Etank2000 Report - 2012-008 - Tank Report

46
PG 1::> ETANK FULL REPORT - 2012-008 ETank2000 FV 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 8 BOTTOM DESIGN PAGE 44 ANCHOR BOLT DESIGN PAGE 49 CAPACITIES AND WEIGHTS PAGE 51 MAWP & MAWV SUMMARY PAGE 52 PG 2::>ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : Faux -> This Tank : Vrai Show MAWP / MAWV Calcs : Vrai Enforce API Minimum thicknesses : Vrai Enforce API Maximum Roof thickness : Vrai Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Vrai Force Non-Annular Btm. to Meet API-650 5.5.1 : Faux Set t.actual to t.required Values : Faux Maximum 650 App. S or App. M Multiplier is 1 : Vrai Enforce API Maximum Nozzle Sizes : Vrai Max. Self Supported Roof thickness : 0,5 in. Max. Tank Corr. Allowance : 0,5 in. External pressure calcs subtract C.A. per V.5 : Faux Use Gauge Material for min thicknesses : Faux Enforce API Minimum Live Load : Vrai Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : Vrai PG 3::>SUMMARY OF DESIGN DATA and REMARKS Job : 2012-008 Date of Calcs. : 27/01/2012 , 05:37 Mfg. or Insp. Date : 27/01/2012 Designer : Devaux J-P Project : Belgomazout Tag Number : B10 Plant : Wandre Plant Location : Wandre Site : Liege Design Basis : API-653 4th Edition, April 2009, & API-650 11th Edition, Addendum 2, Nov 2009 ----------------------------------------------------------------------

Transcript of Etank2000 Report - 2012-008 - Tank Report

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 1/46

PG 1::> ETANK FULL REPORT - 2012-008ETank2000 FV 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 8

BOTTOM DESIGN PAGE 44

ANCHOR BOLT DESIGN PAGE 49

CAPACITIES AND WEIGHTS PAGE 51

MAWP & MAWV SUMMARY PAGE 52

PG 2::>ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.----------------------------------------------------------------------

No 650 Appendix F Calcs when Tank P = 0 -> Default : Faux-> This Tank : Vrai

Show MAWP / MAWV Calcs : VraiEnforce API Minimum thicknesses : VraiEnforce API Maximum Roof thickness : VraiEnforce Minimum Self Supp. Cone Pitch (2 in 12) : VraiForce Non-Annular Btm. to Meet API-650 5.5.1 : Faux

Set t.actual to t.required Values : FauxMaximum 650 App. S or App. M Multiplier is 1 : VraiEnforce API Maximum Nozzle Sizes : VraiMax. Self Supported Roof thickness : 0,5 in.Max. Tank Corr. Allowance : 0,5 in.External pressure calcs subtract C.A. per V.5 : FauxUse Gauge Material for min thicknesses : FauxEnforce API Minimum Live Load : VraiEnforce API Minimum Anchor Chair Design Load= Bolt Yield Load : Vrai

PG 3::>SUMMARY OF DESIGN DATA and REMARKS

Job : 2012-008Date of Calcs. : 27/01/2012 , 05:37Mfg. or Insp. Date : 27/01/2012Designer : Devaux J-PProject : BelgomazoutTag Number : B10Plant : WandrePlant Location : WandreSite : LiegeDesign Basis : API-653 4th Edition, April 2009,

& API-650 11th Edition, Addendum 2, Nov 2009

----------------------------------------------------------------------

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 2/46

- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------- Operating Ratio: 0,4- Design Standard:- API-650 11th Edition, Addendum 2, Nov 2009 -- (None) -

- Roof : A-285 Gr C: 0,375in. -- Shell (12): A-131 Gr B: 0,236in. -- Shell (11): A-131 Gr B: 0,236in. -- Shell (10): A-131 Gr B: 0,236in. -- Shell (9): A-131 Gr B: 0,315in. -- Shell (8): A-131 Gr B: 0,354in. -- Shell (7): A-131 Gr B: 0,433in. -- Shell (6): A-131 Gr B: 0,433in. -- Shell (5): A-131 Gr B: 0,5in. -- Shell (4): A-131 Gr B: 0,57in. -- Shell (3): A-131 Gr B: 0,64in. -- Shell (2): A-131 Gr B: 0,7in. -

- Shell (1): A-131 Gr B: 0,9in. -- Bottom : A-285 Gr C: 0,25in. -- Annular Ring : A-285 Gr C: 0,25in. -

----------------------------------------------------------------------

Design Internal Pressure = 0 PSI or 0 IN. H2ODesign External Pressure = 0 PSI or 0 IN. H2O

MAWP = 2,5000 PSI or 69,28 IN. H2OMAWV = 0 PSI or 0 IN. H2O

OD of Tank = 98,425 ft

Shell Height = 75,459 ftS.G. of Contents = 0,86Max. Liq. Level = 75 ft

Re-Rate Temperature = 70 °FTank Joint Efficiency = 0,85

Ground Snow Load = 0 lbf/ft^2Roof Live Load = 20 lbf/ft^2Design Roof Dead Load = 0 lbf/ft^2

PG 4::>Basic Wind Velocity = 100 mphWind Importance Factor = 1Using Seismic Method: NONE

DESIGN NOTES

NOTE 1 : There are tank calculation warnings.Search for * * Warning * * notes.

NOTE 2 : Tank is not subject to API-650 Appendix F.7

PG 5::>SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)

------------------------------------------------------------------------Shell Width Material Sd St Weight CA# (ft) (psi) (psi) (lbf) (in)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 3/46

------------------------------------------------------------------------12 6,287 A-131 Gr B 27.400 30.100 18.715 011 6,288 A-131 Gr B 27.400 30.100 18.716 010 6,288 A-131 Gr B 27.400 30.100 18.716 09 6,288 A-131 Gr B 27.400 30.100 24.980 08 6,288 A-131 Gr B 27.400 30.100 28.072 07 6,288 A-131 Gr B 27.400 30.100 34.334 0

6 6,288 A-131 Gr B 27.400 30.100 34.334 05 6,288 A-131 Gr B 27.400 30.100 39.645 04 6,288 A-131 Gr B 27.400 30.100 45.192 03 6,288 A-131 Gr B 27.400 30.100 50.739 02 6,288 A-131 Gr B 24.900 27.400 55.493 01 6,288 A-131 Gr B 24.900 27.400 71.336 0------------------------------------------------------------------------Total Weight 440.272Shell API 653 Summary (Bottom is 1)

-----------------------------------------------------------------Shell t.design(Sd) t.test(St) t.external t.required t.actual

# (in.) (in.) (in.) (in.) (in.)-----------------------------------------------------------------12 0,0427 0,0451 0 0,1 0,23611 0,0913 0,0965 0 0,1 0,23610 0,1405 0,1484 0 0,1405 0,2369 0,1897 0,2005 0 0,1897 0,3158 0,2391 0,2528 0 0,2391 0,3547 0,2887 0,3053 0 0,2887 0,4336 0,3383 0,3578 0 0,3383 0,4335 0,388 0,4104 0 0,388 0,54 0,4378 0,463 0 0,4378 0,573 0,4875 0,5156 0 0,4875 0,642 0,5905 0,6235 0 0,5905 0,7

1 0,654 0,6911 0 0,654 0,9-----------------------------------------------------------------

Structurally Supported Conical RoofPlate Material = A-285 Gr C,Struct. Material = A-131 Gr A

t.required = 0,1925 in.t.actual = 0,375 in.Roof Joint Efficiency = 0,85

Plate Weight = 116.550 lbf

Rafters:45 Rafters at Rad. 49,212 ft.: COMBO C15 X 33.9 + C 12 X 20.7

Rafters Weight = 125.346 lbf

Girders:

PG 6::> Girders Weight = 0 lbf

Columns:

1 Column at Center: FPB C 12 X 25.0 + 12.25 X 3/8

Columns Weight = 2.677 lbf

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 4/46

Bottom Type: Flat Bottom: AnnularBottom Floor Material = A-285 Gr Ct.required = 0,1 in.t.actual = 0,25 in.Bottom Joint Efficiency = 0,85

Annular Bottom Plate Material : A-285 Gr CMinimum Annular Ring Thickness = 0,17 in.t_Annular_Ring = 0,25 in.Minimum Annular Ring Width = 24 in.W_Annular_Ring = 24 in.

Total Weight of Bottom = 78.124 lbf

ANCHOR BOLTS: (6) 1in. UNC Bolts, A-193 Gr B7

TOP END STIFFENER: L80x80x8, A-36, 2009, lbf

PG 7::>SUPPORTED CONICAL ROOF (from Brownell & Young)

Roof Plate Material: A-285 Gr C, Sd = 26.000 PSI, Fy = 30.000 PSI (API-650 «Table 5-2b)

Structural Material: A-131 Gr A, Sd = 27.400 PSI, Fy = 34.000 PSI (API-650 «Table 5-2b)

R = 49,2125 ftpt = 0,75 in/ft (Cone Roof Pitch)

Theta = ATAN(pt/12) = ATAN(0,0625) = 3,5763 degrees

Ap_Vert = Vertical Projected Area of Roof= pt*OD^2/48= 0,75*98,425^2/48= 151,367 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof= 0.5*OD= 0.5*98,425= 49,2125 ft

Ap = Projected Area of roof for wind moment= PI*R^2= PI*49,2125^2= 7.609 ft^2

S = Ground Snow Load = 0 lbf/ft^2Sb = Balanced Design Snow Load = 0 lbf/ft^2Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load= (8)(0/12) + 15,2982 + 0= 15,2982 lbf/ft^2

Roof Loads (per API-650 Appendix R)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 5/46

Pe = PV*144 = 0*144 = 0 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0,4*Pe= 15,2982 + 20 + 0,4*0= 35,298 lbf/ft^2

e.2b = DL + Pe + 0,4*MAX(Sb,Lr)

= 15,2982 + 0 + 0,4*20= 23,298 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Appendix R)= MAX(e.1b,e.2b)= 35,298 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0,4*Pe= 15,2982 + 20 + 0,4*0= 35,298 lbf/ft^2

e.2u = DL + Pe + 0,4*MAX(Su,Lr)

= 15,2982 + 0 + 0,4*20= 23,298 lbf/ft^2

PG 8::> U = Unbalanced Roof Design Load (per API-650 Appendix R)= MAX(e.1u,e.2u)= 35,298 lbf/ft^2

Lr_1 = MAX(T,U) = 35,298 lbf/ft^2

P = Max. Design Load = Lr_1= 35,298 lbf/ft^2

= 0,2451 PSI

l = Maximum Rafter Spacing (Per API-650 5.10.4.4)= (t - ca) * SQRT(1.5 * Fy / P)= (0,375 - 0)*SQRT(1,5*30.000/0,2451)= 160,67 in.

