrap current fraction

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 28X. Litaudon et al., Nucl. Fusion 44 (2013)

Page 29: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion1.5-D INTEGRATED MODELLING TOOLS

Integrated modelling of:Heat, particles, rotation: transport diffusion equations (1D) + source codesCurrent profiles: current diffusion equation (1D)Plasma equilibrium: magnetic equilibrium code (2D)

Interpretative or Predictive modelling:Interpretative: to check data consistency and to calculate effective transport coefficients

� measured electron & ion densities & temperatures � resolution of current diffusion & synthetic diagnostic simulations

Predictive: to validate transport and models against experimental data + prepare new scenarios

� transport modelling� initial profiles from model or experimentsBuilt-in feedback controls

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 29

Page 30: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion1.5-D INTEGRATED MODELLING TOOLS

Time dependent simulation integrating various modul es to describe the complexity of whole operation

Large variety of codes with different strength and weakness depending on the physics problem to be solved :

ASTRA : G. V. Pereverzev, G. Corrigan CPC 179 (2008) p.579

CORSICA : J. A. Crotinger, et al. LLNL Report UCRL-ID-126284 (1997)

CRONOS: J.F. Artaud et al., Nuclear Fusion 50 (2010) 043001

European Transport Simulator ETS : Coster D. et al 2010 IEEE Trans. Plasma Sci. 38 2085

Integrated Plasma Simulator, IPS: cswim.org/ips/

JETTO: Cennacchi G. and Taroni A. 1988 JET-IR(88) 03 and JINTRAC: M. Romanelli et al

Plasma and Fusion Research Volume 9, 3403023 (2014)

ONETWO : Murakami et al PoP 2003

PTRANSP : Budny R.V., Nuclear Fusion 49, (2009), 085008.

TASK: Fukuyama et al. 2004, Proc. of 20th IAEA Fusion Energy Conf. CD/TH/P2-3

TOPICS-IBS: Shirai H et al PPCF 42 (200) 1193

Tokamak Simulation Code (TSC): Jardin S.C. et al 1986J. Comput. Phys. 66 481

Etc. …

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 30

Page 31: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionTHE CRONOS SUITE OF CODES

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 31

~900 000 lines Fortan 77, ~75 000 lines Fortran 90/95, ~100 000 lines C, ~12 000 lines C++, ~550 000 lines Matlab

Page 32: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

JINTRAC (JET INTEGRATED TRANSPORTCODES) IS A SUITE OF 25 MODULES

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 32

Page 33: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

VALIDATION BY INTERPRETATIVE SIMULATION OF JET EXPERIMENTS

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 33

measuredsimulated chord #2

chord #6

chord #3

IP

INI

INBCD

IBoot

ILHCD

Measured Simulated

l i

V s [V]

IIIIBOOTBOOTBOOTBOOTIIIININININI

IIIINBCDNBCDNBCDNBCD

IIIIPPPP

VVVVLOOPLOOPLOOPLOOP

LLLLiiii

........⃝⃝⃝⃝........ MeasuredMeasuredMeasuredMeasured----����---- SimulatedSimulatedSimulatedSimulated

Fara

day

ang.

(rad

)Fa

rada

y an

g. (r

ad)

Fara

day

ang.

(rad

)Fa

rada

y an

g. (r

ad)

Mag

n. m

eas.

Mag

n. m

eas.

Mag

n. m

eas.

Mag

n. m

eas.

Cur

rent

s (M

A)C

urre

nts

(MA)

Cur

rent

s (M

A)C

urre

nts

(MA)

t (s)t (s)t (s)t (s)

2.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.5

1.01.01.01.00.80.80.80.80.60.60.60.60.40.40.40.40.20.20.20.2

00000.10.10.10.1

0.050.050.050.050000

----0.050.050.050.05----0.100.100.100.10----0.150.150.150.15

6 8 10 126 8 10 126 8 10 126 8 10 12

IIIILHCDLHCDLHCDLHCD

.................... MeasuredMeasuredMeasuredMeasured———— SimulatedSimulatedSimulatedSimulated

