Estuarine Variability Tidal Subtidal Wind and Atmospheric Pressure Fortnightly

60
Estuarine Variability Tidal Subtidal Wind and Atmospheric Pressure Fortnightly M 2 and S 2 Monthly M 2 and N 2 Seasonal (River Discharge)

description

Estuarine Variability  Tidal  Subtidal Wind and Atmospheric Pressure  Fortnightly M 2 and S 2  Monthly M 2 and N 2  Seasonal (River Discharge). Estuarine Variability  Tidal  Subtidal Wind and Atmospheric Pressure  Fortnightly M 2 and S 2  Monthly - PowerPoint PPT Presentation

Transcript of Estuarine Variability Tidal Subtidal Wind and Atmospheric Pressure Fortnightly

Page 1: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Estuarine Variability

Tidal

SubtidalWind and Atmospheric Pressure

FortnightlyM2 and S2

MonthlyM2 and N2

Seasonal (River Discharge)

Page 2: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Estuarine Variability

Tidal

SubtidalWind and Atmospheric Pressure

FortnightlyM2 and S2

MonthlyM2 and N2

Seasonal (River Discharge)

Page 3: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Tidal Straining

River Ocean1 2 3 4 5 6

Slack Before Ebb

6321

Ocean

Ebb

6321

Tidal Flow

1 2 3 4 5 6

Page 4: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

End of Ebb

6321

1 2 3 4 5 6

Flood

6321

Tidal Flow

1 2 3 4 5 6

xu

t

xzu

zt

zK

zxzu

zt z

2

2

Animation of Shear Instability

Page 5: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Example of Tidal interaction with density gradient

Chilean Inland Sea

Pitipalena Estuary

Page 6: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

1

2

CTDTimeSeries

Page 7: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

1

2

Page 8: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

To mix the water column, kinetic energy has to be converted to potential energy.

Mixing increases the potential energy of the water column

z

z2

z1

Page 9: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Potential energy per unit volume: HgV ,

Vol

Potential energy of the water column: HgmV

But )(z

dzzH

g

H

0

The potential energy per unit volume of a mixed water column is:

dzzH

g

Hm

0

dzH H

01

322

321

m

J

sm

kgm

m

kg

s

m

m

Ψ has units of energy per unit volume

Page 10: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

The energy difference between a mixed and a stratified water column is:

dzz)(H

g

Hm

0

with units of [ Joules/m3 ]

φ is the energy required to mix the water column completely, i.e., the energy required to bring the profile ρ(z) to ρhat

It is called the POTENTIAL ENERGY ANOMALY

z

z2

z1

It is a proxy for stratification

The greater the φ the more stratified the water column

If 0

no energy is required to mix the water column

Page 11: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

3

0

m

Jdzz)(

H

g

H

dzzttH

g

t H

0

But the changes of stratification per unit time are given by:

Simpson et al. (1990, Estuaries, 13, 125)

t,z,y,xQz

Kzy

Kyx

Kxz

wy

vx

ut zhh

Q

zK

zK

yH''v

xH''u

yHv

xHu

tH

Hzz

zz

0

Integrating with depth, the depth-integrated density equation is:

1st and 2nd terms on RHS are shear dispersion3rd term is density flux at the surface4th term is density flux at the bottom5th term is depth-integrated source/sink term vv'v

uu'u

'

are deviations from

depth-mean values

Plugging t into

tt

Page 12: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

dzz

zK

HyK

yzK

z

zK

HxK

xzw

Hg

dzz

yH''v

Hy'

'vy'

vy

'v

xH''u

Hx'

'ux'

ux

'u

Hg

t

H

F

Hzz

H

h

E

z

F

zz

H

h

D

H

'CCAB

'CCAB

by

sx

yyyy

xxxx

00

0

1

1

1

1

Bx and By are the along-estuary and cross-estuary straining terms

Ax and Ay are the advection terms

Cx and Cy interaction of density and flow deviations in the vertical

C’x and C’y correlation between vertical shear and density variations in the vertical; depth-averaged counterparts of C

E is vertical mixing and D is vertical advection

Hx and Hy are horizontal dispersion; Fs and Fb are surface and bottom density fluxes

De Boer et al (2008, Ocean Modeling, 22, 1)

Page 13: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

0

1

1

H

D

'CCAB

'CCAB

dzzz

w

y

H''v

Hy

''v

y

'v

y'v

x

H''u

Hx

''u

x

'u

x'u

H

g

t

Burchard and Hofmeister (2008, ECSS, 77, 679)

Sketch of changes in stratificationby the main mechanisms

Page 14: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Burchard and Hofmeister (2008, ECSS, 77, 679)

1-D idealized numerical simulation of tidal straining

0

HE

z

B

dzzz

Kzx

'uHg

t

Page 15: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Burchard and Hofmeister (2008, ECSS, 77, 679)

0 1

Hz dzz

x

H''u

Hx

''u

zw

x

'u

zK

zx'u

H

g

t

stratified entire period

destratified @ end of flood

Page 16: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Another dynamical implication of tidal flows is the generation of a mean non-linear term:

xu

uxu

u

21

21 0

0 because AA 2cos121

cos2

The tidal stress is independent of z as is the barotropic pressure gradient.

e.g.

xuu

xgz

xg

xP 00

2

xgz

xu

gu

xg

00

21

Tidal stresses tend to operate with the barotropic pressure gradient.