MINIMUM # OF RAFTERS

< FOR OUTER SHELL RING >

l = 84 in. since calculated l > 84 in. (7 ft)

N_min = 2*PI*R/l = 2*PI*(49,2125)(12)/84 = 44,17

N_min = 45

Actual # of Rafters = 45

Minimum roof thickness based on actual rafter spacing

l = 82,46 in. (actual rafter spacing)

t-Calc = l/SQRT(1.5*Fy/p) + CA

= 82,46/SQRT(1.5*30.000/0,2451) + 0= 0,1925 in.

NOTE: Governs for roof plate thickness.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 6/46

RLoad_Max = Maximum Roof Load based on actual rafter spacing

RLoad_Max = 216(Fy)/(l/(t - ca))^2= 216(30.000)/(82,46/(0,375 - 0))^2= 178,69 lb/ft^2

Let Max_T1 = RLoad_Max

P_ext_1 (Vacuum limited by actual rafter spacing)= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144= -[178,69 - 15,2982 - 0,4 * Max(0,20)]/144= -1 PSI due to actual rafter spacing

Pa_rafter_1 = P_ext_1= -1 PSI or -27,71 IN H2O.

t.required Must be >= 0,09 in. (per API-653)

t.required = MAX( 0.09 , t-Calc )= 0,1925 in.

PG 9::>RAFTER DESIGN

Maximum Rafter Span = 49,213 ftAverage Rafter Spacing on Shell = 6,866 ftAverage Plate Width = (6,866)/2 = 3,433 ft

Mmax = Maximum Bending MomentMmax = wl^2/8where, w = (0,2451)(3,433)*12 + 56,6/12 = 14,81 lbf/in

l = (49,213)(12) = 590,56 in.

Mmax = (14,81)(590,56)^2/8 = 645635, in-lbf

Z req'd = Mmax/27.400 = 645635,/27.400 = 23,56 in^3Actual Z = 40,19 in^3 using COMBO C15 X 33.9 + C 12 X 20.7

W_Max (Max. stress allowed for each rafter in ring 1)= Z * Sd * 8 / l^2= 40,19 * 27.400 * 8 / 590,56^2= 25,2602 lbf/in.

Max_P (Max. Load allowed for each rafter in ring 1)= (W_Max - W_Rafter/12)/(Average Plate Width*12)= (25,2602 - 56,6/12)/(3,433*12)= 0,4987 PSI

Let Max_T1 = Max_P * 144

P_ext_2 (Vacuum limited by Rafter Type)= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144= -[71,8128 - 15,2982 - 0,4 * Max(0,20)]/144= -0,3369 PSI or -9,34 IN. H2OPa2_rafter_1 = P_ext_2

(limited by Rafter Type)

PG 10::>COLUMN DESIGN

CENTER COLUMN

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 7/46

l = Column Length= 942 in = 78,5 ft (as computed)

r = Radius of gyration

if l/r must be less than 180, then

r req'd = l/180 = 942/180 = 5,23 in.Actual r = 3,41 in. using FPB C 12 X 25.0 + 12.25 X 3/8

* * Warning * * Center Column:Actual r = 3,41 in.,Req'd r = 5,23 in.

P = Total load supported by center column= [(rafter length)(rafter load)(# of inner rafters)]/2= [(49,213 ft)(12 in/ft)(14,81 lbf/in)(45)]/2

= 196.788 lbf

Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

Per API-650 5.10.3.3,R = L/r = 276,2 (actual)

Cc = Column Slenderness Ratio= SQRT[2PI^2E/Fy]= SQRT[2PI^2(28.799.999)/(34.000)]= 129,3

FS = Factor of Safety

= 5/3 + 3*(276,2)/(8*(129,3)) - (276,2)^3/(8*(129,3)^3)= 1,2493

Since R > 120, Using API-650 Formulas in 5.10.3.4.

Fa = [(12*PI^2(E))/(23*R^2)]/(1,6 - R/200)= [(12*PI^2(28.799.999))/(23*(276,2)^2)]/(1.6 - 276,2/200)= 8.877 PSI

Fa is not modified Since Design Temp. <= 200 °F.(API-650 M.3.5 N.A.)

Fa = 8.877 * 1= 8.877 PSI

A_reqd = P/Fa= [196.788 + (942/12)(34,1)]/8.877= 22,47 in^2

F = actual induced stress for the column= P/A = [ 196.788 + (942/12)(34,1) ] / 9,92= 20.107 PSI

PG 11::> W_Max (Max. weight allowed for each column in ring 1)= 85.383 lbf

Max_P (Max. Load allowed for each column in ring 1)Let Max_T1 = Max_P * 144

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 8/46

P_ext_3 (Vacuum limited by Column Type)= -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144= -2.5 * [(5,976 - 15,2982 - Max(0,20)] / 144= 0,5091, since cannot be positive,= 0 PSI due to Column TypePa_column_1 = P_ext_3

(limited by Column Type)

Roof_Area = 36*PI*OD^2/COS(Theta)= 36*PI*(98,425)^2/COS()= 1.097.766 in^2

ROOF WEIGHT

Weight of Roof Plates= (density)(t)(PI/4)(12*OD - t)^2/COS(Theta)= (0,2833)(0,375)(PI/4)(1.181 - 0,375)^2/COS(3,5763)= 116.550 lbf (New)

= 116.550 lbf (Corroded)

Weight of Roof Plates supported by shell= 116.550 lbf (New)= 116.550 lbf (Corroded)

Weight of Rafters = 125.346 lbf (New)Weight of Girders = 0 lbf (New)Weight of Columns = 2.677 lbf (New)

Total Weight of Roof = 244.573 lbf (New)= 244.573 lbf (Corroded)

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-650 Figure F-2)Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course)

= 0,6 * SQRT[590,314 * (0,236 - 0)]= 7,0819 in.

(From API-650 Figure F-2)Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less)

= 0,3 * SQRT[9.467 * (0,375 - 0)]= MIN(17,8751, 12)= 12 in.

Top End Stiffener: L80x80x8Aa = (Cross-sectional Area of Top End Stiffener)

= 1,906 in^2

Using API-650 Fig. F-2, Detail b End Stiffener Detail

PG 12::> Ashell = Contributing Area due to shell plates= Wc*(t_shell - CA)= 7,0819 * (0,236 - 0)= 1,671 in^2

Aroof = Contributing Area due to roof plates= Wh*(t_roof - CA)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 9/46

= 12 * (0,375 - 0)= 4,5 in^2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650)= Aa + Aroof + Ashell= 1,906 + 4,5 + 1,671= 8,077 in^2

< Uplift on Tank >Per designer, not using API-650 App. F since P = 0P_max_external = 0 PSI or 0 IN. H2O

PG 13::>SHELL COURSE RE-RATING (Bottom Course is #1)

Course # 1; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 24.900 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 75 + 2.31*0/0,86 = 75ft

tpd = 2,6*OD*(H' - 1)*G/(Sd*E) + CA= 2,6*98,425*(75 - 1)*0,86/(24.900*1) + 0= 0,654 in.

X1 = 0,463* OD / H' = 0,463*98,425/75 = 0,6076X2 = SQRT(H'*G/[Sd*E]) = SQRT(75*0,86/[24.900*1]) = 0,0509X3 = 2,6*H'*OD*G/(Sd*E) = 2,6*75*98,425*0,86/(24.900*1) = 0,6629

t1d = [1,06 - X1 * X2] * X3 + CA= [1,06 - 0,6076 * 0,0509] * 0,6629 + 0= 0,6822 in.

t-Calc_1 = MIN(tpd,t1d) = MIN(0,654,0,6822) = 0,654 in.

hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1= 1*24.900*(0,9 - 0) / (2,6 * 98,425 * 0,86) + 1= 102,8274 ft.

Pmax_1 = (hMax_1 - H) * 0,433 * G= (102,8274 - 75) * 0,433 * 0,86= 10,3624 PSI

Pmax_int_shell = Pmax_1

Pmax_int_shell = 10,3624 PSI

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 10/46

= 75 + 2.31*0/1 = 75ft

<Hydrostatic Test Condition>

tpt = 2,6*OD*(H' - 1)/St= 2,6*98,425*(75 - 1)/27.400 = 0,6911 in.

t1t = [1,06 - (0,463*OD/H')*SQRT(H'/St)]*(2,6*H'*OD/St)

0,463*OD/H' = 0,463*98,425/75 = 0,6076SQRT(H'/St) = SQRT(75/27.400) = 0,0523(2,6*H'*OD/St) = 2,6*75*98,425/27.400 = 0,7005

PG 14::> = [1,06 - (0,6076)(0,0523)]*0,7005 = 0,7202 in.

t.test_1 = MIN(0,6911,0,7202) = 0,6911 in.