0

3.43.23.02.8

MSE polarisation angles#53521, t=5.5s

measured simulated

Major radius (m)Major radius (m)Major radius (m)Major radius (m)M

SE a

ngle

s (ra

d)M

SE a

ngle

s (ra

d)M

SE a

ngle

s (ra

d)M

SE a

ngle

s (ra

d)

........⃝⃝⃝⃝........ MeasuredMeasuredMeasuredMeasured----����---- SimulatedSimulatedSimulatedSimulated

JET shot with ITB JET shot with ITB JET shot with ITB JET shot with ITB #53521, t = 5.5 s#53521, t = 5.5 s#53521, t = 5.5 s#53521, t = 5.5 s

0.10.10.10.1

0.050.050.050.05

0000

----0.050.050.050.05

----0.10.10.10.1

Synthetic diagnostic

X. Litaudon et al., Nucl. Fusion 44 (2002)

Page 34: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionITER BASELINE SCENARIO: Q ~ 10 FOR 400S

Simulation of 15MA/5.3T inductive burn DT Scenario, Q=10 and its variants in H, D and He using the JINTRAC suite 1.5D core/2D SOL and the free boundary equilibrium evolution code CREATE-NLPosition Control System compatible

� with 80s Ip ramp-up, � 450s flat-top, � 170s Ip ramp-down

Sensitivity for the ramp-up rate (dashed lines) Q~10 predicted but sensitive to pedestal assumption

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 34V. Parail et al., Nucl. Fusion 44 (2002)

Page 35: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 35

ITER HYBRID SCENARIO: Q ~ 8 FOR 1200 S, IDEAL MHD STABLE

Fixed density (ne0/<ne>~1.4)Fixed T pedestal (~ 5 keV)Fixed H-factor (~ 1.3)Ip = 12 MA Padd ~ 73 MWBootstrap fraction ~ 40%Non-inductive fraction ~ 80%Fusion gain Q ~ 8Fusion Power (MW) ~ 585

simulation

Giruzzi G. et al., PPCF 2011Besseghir K et al PPCF 2013

Page 36: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

CURRENT PROFILE OPTIMIZATION DURING CURRENT RAMP-UP PHASE

Access condition to the class of hybrid-like q-profiles ? Optimisation of the current ramp-up phase: plasma current waveform, heating & current drive waveform, L to H transition the heating systems available at ITER allow to reach a hybrid q-profile at the end of the current ramp-up.

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 36

0

200

400

600

j LH,E

C,N

BI [k

A m

−2]

0 0.5 10

50

100

150

ρ

p LH,E

C,N

BI [k

W m

−3]

LHECCDNBI

Hogeweij G. et al, Nucl. Fusion 2013

Page 37: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 37

ITER STEADY-STATE SCENARIO: Q ~ 5 FOR 3000 S, IDEAL MHD STABLE

Fixed density (ne0/<ne>~1.4)Fixed T pedestal (~ 4 keV)Fixed H-factor (~ 1.4)Ip = 10 MA Padd ~ 90 MWBootstrap fraction ~ 53%Non-inductive fraction ~ 100%Fusion gain Q ~ 5Fusion Power (MW) ~ 425

simulation

Giruzzi G. et al., PPCF 2011Besseghir K et al PPCF 2013

Page 38: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

MODEL-BASED MAGNETIC AND KINETIC REAL TIME CONTROL FOR ITER STEADY-STATE SCENARIO

An integrated model-based plasma

control strategy for the control of the

poloidal flux profile and PαThe control actuators are NBI,

ECRH, ICRH , LHCD and surface

loop voltage.

A two-time-scale model identified

from open-loop simulations.

Closed-loop control simulations :

current profile control can be

combined with burn control

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 38

Moreau D. et al. Nuclear Fusion 2013, Liu F. et al., in Proc. 39th EPS Conference 2012

Page 39: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

CONTROL ROBUSTNESS (ITER STEADY-STATE SCENARIO): Loss of confinement, density increase, Zeff increase

Vsurf = 0 @ t > 2.5 s30% H factor drop @ t > 8 s 25% density increase @ t > 14 s 25% Zeff increase @ t > 20 s

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 39

Moreau D. et al. 21st EFPW, 9-11 December 2013, Ringsted, Denmark & FEC ST Petersburg 2014