dttuux

tuudtxu

u

coscos

21

21

0

2

00

2

0

The mean over a tidal cycle ofxu

u is:

0

Page 17: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Estuarine Variability

Tidal

SubtidalWind and Atmospheric Pressure

FortnightlyM2 and S2

MonthlyM2 and N2

Seasonal (River Discharge)

Page 18: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Subtidal Variability

Produced by direct forcing on estuary (local forcing) or on the coastal ocean, which in turn influences estuary (remote forcing - coastal waves)

Wind forcing may: produce mixinginduce circulationgenerate surface slopes

zS

Kzx

Szu

zS

t v2

2

Wind-produced mixing

The energy per unit area per unit time or power per unit area generated by the wind to mix the water column is proportional to W3

At a height of 10 m, the power per unit area generated by the wind stress is:3

1010 WCW ba

But at the air-water interface it is: 1010

210

** and WWCWC

WW baba

00116.0; 31010* WCWW ba

The wind power at the air water interface is only 0.1 % of the wind power at a height of 10 m.

Page 19: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Wind-induced circulation

The wind-induced circulation can compete with estuarine circulation, or act in concert

The wind-induced circulation will depend on stratification: depth-dependent under stratified conditionsweak depth-dependence under homogeneous conditions

Acts from the surface downward

May destratify the entire water column when forcing is large and buoyancy is low

s

WeakDepth-Averaged

Transport

s

LargeDepth-Mean

Transport

Page 20: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 21: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Mean Momentum Balance?

In a Fjord?

Page 22: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Wind-Induced Surface Slope

Can be assessed from the vertical integration of the linearized u momentum equation,with no rotation @ steady state:

bxsxHgx

1

Note that a westward sx (negative) produces a negative slope.

sx

x1

x2y

x

x1 x2

x

Wind will pile up water in the direction toward which it blows.

Page 23: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

bxsxHgx

1

Page 24: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Slopes produced by different winds in Chesapeake Bay

Page 25: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

The perturbation produced by the wind propagates into the estuary and may cause seiching if the period of the perturbation is close to the natural period of oscillation:

1214

nCL

TN

Page 26: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Forcing from Atmospheric Pressure Gradients

head

dep

th

Low

High

mouth

x

z

mouth

Low

High

head

Indirectly through sea level slope

Another mechanism that may cause subtidal variability in estuaries comes from atmospheric or barometric pressure.

Page 27: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Another mechanism that may cause subtidal variability in estuaries comes from atmospheric or barometric pressure.

xP

gxa

1

aPg

1

m 01.010000/100Pa 100mb 1

Page 28: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Δη = -ΔP/(ρg)

ΔP of 1 mb (100 Pa) = Δη of 0.01 m

Hurricane Felix

Page 29: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Wind Response toFelix

Page 30: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Estuarine Variability

Tidal

SubtidalWind and Atmospheric Pressure

FortnightlyM2 and S2

MonthlyM2 and N2

Seasonal (River Discharge)

Page 31: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Tides in Panama City

Page 32: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Tides in PONCE DE LEON INLET

Page 33: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 34: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

220

zv

zu

zg

Rio

Fortnightly variability in the Richardson Number

Page 35: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 36: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Maximum difference at neaps

Page 37: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Dep

thD

epth

Mean orResidualFlow

Mean orResidualSalinity(Density)

Increasing salinity

Spring

Neap

Ocean

Can you see this modulation from the analytical solution?

3

3

2

23

181948

)(Hz

Hz

AgGH

zuz

Page 38: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Estuarine Variability

Tidal

SubtidalWind and Atmospheric Pressure

FortnightlyM2 and S2

MonthlyM2 and N2

Seasonal (River Discharge)

Page 39: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

2

2

2

2

3

3

2

23

131441

123

181948

)(

Hz

Hz

AH

Hz

HR

Hz

Hz

AgGH

zu

z

z

Page 40: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 41: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

N

C

N C

N C

Page 42: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

(Journal of Physical Oceanography, 2007, 2133)

Salt Intrusion vs. River Discharge

tidalnalgravitatioriver

''1

Ax

SKASuASu

xAt

Sx

Model

Page 43: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Response to Floyd (Sep 1999)

Page 44: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Strong outflow from both River Discharge and NW winds

1

2

3

4

5

6

2 / 3 of volume outflow associated with river input1 / 3 to wind forcing

Page 45: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Nearly 50 km from the ocean – Wilcox station

Mean Discharge in past 20 years: 200 m3/s

60 Suwannees = 1 Mississippi

Page 46: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Dis

char

ge (

m3 /

s)

Hei

ght (

m)

Wilcox; 50 km upstream

Flood Stage

Page 47: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

W

seaward

Page 48: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 49: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Influence of Hurricane Bonnie

Page 50: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Axial Distributionsof Salinity

Spring 1999

Fall 1999

H

M

H M

H M

Page 51: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Effects of Freshwater Input

Page 52: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 53: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Surface Salinity

Bottom Salinity

Sea level

Page 54: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 55: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 56: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 57: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 58: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly
Page 59: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly

Wind-driven circulation tends to dominate in coastal embaymentsWind-driven circulation tends to dominate in coastal embayments

Gulf of Arauco

Page 60: Estuarine Variability   Tidal   Subtidal Wind and Atmospheric Pressure   Fortnightly