Course # 2; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 24.900 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 68,7117 + 2.31*0/0,86 = 68,71ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(68,71 - 1)/(24.900*1)= 0,5985 in.

Trial # 1

Tl = 0,9 in.K = Tl/Tu = 0,9/0,5985 = 1,5038C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,5038)*(1,5038 - 1)/(1 + SQRT(1,5038)^3) = 0,2172

SQRT[r*Tu] = SQRT[590,55*0,5985] = 18,8001

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*18,8001 + 3,84*0,2172*68,71 = 68,778

x2 = 12*C*H' = 12*0,2172*68,71 = 179,0934x3 = 1,22*SQRT[r*Tu] = 1,22*18,8001 = 22,9361

x = min(x1,x2,x3) = 22,9361

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(68,71 - 22,9361/12)/(24.900*1) + 0= 0,5904 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,5904 - (0,5985+0)) = 0,0081

Trial # 2

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 11/46

Tu = tx from previous trial = 0,5904 in.Tl = 0,9 in.K = Tl/Tu = 0,9/0,5904 = 1,5244C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,5244)*(1,5244 - 1)/(1 + SQRT(1,5244)^3) = 0,2246

SQRT[r*Tu] = SQRT[590,55*0,5904] = 18,6725

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*18,6725 + 3,84*0,2246*68,71 = 70,6614

x2 = 12*C*H' = 12*0,2246*68,71 = 185,2225x3 = 1,22*SQRT[r*Tu] = 1,22*18,6725 = 22,7804

PG 15::> x = min(x1,x2,x3) = 22,7804

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(68,71 - 22,7804/12)/(24.900*1) + 0= 0,5905 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,5905 - (0,5904+0)) = 0,0001

t2a = tdx = 0,5905 in.

Ratio = h_1/SQRT[r*(t_1 - CA_1)]= 75,4596/SQRT[590,55*(0,9-0)] = 3,2731

t-Calc_2 = t2a = 0,5905 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 68,7117 + 2.31*0/1 = 68,71ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(68,71 - 1)/27.400= 0,6324 in.

Trial # 1

Tl = 0,9 in.K = Tl/Tu = 0,9/0,6324 = 1,4231C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4231)*(1,4231 - 1)/(1 + SQRT(1,4231)^3) = 0,1871

SQRT[r*Tu] = SQRT[590,55*0,6324] = 19,3252

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*19,3252 + 3,84*0,1871*68,71 = 61,1589

x2 = 12*C*H' = 12*0,1871*68,71 = 154,2828x3 = 1,22*SQRT[r*Tu] = 1,22*19,3252 = 23,5768

x = min(x1,x2,x3) = 23,5768

ttx = 2,6*OD*(H' - x/12)/St

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 12/46

= 2,6*98,425*(68,71 - 23,5768/12)/27.400 = 0,6234 in.

delta = ABS(ttx - Tu) = 0,009

Trial # 2

Tu = tx from previous trial = 0,6234 in.Tl = 0,9 in.K = Tl/Tu = 0,9/0,6234 = 1,4437C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4437)*(1,4437 - 1)/(1 + SQRT(1,4437)^3) = 0,1949

SQRT[r*Tu] = SQRT[590,55*0,6234] = 19,1872

PG 16::> x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*19,1872 + 3,84*0,1949*68,71 = 63,1407

x2 = 12*C*H' = 12*0,1949*68,71 = 160,7391

x3 = 1,22*SQRT[r*Tu] = 1,22*19,1872 = 23,4084

x = min(x1,x2,x3) = 23,4084

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(68,71 - 23,4084/12)/27.400 = 0,6235 in.

delta = ABS(ttx - Tu) = 0,0001

t2a = ttx = 0,6235 in.

Ratio = h_1/SQRT[r*t_1] = 6,2883/SQRT[590,55*0,9] = 3,2731

t.test_2 = t2a = 0,6235 in.

Course # 3; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 62,4234 + 2.31*0/0,86 = 62,42ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(62,42 - 1)/(27.400*1)= 0,4933 in.

Trial # 1

Tl = 0,7 in.K = Tl/Tu = 0,7/0,4933 = 1,419

C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)= SQRT(1,419)*(1,419 - 1)/(1 + SQRT(1,419)^3) = 0,1855

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 13/46

SQRT[r*Tu] = SQRT[590,55*0,4933] = 17,068

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*17,068 + 3,84*0,1855*62,42 = 54,8815

x2 = 12*C*H' = 12*0,1855*62,42 = 138,9686x3 = 1,22*SQRT[r*Tu] = 1,22*17,068 = 20,823

x = min(x1,x2,x3) = 20,823

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(62,42 - 20,823/12)/(27.400*1) + 0= 0,4874 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,4874 - (0,4933+0)) = 0,0059

PG 17::> Trial # 2

Tu = tx from previous trial = 0,4874 in.Tl = 0,7 in.K = Tl/Tu = 0,7/0,4874 = 1,4362C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4362)*(1,4362 - 1)/(1 + SQRT(1,4362)^3) = 0,1921

SQRT[r*Tu] = SQRT[590,55*0,4874] = 16,9657

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*16,9657 + 3,84*0,1921*62,42 = 56,3945

x2 = 12*C*H' = 12*0,1921*62,42 = 143,8919x3 = 1,22*SQRT[r*Tu] = 1,22*16,9657 = 20,6981

x = min(x1,x2,x3) = 20,6981

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(62,42 - 20,6981/12)/(27.400*1) + 0= 0,4875 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,4875 - (0,4874+0)) = 0,0001

t-Calc_3 = tdx = 0,4875 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 62,4234 + 2.31*0/1 = 62,42ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(62,42 - 1)/30.100= 0,5222 in.

Trial # 1

Tl = 0,7 in.K = Tl/Tu = 0,7/0,5222 = 1,3405C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 14/46

= SQRT(1,3405)*(1,3405 - 1)/(1 + SQRT(1,3405)^3) = 0,1545

SQRT[r*Tu] = SQRT[590,55*0,5222] = 17,5609

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*17,5609 + 3,84*0,1545*62,42 = 47,7375

x2 = 12*C*H' = 12*0,1545*62,42 = 115,7044

x3 = 1,22*SQRT[r*Tu] = 1,22*17,5609 = 21,4243

x = min(x1,x2,x3) = 21,4243

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(62,42 - 21,4243/12)/30.100 = 0,5155 in.

delta = ABS(ttx - Tu) = 0,0067

PG 18::> Trial # 2

Tu = tx from previous trial = 0,5155 in.Tl = 0,7 in.K = Tl/Tu = 0,7/0,5155 = 1,3579C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,3579)*(1,3579 - 1)/(1 + SQRT(1,3579)^3) = 0,1615

SQRT[r*Tu] = SQRT[590,55*0,5155] = 17,4479

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*17,4479 + 3,84*0,1615*62,42 = 49,3548

x2 = 12*C*H' = 12*0,1615*62,42 = 120,9738x3 = 1,22*SQRT[r*Tu] = 1,22*17,4479 = 21,2864

x = min(x1,x2,x3) = 21,2864

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(62,42 - 21,2864/12)/30.100 = 0,5156 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_3 = ttx = 0,5156 in.

Course # 4; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 56,1351 + 2.31*0/0,86 = 56,14ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(56,14 - 1)/(27.400*1)= 0,4429 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 15/46

Trial # 1

Tl = 0,64 in.K = Tl/Tu = 0,64/0,4429 = 1,445C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,445)*(1,445 - 1)/(1 + SQRT(1,445)^3) = 0,1955

SQRT[r*Tu] = SQRT[590,55*0,4429] = 16,1726

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*16,1726 + 3,84*0,1955*56,14 = 52,

x2 = 12*C*H' = 12*0,1955*56,14 = 131,6708x3 = 1,22*SQRT[r*Tu] = 1,22*16,1726 = 19,7306

x = min(x1,x2,x3) = 19,7306

PG 19::> tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(56,14 - 19,7306/12)/(27.400*1) + 0= 0,4377 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,4377 - (0,4429+0)) = 0,0052

Trial # 2

Tu = tx from previous trial = 0,4377 in.Tl = 0,64 in.K = Tl/Tu = 0,64/0,4377 = 1,4622C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4622)*(1,4622 - 1)/(1 + SQRT(1,4622)^3) = 0,2019

SQRT[r*Tu] = SQRT[590,55*0,4377] = 16,0774

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*16,0774 + 3,84*0,2019*56,14 = 53,3328

x2 = 12*C*H' = 12*0,2019*56,14 = 136,0172x3 = 1,22*SQRT[r*Tu] = 1,22*16,0774 = 19,6145

x = min(x1,x2,x3) = 19,6145

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(56,14 - 19,6145/12)/(27.400*1) + 0= 0,4378 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,4378 - (0,4377+0)) = 0,0001

t-Calc_4 = tdx = 0,4378 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 56,1351 + 2.31*0/1 = 56,14ft

<Hydrostatic Test Condition>

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 16/46

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(56,14 - 1)/30.100= 0,4688 in.