Page 40: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionOUTLINE

INTEGRATED MODELLING IN FUSION & ITER

PLASMA OPERATIONAL SCENARIO:

I) DEFINITION

II) PHYSICS & COMPUTATIONAL CHALLENGES

III) MODELLING OF ITER SCENARIOS

RECENT DEVELOPMENT OF INTEGRATED MODELLING PLATFORM & SUITE OF CODES

CONCLUSION AND PROSPECTS X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 40

Page 41: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EU INTEGRATED TOKAMAK MODELLING APPROACH

Development of a standardized platform & an integra ted modelling suite

Generic approach , i.e. not specific to transport simulator problem, to a chain of coupled codes, to a machine etcModular , flexible , code, language and machine independent A new data and communication ‘ontology’* for standardizing the data exchange between different codes, through a generic data structure incorporating both simulated and experimental data

� modules describing the same physics is easily interchanged � eases code coupling & rigorous code verification / benchmark � enhanced quality / reproducibility

Multi-machine capability : modules within a workflow run on local cluster or HPC or GRID

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 41

Becoulet et al CPC 177 (2007) 55–59Strand P.I. et al 2010 Fusion Eng. Des. 85 383–7Falchetto et al Nucl. Fusion 54 (2014) 043018

*Ontology is the structural framework for organizing

information used in systems/software engineering,

artificial intelligence etc (~ grammar for data)

Page 42: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EU INTEGRATED TOKAMAK MODELLING APPROACH

the integrated simulation "workflow" solves an elementary problem (e.g.

equilibrium reconstruction, wave propagation, synthetic diagnostic, …)

� modularity, flexibility

the data transfer between components uses exclusively standardized

interfaces (I/O) : Consistent Physical Objects (CPOs) [F. Imbeaux et al,

Comp. Phys. Comm. 2010]

� consistent data-blocks defined from the elementary

physics/technology problem solved (equilibrium, PF coils …)

� generic data structure for machine and simulation data

� independent of programming language

the data management is hidden to the user, data exchanges are dealt by a

Universal Access Layer (UAL)

a graphical workflow manager allows to easily build integrated simulations

reflecting transparently the physics

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 42Falchetto et al Nucl. Fusion 54 (2014) 043018

Page 43: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EU INTEGRATED TOKAMAK MODELLING APPROACH: GENERIC APPLICATION STRUCTURE

Generic IM application structure

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 43Falchetto et al Nucl. Fusion 54 (2014) 043018

Framework (workflowmanager)

Executes the workflow and manages the dataflows(passes CPO references)

UniversalAccess Layer (UAL)

Manages the CPO data exchanges

Interfaceprovide I/O as CPOs

Physics modulesolves elementaryphysics problem as an independent code: no knowledge about origin/destination of I/O

code developer

A dedicated tool automatically converts a module into a Kepler actor :

CPO_in CPO_out

https://kepler-project.org/

Page 44: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EU INTEGRATED TOKAMAK MODELLING APPROACH

Kepler workflow: graphical version of a code flowch art

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 44Falchetto et al Nucl. Fusion 54 (2014) 043018

mars

mars

high-resolutionequilibriumreconstruction

MHD stability initializationread from database

visualization actor

Page 45: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionEUROPEAN TRANSPORT SOLVER , ETS

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 45

~1000 Kepler actors ~5000 data for the data structure

Page 46: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

EUROPEAN TRANSPORT SOLVER FOR VARIOUS TOKAMAKS GEOMETRY

Core workflows running under Kepler for MAST, TCV, AUG, JET, ITER, DEMO

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 46

ETS grid

Kalupin D. et al

Page 47: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

ALTERNATIVE APPROACH : IPS , INTEGRATED PLASMA SIMULATOR

IPS, Integrated Plasma Simulator: A flexible, extensible computational framework capable of coupling state-of-the-art models for energy and particle sources, transport, and stability for tokamak core plasma

IPS Design Approachpermit massively parallel physics modules to interoperate with flexibly and efficiently

� Framework/component architecture – written in Python � Components implemented using existing whole codes (usually inFortran) wrapped in standard component interface (written in Python)� File-based communication� Plasma State: official transfer mechanism for time-evolving data thatmust be transferred between components