Trial # 1

Tl = 0,64 in.K = Tl/Tu = 0,64/0,4688 = 1,3652

C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)= SQRT(1,3652)*(1,3652 - 1)/(1 + SQRT(1,3652)^3) = 0,1644

SQRT[r*Tu] = SQRT[590,55*0,4688] = 16,6388

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*16,6388 + 3,84*0,1644*56,14 = 45,5952

x2 = 12*C*H' = 12*0,1644*56,14 = 110,7673x3 = 1,22*SQRT[r*Tu] = 1,22*16,6388 = 20,2993

PG 20::> x = min(x1,x2,x3) = 20,2993

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(56,14 - 20,2993/12)/30.100 = 0,4629 in.

delta = ABS(ttx - Tu) = 0,0059

Trial # 2

Tu = tx from previous trial = 0,4629 in.Tl = 0,64 in.K = Tl/Tu = 0,64/0,4629 = 1,3826C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,3826)*(1,3826 - 1)/(1 + SQRT(1,3826)^3) = 0,1713

SQRT[r*Tu] = SQRT[590,55*0,4629] = 16,5338

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*16,5338 + 3,84*0,1713*56,14 = 47,0205

x2 = 12*C*H' = 12*0,1713*56,14 = 115,4216x3 = 1,22*SQRT[r*Tu] = 1,22*16,5338 = 20,1712

x = min(x1,x2,x3) = 20,1712

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(56,14 - 20,1712/12)/30.100 = 0,463 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_4 = ttx = 0,463 in.

Course # 5; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 17/46

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 49,8468 + 2.31*0/0,86 = 49,85ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(49,85 - 1)/(27.400*1)

= 0,3924 in.

Trial # 1

Tl = 0,57 in.K = Tl/Tu = 0,57/0,3924 = 1,4526C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4526)*(1,4526 - 1)/(1 + SQRT(1,4526)^3) = 0,1983

SQRT[r*Tu] = SQRT[590,55*0,3924] = 15,2227

PG 21::> x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*15,2227 + 3,84*0,1983*49,85 = 47,2467x2 = 12*C*H' = 12*0,1983*49,85 = 118,6275x3 = 1,22*SQRT[r*Tu] = 1,22*15,2227 = 18,5717

x = min(x1,x2,x3) = 18,5717

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(49,85 - 18,5717/12)/(27.400*1) + 0= 0,388 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,388 - (0,3924+0)) = 0,0044

Trial # 2

Tu = tx from previous trial = 0,388 in.Tl = 0,57 in.K = Tl/Tu = 0,57/0,388 = 1,4691C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4691)*(1,4691 - 1)/(1 + SQRT(1,4691)^3) = 0,2045

SQRT[r*Tu] = SQRT[590,55*0,388] = 15,1372

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*15,1372 + 3,84*0,2045*49,85 = 48,3736

x2 = 12*C*H' = 12*0,2045*49,85 = 122,3123x3 = 1,22*SQRT[r*Tu] = 1,22*15,1372 = 18,4673

x = min(x1,x2,x3) = 18,4673

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(49,85 - 18,4673/12)/(27.400*1) + 0= 0,388 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,388 - (0,388+0)) = 0

t-Calc_5 = tdx = 0,388 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 18/46

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 49,8468 + 2.31*0/1 = 49,85ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(49,85 - 1)/30.100= 0,4153 in.

Trial # 1

Tl = 0,57 in.K = Tl/Tu = 0,57/0,4153 = 1,3725C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,3725)*(1,3725 - 1)/(1 + SQRT(1,3725)^3) = 0,1673

PG 22::> SQRT[r*Tu] = SQRT[590,55*0,4153] = 15,6606

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*15,6606 + 3,84*0,1673*49,85 = 41,585

x2 = 12*C*H' = 12*0,1673*49,85 = 100,1x3 = 1,22*SQRT[r*Tu] = 1,22*15,6606 = 19,106

x = min(x1,x2,x3) = 19,106

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(49,85 - 19,106/12)/30.100 = 0,4103 in.

delta = ABS(ttx - Tu) = 0,005

Trial # 2

Tu = tx from previous trial = 0,4103 in.Tl = 0,57 in.K = Tl/Tu = 0,57/0,4103 = 1,3892C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,3892)*(1,3892 - 1)/(1 + SQRT(1,3892)^3) = 0,1739

SQRT[r*Tu] = SQRT[590,55*0,4103] = 15,5661

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*15,5661 + 3,84*0,1739*49,85 = 42,7925

x2 = 12*C*H' = 12*0,1739*49,85 = 104,0536x3 = 1,22*SQRT[r*Tu] = 1,22*15,5661 = 18,9906

x = min(x1,x2,x3) = 18,9906

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(49,85 - 18,9906/12)/30.100 = 0,4104 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_5 = ttx = 0,4104 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 19/46

Course # 6; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 43,5585 + 2.31*0/0,86 = 43,56ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(43,56 - 1)/(27.400*1)= 0,3418 in.

Trial # 1

PG 23::> Tl = 0,5 in.K = Tl/Tu = 0,5/0,3418 = 1,4628C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4628)*(1,4628 - 1)/(1 + SQRT(1,4628)^3) = 0,2021

SQRT[r*Tu] = SQRT[590,55*0,3418] = 14,2074

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*14,2074 + 3,84*0,2021*43,56 = 42,4796

x2 = 12*C*H' = 12*0,2021*43,56 = 105,666x3 = 1,22*SQRT[r*Tu] = 1,22*14,2074 = 17,333

x = min(x1,x2,x3) = 17,333

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(43,56 - 17,333/12)/(27.400*1) + 0= 0,3383 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,3383 - (0,3418+0)) = 0,0035

Trial # 2

Tu = tx from previous trial = 0,3383 in.Tl = 0,5 in.K = Tl/Tu = 0,5/0,3383 = 1,478C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,478)*(1,478 - 1)/(1 + SQRT(1,478)^3) = 0,2078

SQRT[r*Tu] = SQRT[590,55*0,3383] = 14,1345

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*14,1345 + 3,84*0,2078*43,56 = 43,3755

x2 = 12*C*H' = 12*0,2078*43,56 = 108,6046x3 = 1,22*SQRT[r*Tu] = 1,22*14,1345 = 17,244

x = min(x1,x2,x3) = 17,244

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 20/46

= 2,6*98,425*0,86*(43,56 - 17,244/12)/(27.400*1) + 0= 0,3383 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,3383 - (0,3383+0)) = 0

t-Calc_6 = tdx = 0,3383 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 43,5585 + 2.31*0/1 = 43,56ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(43,56 - 1)/30.100= 0,3618 in.

PG 24::> Trial # 1

Tl = 0,5 in.K = Tl/Tu = 0,5/0,3618 = 1,382C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,382)*(1,382 - 1)/(1 + SQRT(1,382)^3) = 0,1711

SQRT[r*Tu] = SQRT[590,55*0,3618] = 14,6171

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*14,6171 + 3,84*0,1711*43,56 = 37,5347

x2 = 12*C*H' = 12*0,1711*43,56 = 89,4319

x3 = 1,22*SQRT[r*Tu] = 1,22*14,6171 = 17,8329

x = min(x1,x2,x3) = 17,8329

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(43,56 - 17,8329/12)/30.100 = 0,3577 in.

delta = ABS(ttx - Tu) = 0,0041

Trial # 2

Tu = tx from previous trial = 0,3577 in.Tl = 0,5 in.K = Tl/Tu = 0,5/0,3577 = 1,3978C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,3978)*(1,3978 - 1)/(1 + SQRT(1,3978)^3) = 0,1773

SQRT[r*Tu] = SQRT[590,55*0,3577] = 14,5341

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*14,5341 + 3,84*0,1773*43,56 = 38,5246

x2 = 12*C*H' = 12*0,1773*43,56 = 92,6837x3 = 1,22*SQRT[r*Tu] = 1,22*14,5341 = 17,7316

x = min(x1,x2,x3) = 17,7316

ttx = 2,6*OD*(H' - x/12)/St

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 21/46

= 2,6*98,425*(43,56 - 17,7316/12)/30.100 = 0,3578 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_6 = ttx = 0,3578 in.

Course # 7; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

PG 25::> H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G= 37,2702 + 2.31*0/0,86 = 37,27ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(37,27 - 1)/(27.400*1)= 0,2913 in.

Trial # 1

Tl = 0,433 in.K = Tl/Tu = 0,433/0,2913 = 1,4864C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4864)*(1,4864 - 1)/(1 + SQRT(1,4864)^3) = 0,2109

SQRT[r*Tu] = SQRT[590,55*0,2913] = 13,1159

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*13,1159 + 3,84*0,2109*37,27 = 38,182

x2 = 12*C*H' = 12*0,2109*37,27 = 94,3165x3 = 1,22*SQRT[r*Tu] = 1,22*13,1159 = 16,0014

x = min(x1,x2,x3) = 16,0014

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(37,27 - 16,0014/12)/(27.400*1) + 0= 0,2886 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,2886 - (0,2913+0)) = 0,0027

Trial # 2

Tu = tx from previous trial = 0,2886 in.Tl = 0,433 in.K = Tl/Tu = 0,433/0,2886 = 1,5003C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,5003)*(1,5003 - 1)/(1 + SQRT(1,5003)^3) = 0,216

SQRT[r*Tu] = SQRT[590,55*0,2886] = 13,055

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 22/46

= 0,61*13,055 + 3,84*0,216*37,27 = 38,8724x2 = 12*C*H' = 12*0,216*37,27 = 96,5901x3 = 1,22*SQRT[r*Tu] = 1,22*13,055 = 15,9271

x = min(x1,x2,x3) = 15,9271

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(37,27 - 15,9271/12)/(27.400*1) + 0= 0,2887 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,2887 - (0,2886+0)) = 0,0001

t-Calc_7 = tdx = 0,2887 in.

< Re-Rate Condition G = 1 >

PG 26::> H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 37,2702 + 2.31*0/1 = 37,27ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(37,27 - 1)/30.100= 0,3084 in.

Trial # 1

Tl = 0,433 in.K = Tl/Tu = 0,433/0,3084 = 1,404

C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)= SQRT(1,404)*(1,404 - 1)/(1 + SQRT(1,404)^3) = 0,1797

SQRT[r*Tu] = SQRT[590,55*0,3084] = 13,4954

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*13,4954 + 3,84*0,1797*37,27 = 33,9542

x2 = 12*C*H' = 12*0,1797*37,27 = 80,3813x3 = 1,22*SQRT[r*Tu] = 1,22*13,4954 = 16,4644

x = min(x1,x2,x3) = 16,4644

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(37,27 - 16,4644/12)/30.100 = 0,3052 in.

delta = ABS(ttx - Tu) = 0,0032

Trial # 2

Tu = tx from previous trial = 0,3052 in.Tl = 0,433 in.K = Tl/Tu = 0,433/0,3052 = 1,4187C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,4187)*(1,4187 - 1)/(1 + SQRT(1,4187)^3) = 0,1854

SQRT[r*Tu] = SQRT[590,55*0,3052] = 13,4252

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 23/46

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*13,4252 + 3,84*0,1854*37,27 = 34,7266

x2 = 12*C*H' = 12*0,1854*37,27 = 82,929x3 = 1,22*SQRT[r*Tu] = 1,22*13,4252 = 16,3787

x = min(x1,x2,x3) = 16,3787

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(37,27 - 16,3787/12)/30.100 = 0,3053 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_7 = ttx = 0,3053 in.

Course # 8; Material: A-131 Gr B; Width = 6,2883ft

PG 27::> (VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 30,9819 + 2.31*0/0,86 = 30,98ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(30,98 - 1)/(27.400*1)= 0,2408 in.

Trial # 1

Tl = 0,433 in.K = Tl/Tu = 0,433/0,2408 = 1,7982C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,7982)*(1,7982 - 1)/(1 + SQRT(1,7982)^3) = 0,3138

SQRT[r*Tu] = SQRT[590,55*0,2408] = 11,925

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*11,925 + 3,84*0,3138*30,98 = 44,5999

x2 = 12*C*H' = 12*0,3138*30,98 = 116,6429x3 = 1,22*SQRT[r*Tu] = 1,22*11,925 = 14,5484

x = min(x1,x2,x3) = 14,5484

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(30,98 - 14,5484/12)/(27.400*1) + 0= 0,2391 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,2391 - (0,2408+0)) = 0,0017

Trial # 2

Tu = tx from previous trial = 0,2391 in.Tl = 0,433 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 24/46

K = Tl/Tu = 0,433/0,2391 = 1,811C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,811)*(1,811 - 1)/(1 + SQRT(1,811)^3) = 0,3175

SQRT[r*Tu] = SQRT[590,55*0,2391] = 11,8828

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'

= 0,61*11,8828 + 3,84*0,3175*30,98 = 45,0214x2 = 12*C*H' = 12*0,3175*30,98 = 118,0404x3 = 1,22*SQRT[r*Tu] = 1,22*11,8828 = 14,497

x = min(x1,x2,x3) = 14,497

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(30,98 - 14,497/12)/(27.400*1) + 0= 0,2391 in.

PG 28::> delta = ABS(tdx - (Tu + CA)) = ABS(0,2391 - (0,2391+0)) = 0

t-Calc_8 = tdx = 0,2391 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 30,9819 + 2.31*0/1 = 30,98ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(30,98 - 1)/30.100= 0,2549 in.

Trial # 1

Tl = 0,433 in.K = Tl/Tu = 0,433/0,2549 = 1,6987C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,6987)*(1,6987 - 1)/(1 + SQRT(1,6987)^3) = 0,2833

SQRT[r*Tu] = SQRT[590,55*0,2549] = 12,2691

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*12,2691 + 3,84*0,2833*30,98 = 41,1912

x2 = 12*C*H' = 12*0,2833*30,98 = 105,3344x3 = 1,22*SQRT[r*Tu] = 1,22*12,2691 = 14,9683

x = min(x1,x2,x3) = 14,9683

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(30,98 - 14,9683/12)/30.100 = 0,2528 in.

delta = ABS(ttx - Tu) = 0,0021

Trial # 2

Tu = tx from previous trial = 0,2528 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 25/46

Tl = 0,433 in.K = Tl/Tu = 0,433/0,2528 = 1,7128C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,7128)*(1,7128 - 1)/(1 + SQRT(1,7128)^3) = 0,2878

SQRT[r*Tu] = SQRT[590,55*0,2528] = 12,2185

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*12,2185 + 3,84*0,2878*30,98 = 41,6891

x2 = 12*C*H' = 12*0,2878*30,98 = 106,9869x3 = 1,22*SQRT[r*Tu] = 1,22*12,2185 = 14,9065

x = min(x1,x2,x3) = 14,9065

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(30,98 - 14,9065/12)/30.100 = 0,2528 in.

PG 29::> delta = ABS(ttx - Tu) = 0

t.test_8 = ttx = 0,2528 in.

Course # 9; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 24,6936 + 2.31*0/0,86 = 24,69ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(24,69 - 1)/(27.400*1)= 0,1903 in.

Trial # 1

Tl = 0,354 in.K = Tl/Tu = 0,354/0,1903 = 1,8602C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,8602)*(1,8602 - 1)/(1 + SQRT(1,8602)^3) = 0,3317

SQRT[r*Tu] = SQRT[590,55*0,1903] = 10,601

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*10,601 + 3,84*0,3317*24,69 = 37,9144

x2 = 12*C*H' = 12*0,3317*24,69 = 98,2744x3 = 1,22*SQRT[r*Tu] = 1,22*10,601 = 12,9332

x = min(x1,x2,x3) = 12,9332

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(24,69 - 12,9332/12)/(27.400*1) + 0

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 26/46

= 0,1897 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,1897 - (0,1903+0)) = 0,0006

t-Calc_9 = tdx = 0,1897 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 24,6936 + 2.31*0/1 = 24,69ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(24,69 - 1)/30.100= 0,2014 in.

PG 30::> Trial # 1

Tl = 0,354 in.K = Tl/Tu = 0,354/0,2014 = 1,7577C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(1,7577)*(1,7577 - 1)/(1 + SQRT(1,7577)^3) = 0,3016

SQRT[r*Tu] = SQRT[590,55*0,2014] = 10,9058

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*10,9058 + 3,84*0,3016*24,69 = 35,2504

x2 = 12*C*H' = 12*0,3016*24,69 = 89,3683x3 = 1,22*SQRT[r*Tu] = 1,22*10,9058 = 13,3051

x = min(x1,x2,x3) = 13,3051

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(24,69 - 13,3051/12)/30.100 = 0,2005 in.

delta = ABS(ttx - Tu) = 0,0009

t.test_9 = ttx = 0,2005 in.

Course # 10; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 18,4053 + 2.31*0/0,86 = 18,41ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(18,41 - 1)/(27.400*1)= 0,1398 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 27/46

Trial # 1

Tl = 0,315 in.K = Tl/Tu = 0,315/0,1398 = 2,2532C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,2532)*(2,2532 - 1)/(1 + SQRT(2,2532)^3) = 0,4293

SQRT[r*Tu] = SQRT[590,55*0,1398] = 9,0862

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*9,0862 + 3,84*0,4293*18,41 = 35,8897

x2 = 12*C*H' = 12*0,4293*18,41 = 94,8346x3 = 1,22*SQRT[r*Tu] = 1,22*9,0862 = 11,0852

x = min(x1,x2,x3) = 11,0852

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

PG 31::> = 2,6*98,425*0,86*(18,41 - 11,0852/12)/(27.400*1) + 0= 0,1405 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,1405 - (0,1398+0)) = 0,0007

t-Calc_10 = tdx = 0,1405 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G

= 18,4053 + 2.31*0/1 = 18,41ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(18,41 - 1)/30.100= 0,148 in.

Trial # 1

Tl = 0,315 in.K = Tl/Tu = 0,315/0,148 = 2,1284C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,1284)*(2,1284 - 1)/(1 + SQRT(2,1284)^3) = 0,401

SQRT[r*Tu] = SQRT[590,55*0,148] = 9,3489

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*9,3489 + 3,84*0,401*18,41 = 34,0521

x2 = 12*C*H' = 12*0,401*18,41 = 88,5915x3 = 1,22*SQRT[r*Tu] = 1,22*9,3489 = 11,4056

x = min(x1,x2,x3) = 11,4056

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(18,41 - 11,4056/12)/30.100 = 0,1484 in.

delta = ABS(ttx - Tu) = 0,0004

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 28/46

t.test_10 = ttx = 0,1484 in.

Course # 11; Material: A-131 Gr B; Width = 6,2883ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

< Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 12,117 + 2.31*0/0,86 = 12,12ft

PG 32::> Tu = 2,6*OD*G*(H' - 1)/(Sd*E)

= 2,6*98,425*0,86*(12,12 - 1)/(27.400*1)= 0,0893 in.