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 47D. B. Batchelor et al

Page 48: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionALTERNATIVE APPROACH : OMFIT FRAMEWORK

OMFIT : One Modeling Framework for Integrated Tasks : A comprehensive framework designed to facilitate experimental data analysis and enable integrated simulationsCollect data from different sources into a single, self-descriptive, hierarchical data structure

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 48

O. Meneghini et

Page 49: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionVERIFICATION USING EU FRAMEWORK

Benchmarking of electron cyclotron heating and curr entdrive codes on an ITER inductive scenario

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 49

Benchmark 5 EU EC beam/ray-tracing codes performed within the EU framework for 3 different launching conditions Simplifies verification : the 5 codes run in the same workflowGood agreement found , differences in total current < 15%, and with peak values of power density dP/dV and driven current density matching within 10%, and the position of the profiles matching within δρ ∼ 0.02

Figini L. et al 2012 et al EC-17

Equatorial launcher with poloidal & toroidal launching

angles 0°and 25°

Page 50: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionETS VERIFICATION

Benchmarking of the ETS against ASTRA and CRONOS performed using the parameters of JET hybrid discha rge

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 50

Self-consistent evolution of electron and ion temperatures, current diffusion and equilibrium fixed electron density profile, Gaussian heating and current drive profilesSpitzer resistivity, Bohm–gyro-Bohmtransport modelSatisfactory agreement. Differences attributed to different equilibrium solversLaying the foundation for ETS usage for predictive and interpretative runs on present devices and ITER.

Kalupin D. et al 2011 38th EPS Conf.

Page 51: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

FULL JET DISCHARGE SIMULATION WITH ETS

Simulation covering the full

plasma discharge duration

(13s).

Solves coupled transport

equations of magnetic flux,

temperature and density

simultaneously

Good agreement between

experimental data and

simulation

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 51P. Huynh, V. Basiuk

Page 52: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

IMPURITY TRANSPORT MODELLING WITH ETS: ITER LIKE WALL JET EXPERIMENTS

Impurity transport simulated to match the radiative power profiles

| PAGE 52

radiation � Core ~ W � edge injected Ni � Be weak contributions

impurity increase during ICRH phase analysed as an edge W-source increase instead of transport modification

Kalupin, Nucl. Fusion 53 (2013) 123007

JET 81856

Output ETS modelling

Impurity profiles and transport coefficients

Page 53: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

NEOCLASSICAL TEARING MODE MODULE COUPLED TO ETS

Neoclassical Tearing Modes (NTMs) are magnetohydrodyn amic modes

which degrade locally the energy and particle confinemen t

Flattening of Te by a 3/2 NTM was simulated on JET p ulse 76791, in good

agreement with experiment

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 53P.Huynh, V.Basiuk, S.Nowak, O.Sauter

Page 54: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

COUPLED EQUILIBRIUM -TRANSPORT SIMULATIONS ON ETS

Tokamak scenario preparation requires a consistent modeling of the poloidal field system, plasma force balance and plasma core transportcoupling Free boundary equilibrium CEDRES++ (2D plasma force balance + PF system) with the European Transport Solver

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 54

Proof of princple:Simulation of a vertical displacement event in ITER

Current sheet induced at the edge of the plasma due to the interplay between transport, force balance and PF system

Cross-section of the toroidal current density jᵩ (A/m2)

Plasma motion

Page 55: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionCONCLUSION [1/3]

With ITER, Fusion research enters in the ‘Nuclear and Reactor Era ’.

Bringing Fusion research to its “Reactor Era” requires an innovative

programme of “discharge mastering”, where modelling plays a crucial role

� Limited experimental time for empirical approach

� Design , safety case and preparation of operation with systematic

modelling

Integrated Modelling: Set of codes coupled together to model the complex

& coupled ‘plasma + tokamak’ system

Integrated Modelling for ITER scenario

� Predictive modelling of each plasma from beginning to end ,

including analysis of control requirements

� Interpretative analysis of each plasma to evaluate/validate models

ITER scenario design: physics and computational challenges

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 55

Page 56: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionPROSPECTS [2/3]

Finalisation of the ITER modeling architecture & analysis suite for

Integrated Tokamak Modelling

Systematic validation and benchmark on existing experiments with more

accurate reproductions of present-day tokamak data, e.g.