Trial # 1

Tl = 0,236 in.K = Tl/Tu = 0,236/0,0893 = 2,6428C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,6428)*(2,6428 - 1)/(1 + SQRT(2,6428)^3) = 0,5042

SQRT[r*Tu] = SQRT[590,55*0,0893] = 7,262

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'

= 0,61*7,262 + 3,84*0,5042*12,12 = 27,8976x2 = 12*C*H' = 12*0,5042*12,12 = 73,337x3 = 1,22*SQRT[r*Tu] = 1,22*7,262 = 8,8596

x = min(x1,x2,x3) = 8,8596

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(12,12 - 8,8596/12)/(27.400*1) + 0= 0,0914 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,0914 - (0,0893+0)) = 0,0021

Trial # 2

Tu = tx from previous trial = 0,0914 in.Tl = 0,236 in.K = Tl/Tu = 0,236/0,0914 = 2,5821C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,5821)*(2,5821 - 1)/(1 + SQRT(2,5821)^3) = 0,4937

SQRT[r*Tu] = SQRT[590,55*0,0914] = 7,3469

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*7,3469 + 3,84*0,4937*12,12 = 27,4596

x2 = 12*C*H' = 12*0,4937*12,12 = 71,8062x3 = 1,22*SQRT[r*Tu] = 1,22*7,3469 = 8,9632

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 29/46

x = min(x1,x2,x3) = 8,9632

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(12,12 - 8,9632/12)/(27.400*1) + 0= 0,0913 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,0913 - (0,0914+0)) = 0,0001

t-Calc_11 = tdx = 0,0913 in.

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 12,117 + 2.31*0/1 = 12,12ft

PG 33::> <Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(12,12 - 1)/30.100= 0,0945 in.

Trial # 1

Tl = 0,236 in.K = Tl/Tu = 0,236/0,0945 = 2,4974C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,4974)*(2,4974 - 1)/(1 + SQRT(2,4974)^3) = 0,4784

SQRT[r*Tu] = SQRT[590,55*0,0945] = 7,4704

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*7,4704 + 3,84*0,4784*12,12 = 26,8205

x2 = 12*C*H' = 12*0,4784*12,12 = 69,5735x3 = 1,22*SQRT[r*Tu] = 1,22*7,4704 = 9,1139

x = min(x1,x2,x3) = 9,1139

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(12,12 - 9,1139/12)/30.100 = 0,0966 in.

delta = ABS(ttx - Tu) = 0,0021

Trial # 2

Tu = tx from previous trial = 0,0966 in.Tl = 0,236 in.K = Tl/Tu = 0,236/0,0966 = 2,4431C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(2,4431)*(2,4431 - 1)/(1 + SQRT(2,4431)^3) = 0,4681

SQRT[r*Tu] = SQRT[590,55*0,0966] = 7,553

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'

= 0,61*7,553 + 3,84*0,4681*12,12 = 26,3928x2 = 12*C*H' = 12*0,4681*12,12 = 68,0797x3 = 1,22*SQRT[r*Tu] = 1,22*7,553 = 9,2146

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 30/46

x = min(x1,x2,x3) = 9,2146

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(12,12 - 9,2146/12)/30.100 = 0,0965 in.

delta = ABS(ttx - Tu) = 0,0001

t.test_11 = ttx = 0,0965 in.

Course # 12; Material: A-131 Gr B; Width = 6,2877ft

(VARIABLE DESIGN POINT METHOD) (API-650 Section 5.6.4)

Sd = 27.400 PSI (allowable design stress per API-653 4.3.3.1)

PG 34::> < Re-Rate Condition G = 0,86 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 5,8287 + 2.31*0/0,86 = 5,83ft

Tu = 2,6*OD*G*(H' - 1)/(Sd*E)= 2,6*98,425*0,86*(5,83 - 1)/(27.400*1)= 0,0388 in.

Trial # 1

Tl = 0,236 in.K = Tl/Tu = 0,236/0,0388 = 6,0825C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(6,0825)*(6,0825 - 1)/(1 + SQRT(6,0825)^3) = 0,7834

SQRT[r*Tu] = SQRT[590,55*0,0388] = 4,7868

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*4,7868 + 3,84*0,7834*5,83 = 20,4574

x2 = 12*C*H' = 12*0,7834*5,83 = 54,8047x3 = 1,22*SQRT[r*Tu] = 1,22*4,7868 = 5,8399

x = min(x1,x2,x3) = 5,8399

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(5,83 - 5,8399/12)/(27.400*1) + 0= 0,0429 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,0429 - (0,0388+0)) = 0,0041

Trial # 2

Tu = tx from previous trial = 0,0429 in.Tl = 0,236 in.

K = Tl/Tu = 0,236/0,0429 = 5,5012C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(5,5012)*(5,5012 - 1)/(1 + SQRT(5,5012)^3) = 0,7594

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 31/46

SQRT[r*Tu] = SQRT[590,55*0,0429] = 5,0333

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*5,0333 + 3,84*0,7594*5,83 = 20,0704

x2 = 12*C*H' = 12*0,7594*5,83 = 53,1253x3 = 1,22*SQRT[r*Tu] = 1,22*5,0333 = 6,1407

x = min(x1,x2,x3) = 6,1407

tdx = 2,6*OD*G*(H' - x/12)/(Sd*E) + CA

= 2,6*98,425*0,86*(5,83 - 6,1407/12)/(27.400*1) + 0= 0,0427 in.

delta = ABS(tdx - (Tu + CA)) = ABS(0,0427 - (0,0429+0)) = 0,0002

t-Calc_12 = tdx = 0,0427 in.

PG 35::> < Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure= H + 2,31*P(psi)/G= 5,8287 + 2.31*0/1 = 5,83ft

<Hydrostatic Test Condition>

Tu = 2,6*OD*(H' - 1)/St = 2,6*98,425*(5,83 - 1)/30.100= 0,0411 in.

Trial # 1

Tl = 0,236 in.K = Tl/Tu = 0,236/0,0411 = 5,7421C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(5,7421)*(5,7421 - 1)/(1 + SQRT(5,7421)^3) = 0,7699

SQRT[r*Tu] = SQRT[590,55*0,0411] = 4,9266

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*4,9266 + 3,84*0,7699*5,83 = 20,241

x2 = 12*C*H' = 12*0,7699*5,83 = 53,8618x3 = 1,22*SQRT[r*Tu] = 1,22*4,9266 = 6,0105

x = min(x1,x2,x3) = 6,0105

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(5,83 - 6,0105/12)/30.100 = 0,0453 in.

delta = ABS(ttx - Tu) = 0,0042

Trial # 2

Tu = tx from previous trial = 0,0453 in.Tl = 0,236 in.

K = Tl/Tu = 0,236/0,0453 = 5,2097C = SQRT(K)*(K - 1)/(1 + SQRT(K)^3)

= SQRT(5,2097)*(5,2097 - 1)/(1 + SQRT(5,2097)^3) = 0,7454

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 32/46

SQRT[r*Tu] = SQRT[590,55*0,0453] = 5,1722

x1 = 0,61*SQRT[r*Tu] + 3,84*C*H'= 0,61*5,1722 + 3,84*0,7454*5,83 = 19,8418

x2 = 12*C*H' = 12*0,7454*5,83 = 52,1459x3 = 1,22*SQRT[r*Tu] = 1,22*5,1722 = 6,3101

x = min(x1,x2,x3) = 6,3101

ttx = 2,6*OD*(H' - x/12)/St

= 2,6*98,425*(5,83 - 6,3101/12)/30.100 = 0,0451 in.

delta = ABS(ttx - Tu) = 0,0002

t.test_12 = ttx = 0,0451 in.

PG 36::> Wtr = Transposed Width of each Shell Course= Width*[ t_thinnest / t_course ]^2,5

Transforming Courses (1) to (12)

Wtr(1) = 6,2883*[ 0,236/0,9 ]^2.5 = 0,2214 ftWtr(2) = 6,2883*[ 0,236/0,7 ]^2.5 = 0,415 ftWtr(3) = 6,2883*[ 0,236/0,64 ]^2.5 = 0,5192 ftWtr(4) = 6,2883*[ 0,236/0,57 ]^2.5 = 0,6936 ftWtr(5) = 6,2883*[ 0,236/0,5 ]^2.5 = 0,9625 ftWtr(6) = 6,2883*[ 0,236/0,433 ]^2.5 = 1,3791 ftWtr(7) = 6,2883*[ 0,236/0,433 ]^2.5 = 1,3791 ftWtr(8) = 6,2883*[ 0,236/0,354 ]^2.5 = 2,2819 ft

Wtr(9) = 6,2883*[ 0,236/0,315 ]^2.5 = 3,0552 ftWtr(10) = 6,2883*[ 0,236/0,236 ]^2.5 = 6,2883 ftWtr(11) = 6,2883*[ 0,236/0,236 ]^2.5 = 6,2883 ftWtr(12) = 6,2877*[ 0,236/0,236 ]^2.5 = 6,2877 ftHts (Height of the Transformed Shell)

= SUM{Wtr} = 29,7713 ft

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7)V (Wind Speed) = 100 mphVe = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944Re-Rate PV = 0 PSI, OR 0 In. H2O

<TOP END STIFFENER CALCULATIONS>Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)= 0,91 in^3,

For Structural Roof and OD > 60 ft,Minimum Required Angle is 3 x 3 x 3/8 in.Actual Z = 0,924 in^3Using L80x80x8, Wc = 7,0848

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thinnest,instead of top shell course.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 33/46

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 28.799.999/28.799.999= 1

Hu = Maximum Height of Unstiffened Shell= {ME*600.000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve)

= {1*600.000*0,236*SQRT[0,236/98,425]^3} / 0,6944= 23,9406 ft

Wtr = Transposed Width of each Shell Course= Width*[ t_thinnest / t_course ]^2,5

Transforming Courses (1) to (12)

PG 37::> Wtr(1) = 6,2883*[ 0,236/0,9 ]^2.5 = 0,2214 ftWtr(2) = 6,2883*[ 0,236/0,7 ]^2.5 = 0,415 ft

Wtr(3) = 6,2883*[ 0,236/0,64 ]^2.5 = 0,5192 ftWtr(4) = 6,2883*[ 0,236/0,57 ]^2.5 = 0,6936 ftWtr(5) = 6,2883*[ 0,236/0,5 ]^2.5 = 0,9625 ftWtr(6) = 6,2883*[ 0,236/0,433 ]^2.5 = 1,3791 ftWtr(7) = 6,2883*[ 0,236/0,433 ]^2.5 = 1,3791 ftWtr(8) = 6,2883*[ 0,236/0,354 ]^2.5 = 2,2819 ftWtr(9) = 6,2883*[ 0,236/0,315 ]^2.5 = 3,0552 ftWtr(10) = 6,2883*[ 0,236/0,236 ]^2.5 = 6,2883 ftWtr(11) = 6,2883*[ 0,236/0,236 ]^2.5 = 6,2883 ftWtr(12) = 6,2877*[ 0,236/0,236 ]^2.5 = 6,2877 ftHts (Height of the Transformed Shell)

= SUM{Wtr} = 29,7713 ft

L_0 = Hts/# of Stiffeners + 1= 29,7713/2 = 14,89 ft.

Number of Intermediate Wind Girders Sufficient Since Hu >= L_0

Zi (Req. Wind Gird. Z)= (0,0001)(Ve)(L0)(OD^2)= (0,0001)(0,6944)(14,89)(98,425^2) = 10,02 in^3

Actual Zi = 0 (No Wind Girder Selected, but One Required)

Parameter Still Required: Int Wind Girder Type,since Required Number of Int. Wind Girders > 0.

* * Warning * * Wind Girder Zi is inadequate.Wind Girder Zi Req'd = 10,02

SHELL COURSE #1 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)

= MAX(0,654, 0, 0)= 0,654 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 34/46

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,654,0,1) = 0,654 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,654 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,392400 in.t.actual = 0,9 in.

PG 38::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,9]*12*6,2883*0,9= 71.336 lbf (New)

= 71.336 lbf (Corroded)

SHELL COURSE #2 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,5905, 0, 0)= 0,5905 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,5905,0,1) = 0,5905 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,5905 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,354300 in.t.actual = 0,7 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,7]*12*6,2883*0,7= 55.493 lbf (New)= 55.493 lbf (Corroded)

SHELL COURSE #3 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,4875, 0, 0)= 0,4875 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 35/46

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,4875,0,1) = 0,4875 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0,4875 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,292500 in.t.actual = 0,64 in.

PG 39::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,64]*12*6,2883*0,64= 50.739 lbf (New)= 50.739 lbf (Corroded)

SHELL COURSE #4 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,4378, 0, 0)= 0,4378 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)

= MAX(0,4378,0,1) = 0,4378 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,4378 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,262680 in.t.actual = 0,57 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,57]*12*6,2883*0,57= 45.192 lbf (New)= 45.192 lbf (Corroded)

SHELL COURSE #5 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,388, 0, 0)= 0,388 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 36/46

= MAX(0,388,0,1) = 0,388 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,388 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,232800 in.

t.actual = 0,5 in.

PG 40::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,5]*12*6,2883*0,5= 39.645 lbf (New)= 39.645 lbf (Corroded)

SHELL COURSE #6 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,3383, 0, 0)= 0,3383 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,3383,0,1) = 0,3383 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,3383 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,202980 in.t.actual = 0,433 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,433]*12*6,2883*0,433= 34.334 lbf (New)= 34.334 lbf (Corroded)

SHELL COURSE #7 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,2887, 0, 0)= 0,2887 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)

= MAX(0,2887,0,1) = 0,2887 in.

< API-653 4.3.2.1 >

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 37/46

t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,2887 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,173220 in.t.actual = 0,433 in.

PG 41::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,433]*12*6,2883*0,433= 34.334 lbf (New)= 34.334 lbf (Corroded)

SHELL COURSE #8 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,2391, 0, 0)= 0,2391 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,2391,0,1) = 0,2391 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,2391 in.t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,143460 in.t.actual = 0,354 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,354]*12*6,2883*0,354= 28.072 lbf (New)= 28.072 lbf (Corroded)

SHELL COURSE #9 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,1897, 0, 0)= 0,1897 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,1897,0,1) = 0,1897 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,1897 in.t2 (least min. thickness in an area of shell course)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 38/46

t2 must be >= 0,6*(t.required - CA) + CA = 0,113820 in.t.actual = 0,315 in.

PG 42::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,315]*12*6,2883*0,315= 24.980 lbf (New)

= 24.980 lbf (Corroded)

SHELL COURSE #10 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,1405, 0, 0)= 0,1405 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,1405,0,1) = 0,1405 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,1405 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,084300 in.t.actual = 0,236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,236]*12*6,2883*0,236= 18.716 lbf (New)= 18.716 lbf (Corroded)

SHELL COURSE #11 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,0913, 0, 0)= 0,0913 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,0913,0,1) = 0,1 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,1 in.t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,060000 in.t.actual = 0,236 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 39/46

PG 43::> Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,236]*12*6,2883*0,236= 18.716 lbf (New)= 18.716 lbf (Corroded)

SHELL COURSE #12 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)= MAX(0,0427, 0, 0)= 0,0427 in.

Course Minimum t shall not be less than 0,1" + CA(per API-653 Section 4.3.3.1)

t-653min = 0,1 in.

t.required = MAX(t.design, t.min653)= MAX(0,0427,0,1) = 0,1 in.

< API-653 4.3.2.1 >t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0,1 in.t2 (least min. thickness in an area of shell course)t2 must be >= 0,6*(t.required - CA) + CA = 0,060000 in.t.actual = 0,236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0,2833*PI*[(12*98,425)-0,236]*12*6,2877*0,236= 18.715 lbf (New)

= 18.715 lbf (Corroded)

PG 44::>FLAT BOTTOM: ANNULAR PLATE DESIGN

Bottom Plate Material : A-285 Gr CAnnular Bottom Plate Material : A-285 Gr C

<Weight of Bottom Plate>

Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2= PI/4*(1.181 - 2*0,9 - 2*24)^2= 1.005.184 in^2

Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area= PI/4*(1.185)^2 - 1.005.184= 97.878 in^2

Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * «Annular_Area)

= 0,2833 * 0,25*1.005.184 + 0,2833 * 0,25*97.878= 78.124 lbf (New)= 78.124 lbf (Corroded)

< API-653 >

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 40/46

Calculation of Hydrostatic Test Stress & Product Design Stress(per API-653 Table 4-5 footnote b)

t_1 : Original Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0,433)= 75 + (0)/(0,433) = 75 ft

St = Hydrostatic Test Stress in Bottom (1st) Shell Course= (2,34)(OD)(H' - 1)/t_1= (2,34)(98,425)(75 - 1)/(0,9)= 18.937 PSI

Sd = Product Design Stress in Bottom (1st) Shell Course= (2,34)(OD)(H' - 1)(G)/(t_1 - ca_1)= (2,34)(98,425)(75 - 1)(0,86)/(0,9)= 16.286 PSI

--------------------------

<Non-Annular Bottom Plates>

t_min = 0,1 + 0 = 0,1 in. (per API-653 Table 4-4)

t-Calc = t_min = 0,1 in.

t-Actual = 0,25 in.

<Annular Bottom Plates> (Per API-653 Section 4.4.8),

t_Min_Annular_Ring = 0,17 + 0 = 0,17 in. (per API-653 Table 4-5)

t_Annular_Ring = Actual Annular Ring Thickness= 0,25 in.

PG 45::> W_Annular_Ring = Actual Annular Ring Width= 24 in.

<Annular Bottom Plates> (per API-650 Section 5.5.2),

W_int = Minimum Annular Ring Width(from Shell ID to Any Lap-Welded Joint)(t_Min_Annular_Ring exclusive of corrosion)

= 390*t_Min_Annular_Ring/SQRT(H*G)= 390(0,17)/SQRT(75*0,86)= 8,26 in.

W_int = 24 in.

< FLAT BOTTOM: ANNULAR SUMMARY >

t.required = t-Calc = 0,1 in.t.actual = 0,25 in.

Annular Bottom Plate Material : A-285 Gr CMinimum Annular Ring Thickness = 0,17 in.

t_Annular_Ring = 0,25 in.Minimum Annular Ring Width = 24 in.W_Annular_Ring = 24 in.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 41/46

PG 46::>NET UPLIFT DUE TO INTERNAL PRESSURE

(See roof report for calculations)Net_Uplift = -556.822 lbfAnchorage NOT required for internal pressure.