� Core & edge integration (full 2D coupling) with metallic walls

� Impurity source and transport

� Disruption modelling

� MHD & confinement , pedestal

� Fast particles physics

� …

Imperative to bridge the gap between speed and accuracy for routine

integrated modelling

� computational challenge: parallization and computing resources

� physics challenge: reduced model

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 56

Page 57: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionPROSPECTS [3/3]

Integrated simulation that includes all the complexit y of tokamak operation

Towards the flight simulator for ITER & fusion reactors

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 57

Towards the numerical tokamak , the ab-initio integrated modelling� Integrate with first principle codes with multi-platform resources

(cluster, grid, HPC) First principle modelling : - Transport - MHD - Sources - Fast particles …

Integrated modelling architecture

Page 58: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionSOME REFERENCES …

Artaud J.F. et al., Nucl. Fusion 50, 043001 (2010)Batchelor D.A. et al Plasma Science and Technology, 9 2007 Becoulet A. et al 2007 Comput. Phys. Commun. 177 55–9Besseghir K et al 2013 Plasma Phys. Control. Fusion 55 125012Budny R.V. Nuclear Fusion, Vol 49 085008 August (2009) Citrin J. et al., Nucl. Fusion 50, 115007 (2010)Coster D. et al 2010 IEEE Trans. Plasma Sci. 38 2085Falchetto G et al Nucl. Fusion 54 (2014) 043018Garcia J. et al., Nucl. Fusion 48 (2008) 075007Giruzzi G. et al., Plasma Phys. Contr. Fusion 53 (2011) 124010Hogeweij D. et al Nucl. Fusion 2013 53 013008Imbeaux F. et al 2010 Comput. Phys. Commun. 181 987–98Johner J. , Fus. Sci. Tech. 59, 308 (2011)Kalupin D. et al. Nucl. Fusion 53 (2013) 123007Kim S H et al 2009 Plasma Phys. Control. Fusion 51 105007Kessel C.E. et al., Nucl. Fusion 47, 1274 (2007)Litaudon X. et al, Nucl. Fusion 53 (2013) 073024Yong-Su Na et al, IAEA FEC (2012), ITR/P1-17Parail V. et al Nucl. Fusion 53 (2013) 113002Poli F.M. et al Nuclear Fusion, 54 (2014) 073007Romanelli M. et al Plasma and Fusion Research Volume 9, 3403023 (2014)Strand P.I. et al 2010 Fusion Eng. Des. 85 383–7Voiteskovitch et al 2014 Nucl. Fusion 54 093006

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 58

Page 59: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusionEXTRA-SLIDES

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 59

Page 60: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

IMPURITY TRANSPORT WITH ETS: ITER LIKE WALLS JET HYBRID SCENARIO

Intrinsic Be and W, and injected Ni impurities simulated with ETS (all charge states, non-coronal equilibrium, empirical impurity transport):

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 60

I. Ivanova-Stanik, Yu. Baranov

I. Voitsekhovitch and J. Garcia, ITM GM, Nov. 2013

Radiation measurement from different bolometer channels is reasonably well reproduced

Page 61: EUROfusion - Aix-Marseille Universityiterschool.univ-amu.fr/IISS2014/lecture_notes/Litaudon_lec.pdf · EUROfusion BASIC INGREDIENTS OF A FUSION PLASMA SIMULATOR Geometry: magnetic

EUROfusion

TRANSPORT OF IMPURITIESIMPLEMENTED IN ETS

Transport of multiple

impurities, including multiple

charge states in ETS

First verifications performed

on test cases for light

impurities on a JET-like

geometry

Perspectives: extend

verification to heavy metallic

impurities (Tungsten) and

coupling to turbulent transport

models

X. Litaudon | ITER INTERNATIONAL SCHOOL 2014 | August 25th- 29th 2014 | PAGE 61

Evolution of He 2+ and C6+ radial density

profiles showing the penetration from the

edge to the core .

P. Huynh, J.Li, J.F Artaud, V.Basiuk, R.Guirlet