WIND MOMENT (Per API-650 SECTION 5.11)

vs = Wind Velocity = 100 mphvf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944

Wind_Uplift = Iw * 30 * vf= 1 * 30 * 0,6944= 20,8333 lbf/ft^2

API-650 5.2.1.k Uplift CheckP_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h)P_F41 = WCtoPSI(0,962*30.000*8,077*0,0625/98,425^2 + 8*0,375)

= 0,1624 PSILimit Wind_Uplift/144+P to 1.6*P_F41Wind_Uplift/144 + P = 0,1447 PSI1.6*P_F41 = 0,2598 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)

= MIN(20,8333,37,417)

= 20,8333 lbf/ft^2

Ap_Vert = Vertical Projected Area of Roof= pt*OD^2/48= 0,75*98,425^2/48= 151,367 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof= 0.5*OD= 0.5*98,425= 49,2125 ft

Ap = Projected Area of roof for wind moment= PI*R^2= PI*49,2125^2= 7.609 ft^2

M_roof (Moment Due to Wind Force on Roof)= (Wind_Uplift)(Ap)(Xw)= (20,8333)(7.609)(49,2125) = 7.800.724 ft-lbf

Xs (Moment Arm of Wind Force on Shell)= H/2 = (75,459)/2 = 37,7295 ft

As (Projected Area of Shell)= H*(OD + t_ins / 6)= (75,459)(98,425 + 0/6) = 7.427 ft^2

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 42/46

M_shell (Moment Due to Wind Force on Shell)= (Iw)(vf)(18)(As)(Xs)= (1)(0,6944)(18)(7.427)(37,7295) = 3.502.737 ft-lbf

PG 47::> Mw (Wind moment)

= M_roof + M_shell = 7.800.724 + 3.502.737= 11.303.461 ft-lbf

W = Net weight (PER API-650 5.11.3)(Force due to corroded weight of shell andshell-supported roof plates and weight ofMinimum Liquid less 40% of F.1.2 Uplift force.)

W_net_tank_weight = W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2)= 440.272 + 116.550 - 0,4*0*(PI/4)(144)(98,425^2)= 556.822 lbf

W_min_Liquid = 406.865 lbf

W = W_net_tank_weight + W_min_Liquid= 963.687 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria:1) 0,6*Mw + MPi < (MDL + MF_min_liq)/1,52) Mw + 0,4MPi < (MDL + MF)/2

Mw = Destabilizing Wind Moment = 11.303.461 ft-lbf

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «Pressure.

= P*(PI*OD^2/4)*(144)*(OD/2)= 0*(3,1416*98,425^2/4)*(144)*(49,2125)= 0 ft-lbf

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «Roof weight supported by the Shell.

= (W_shell + W_roof)*OD/2= (440.272 + 116.550)*49,2125= 27.402.604 ft-lbf

tb = Annular Bottom Ring thickness less C.A. = 0,25 in.

Lb = Minimum bottom annular ring width

Lb = greater of 18 in. or 0,365*tb*SQRT(Sy_btm/H_liq)= 18 in.

wl = Circumferential loading of contents along Shell-To-Bottom Joint.= 4,67*tb*SQRT(Sy_btm*H_liq)= 4,67*0,25*SQRT(30.000*75)= 1.751 lbf/ft

wl_min_liq = Circumferential loading of Minimum-Level contents along «

Shell-To-Bottom Joint.= 4,67*ta*SQRT(Sy_btm*H_min_liq)= 4,67*0,25*SQRT(30.000*1)

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 43/46

= 202,2169 lbf/ft

MF_min_liq = wa_min_liq*PI*OD= 202,2169*3,1416*98,425= 202,2169 lbf

PG 48::> MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.= (OD/2)*wl*PI*OD= (49,2125)(1.751)(3,1416)(98,425)= 26.648.876 ft-lbf

Criteria 10,6*(11.303.461) + 0 < (27.402.604 + 62.528)/1,5Since 6.782.077 < 18.310.090, Tank is stable.

Criteria 211.303.461 + 0,4 * 0 < (27.402.604 + 26.648.876)/2Since 11.303.460 < 27.025.740, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

F_wind = vF * 18 * As= 0,6944 * 18 * 7.427= 92.838 lbf

F_friction = Maximum of 40% of Weight of Tank= 0,4 * (W_Roof_Corroded + W_Shell_Corroded +

W_Btm_Corroded + RoofStruct + W_min_Liquid)= 0,4 * (116.550 + 440.272 + 78.124 + 128.023 + 406.865)

= 467.934 lbf

No anchorage needed to resist sliding since

F_friction > F_wind

<Anchorage Requirement>Anchorage NOT required since Criteria 1, Criteria 2, and SlidingARE acceptable.

PG 49::>ANCHOR BOLT DESIGN

Bolt Material : A-193 Gr B7Sy = 105.000 PSI

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 98,425 ftP (design pressure) = 0 INCHES H2OPt (test pressure per F.4.4) = P = 0 INCHES H2OPf (failure pressure per F.6) = N.A. (see Uplift Case 3 below)t_h (roof plate thickness) = 0,375 in.Mw (Wind Moment) = 11.303.461 ft-lbfMrw (Seismic Ringwall Moment) = 0 ft-lbfW1 (Dead Load of Shell minus C.A. and Any

Dead Load minus C.A. other than Roof

Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 44/46

Dead Load minus C.A. including RoofPlate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and AnyDead Load other than RoofPlate Acting on Shell)

For Tank with Structural Supported Roof,W1 = Corroded Shell + Shell Insulation

= 440.272 + 0= 440.272 lbf

W2 = Corroded Shell + Shell Insulation + Corroded Roof PlatesSupported by Shell + Roof Dead Load Supported by Shell

= 440.272 + 0+ 116.550 * [1 + 1.097.766*-0,000001/(144 * 116.550)]

= 556.822 lbfW3 = New Shell + Shell Insulation

= 440.272 + 0= 440.272 lbf

Uplift Cases 1 to 3 are N.A.

Uplift Case 4: Wind Load OnlyPWR = Wind_Uplift/5,208

= 20,8333/5,208= 4,0003 IN. H2O

PWS = vF * 18= 0,6944 * 18= 12,5 lbf/ft^2

MWH = PWS*(D+t_ins/6)*H^2/2= 12,5*(98,425+0/6)*75,459^2/2= 3.502.737 ft-lbf

U = PWR * D^2 * 4,08 + [4 * MWH/D] - W2= 4,0003*98,425^2*4,08+[4*3.502.737/98,425]-556.822= -256.361 lbf

bt = U / N = -42.727 lbf

Sd = 0,8 * 105.000 = 84.000 PSIA_s_r = Bolt Root Area Req'dA_s_r = N.A., since Load per Bolt is zero.

PG 50::> Uplift Case 5: Seismic Load OnlyU = [4 * Mrw / D] - W2*(1-0,4*Av)U = [4 * 0 / 98,425] - 556.822*(1-0,4*0)= -556.822 lbf

bt = U / N = -92.804 lbf

Sd = 0,8 * 105.000 = 84.000 PSIA_s_r = Bolt Root Area Req'dA_s_r = N.A., since Load per Bolt is zero.

Uplift Cases 6 and 7 are N.A.

Uplift Case 8: Frangibility PressureNot applicable since if there is a knuckle on tank roof,

or tank roof is not frangible.Pf (failure pressure per F.6) = N.A.

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 45/46

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 0 in^2

d = Bolt Diameter = 1 in.n = Threads per inch = 8A_s = Actual Bolt Root Area

= 0,7854 * (d - 1,3 / n)^2= 0,7854 * (1 - 1,3 / 8)^2= 0,5509 in^2

Exclusive of Corrosion,Bolt Diameter Req'd = 0,065 in. (per ANSI B1.1)

Actual Bolt Diameter = 1,000 in.

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>No Anchorage Required.Anchorage Meets Spacing Requirements.

ANCHOR BOLT CHAIRS NOT SPECIFIED.

PG 51::>CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 4.288.078 galDesign Capacity (to Max Liquid Level) : 4.255.681 galMinimum Capacity (to Min Liquid Level) : 56.742 galNetWorking Capacity (Design - Min.) : 4.198.939 gal

New Condition Corroded-----------------------------------------------------------Shell 440.272 lbf 440.272 lbfRoofPlates 116.550 lbf 116.550 lbfRafters 125.346 lbf 125.346 lbfGirders 0 lbf 0 lbfColumns 2.677 lbf 2.677 lbfBottom 78.124 lbf 78.124 lbfStiffeners 2.009 lbf 2.009 lbfNozzle Wgt 0 lbf 0 lbfMisc Roof Wgt 0 lbf 0 lbfMisc Shell Wgt 0 lbf 0 lbfInsulation 0 lbf 0 lbf-----------------------------------------------------------Total 764.978 lbf 764.978 lbf

Weight of Tank, Empty : 764.978 lbfWeight of Tank, Full of Product (SG=0,86): 31.540.703 lbfWeight of Tank, Full of Water : 36.550.704 lbf

Net Working Weight, Full of Product : 30.900.950 lbfNet Working Weight, Full of Water : 35.806.800 lbf

8/3/2019 Etank2000 Report - 2012-008 - Tank Report

http://slidepdf.com/reader/full/etank2000-report-2012-008-tank-report 46/46

Foundation Area Req'd : 7.609 ft^2

Foundation Loading, Empty : 100,54 lbf/ft^2Foundation Loading, Full of Product (SG=0,86) : 4.145 lbf/ft^2Foundation Loading, Full of Water : 4.804 lbf/ft^2

SURFACE AREAS

Roof 7.623 ft^2Shell 23.333 ft^2Bottom 7.609 ft^2

Wind Moment 11.303.461 ft-lbfSeismic Moment 0 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

PG 52::>MAWP & MAWV SUMMARY FOR 2012-008

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7)

MAWP = Maximum Calculated Internal Pressure (due to shell)= 2,5 PSI or 69,28 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof)= 36,0473 PSI or 999 IN. H2O

TANK MAWP = 2,5 PSI or 69,28 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = -1 PSI or -27,71 IN. H2O (per API-650 V.1)

MAWV = Maximum Calculated External Pressure (due to shell)= -0,0372 PSI or -1,03 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof)= 0 PSI or 0 IN. H2O

MAWV = N.A. (not calculated due to columns)

TANK MAWV = 0 PSI or 0 IN. H2O