Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm...

38
Estimation of hygroscopic growth for ambient single particles IAC Busan 30 Aug 2014 Robert Healy , Greg Evans, Michael Murphy, Zsofia Juranyi, Torsten Tritscher, Ernest Weingartner, Martin Gysel, Laurent Poulain, Katharina Kamilli, Alfred Wiedensohler , Ian O’Connor, Eoin McGillicuddy, John Sodeau, John Wenger

Transcript of Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm...

Page 1: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

Estimation of hygroscopic growth for ambient

single particles

IAC Busan 30 Aug 2014

Robert Healy, Greg Evans, Michael Murphy, Zsofia Juranyi, Torsten Tritscher,

Ernest Weingartner, Martin Gysel, Laurent Poulain, Katharina Kamilli, Alfred

Wiedensohler, Ian O’Connor, Eoin McGillicuddy, John Sodeau, John Wenger

Page 2: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

2

Overview

- Background on particle composition and hygroscopicity

- The Aerosol Time-of-Flight Mass Spectrometer

- Predicting hygroscopic growth for single particles

- Conclusions and future directions

Page 3: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

3

Background – hygroscopicity (single component)

Organic aerosol (OA)

Black carbon (BC)

(NH4)2SO4

90 % RH

Growth factor (GF) for BC ~1, for OA ~1.2 and for (NH4)2SO4 ~1.66 at 90% RH

Page 4: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

4

Background – hygroscopicity (mixture)

Organic aerosol (OA)

Black carbon (BC) 90 % RH

???

(NH4)2SO4

Page 5: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

5

Traditional growth factor predictions based on the ZSR

mixing rule

The Zdanovskii–Stokes–Robinson (ZSR) mixing rule is often used to

predict hygroscopic growth for bulk aerosol mixtures (gmix)*:

𝑔𝑚𝑖𝑥 ≈

𝑖

𝑁

𝜀𝑖𝑔𝑖3

13

where N is the number of species, εi is the volume fraction of species i and

gi is the growth factor of species i

*Zdanovskii, 1948 / Stokes & Robinson 1966

Page 6: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

6

• Bulk aerosol ZSR mixing rule example for RH = 90%:

• Mass fractions of OA, BC and (NH4)2SO4 can be converted to volume

fractions using densities of separate components

• The GF and volume fraction of each component species can be used to

predict the GF of the bulk mixture:

𝑔𝑚𝑖𝑥 ≈

𝑖

𝑁

𝜀𝑖𝑔𝑖3

13

*e.g. Gysel et al. 2004, 2007

GFmix = 1.41

*GF = 1.66

*GF = 1 *GF = 1.20

Bulk aerosol ZSR mixing rule example

Page 7: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

7

Single particle hygroscopicity?

• What about ambient particle populations like this:

• Internally/externally mixed species

• Different particle compositions will lead to different growth behaviours at a

given RH

• Using bulk aerosol composition is not representative

?????RH = 90%

Page 8: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

8

Overview

- Background on particle composition and hygroscopicity

- The Aerosol Time-of-Flight Mass Spectrometer

- Predicting hygroscopic growth for single particles

- Conclusions and future directions

Page 9: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

9

Single particle sampling- online:

Aerosol Time-of-Flight Mass Spectrometer (ATOFMS)

- Detection of organic aerosol, inorganics, metals and rBC

- High time resolution (1 s)

- Size resolved data (150-3000 nm)

*

*TSI Inc. (Model 3800)

Page 10: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

10

Single particle sampling- online:

ATOFMS

Page 11: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

11

Single particle sampling- online:

ATOFMS

- Single particle information retained

- Enables source identification and investigation of chemical processing

- Data typically qualitative only

Data output:Single particlemixing state(qualitative)

Page 12: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

12

Quantitative approach

- Derived ATOFMS mass spectral relative sensitivity factors (RSF) for OA, BC,

NH4, NO3 and SO4 constrained using support AMS and MAAP data

- Calculated quantitative chemical composition estimates for each single particle

*Healy et al. Atmos. Chem. Phys. 2013

RSF

*

quantitative

Page 13: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

13

Overview

- Background on particle composition and hygroscopicity

- The Aerosol Time-of-Flight Mass Spectrometer

- Predicting hygroscopic growth for single particles

- Conclusions and future directions

Page 14: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

14

• Particles assumed to be composed of only BC, OA NH4, SO4 and NO3

• Inorganics combined and assigned hygroscopic properties of (NH4)2SO4

• The GF and volume fraction of BC, OA and inorganic aerosol (IA) are used

to predict the GF of each single particle at 90% RH:

𝑔𝑚𝑖𝑥 ≈

𝑖

𝑁

𝜀𝑖𝑔𝑖3

13

*e.g. Gysel et al. 2004, 2007

GFmix = 1.41

*GF = 1.66

*GF = 1 *GF = 1.20

Single particle ZSR mixing rule approach

Page 15: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

15

Single particle GF vs size for Paris, France

*Healy et al. J. Geophys. Res. 2014

*

Page 16: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

16

Single particle GF vs size for Paris, France

*Healy et al. J. Geophys. Res. 2014

*

Page 17: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

17

GF probability density function for different sizes

110 nm

Page 18: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

18

GF probability density function for different sizes

165 nm

Page 19: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

19

GF probability density function for different sizes

265 nm

Page 20: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

20

External mixing of 165 nm particles

Page 21: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

21

ATOFMS GF predictions vs HTDMA GF measurements

PARIS

SIRTA

LHVP

20km

GOLF

Livry

- ‘MEGAPOLI’ winter campaign site locations

Hygroscopicity tandem differential mobility analyser (HTDMA)

ATOFMS

Page 22: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

22

ATOFMS predicted GF vs HTDMA measured GF

Page 23: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

23

ATOFMS vs HTDMA GF temporal correlation

Continental air mass periods only

Total dataset

26. Jan 2010 18:00 to 21:00

-5 0 5 10 15 20 25 3042

44

46

48

50

52

54

56

[ns/kg]0.005 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56

Page 24: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

24

Conclusions

• ATOFMS data can be used to predict hygroscopic growth

• Single particle information can be used to generate a growth factor

probability density function (GF-PDF) analogous to that measured by

HTDMA

• External mixing can be determined for particles of a given diameter

• Predicted and measured mean GF values agree within 6% for 110 nm, 165

nm particles and 265 nm particles in Paris, France

Page 25: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

25

Future Directions

• ATOFMS and HTDMA measurements at the same site

• Coupling of ATOFMS and support instrumentation to the outflow of HTDMA

would avoid uncertainty introduced by particle shape and density assumptions

• Use size-resolved relative sensitivity factors for ATOFMS (e.g. use a soot

particle aerosol mass spectrometer)

Page 26: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

26

Thanks to…

• John Wenger, UCC

• Greg Evans, Michael Murphy, U of T

• Laurent Poulain, Katharina Kamilli, I f T

• Zsofi Juranyi, Marie Laborde, Martin Gysel,

Ernest Weingartner, PSI

QUESTIONS?

Page 27: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

27

Page 28: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

28

Assumptions!

• All particles are spherical with a density of 1.5 g cm-3 for aerodynamic

diameter to mobility diameter conversions

• Ammonium, nitrate and sulphate in all forms have equivalent density to

ammonium sulphate

• Density of BC, OA and ‘inorganic aerosol’ is 2.0, 1.4 and 1.77 g cm-3

respectively

• ATOFMS ‘sees’ all particle types with equal efficiency at a given size

Page 29: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

29

102

103

104

105

Sca

ling

fa

cto

r

150-

191

nm

191-

244

nm

244-

312

nm

312-

399

nm

399-

511

nm

511-

653

nm

653-

835

nm

835-

1067

nm

Box-plot of hourly size-dependent scaling factors for the entire measurement

period (n = 624). Median, 75th percentile and 90th percentile are denoted by

the solid line, box and whisker respectively.

Size-dependent number scaling factors

Page 30: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

30

Relative sensitivity factors by species

3

4

56

1

2

3

4

56

10

2

3

4R

ela

tive

sen

sitiv

ity facto

r (a

rbitra

ry u

nits)

SO4

OANH4

NO3

BC

Box-plot of hourly mass spectral relative sensitivity factors (n = 610). Median,

75th percentile and 90th percentile are denoted by the solid line, box and

whisker respectively.

Page 31: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

31

ATOFMS reconstructed mass vs AMS/MAAP

Page 32: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

32

ATOFMS reconstructed composition vs AMS/MAAP

1.0

0.8

0.6

0.4

0.2

0.0

Ma

ss f

ractio

n

15/1

/201

0

16/1

/201

0

17/1

/201

0

18/1

/201

0

19/1

/201

0

20/1

/201

0

21/1

/201

0

22/1

/201

0

23/1

/201

0

24/1

/201

0

25/1

/201

0

26/1

/201

0

27/1

/201

0

28/1

/201

0

29/1

/201

0

30/1

/201

0

31/1

/201

0

1/2/

2010

2/2/

2010

3/2/

2010

4/2/

2010

5/2/

2010

6/2/

2010

7/2/

2010

8/2/

2010

9/2/

2010

10/2

/201

0

11/2

/201

0

Date

1.0

0.8

0.6

0.4

0.2

0.0

ATOFMS-derived bulk mass fractions

AMS/MAAP bulk mass fractions

OA NH4

NO3

SO4

BC

Page 33: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

33

ATOFMS reconstructed mass vs AMS

(size resolved)

Page 34: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

34

Composition comparison between sites

Page 35: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

35

Composition comparison between sites

20

15

10

5

0

Ma

ss c

on

ce

ntr

atio

n (

g m

-3)

1/15

/201

0

1/16

/201

0

1/17

/201

0

1/18

/201

0

1/19

/201

0

1/20

/201

0

1/21

/201

0

1/22

/201

0

1/23

/201

0

1/24

/201

0

1/25

/201

0

1/26

/201

0

1/27

/201

0

1/28

/201

0

1/29

/201

0

1/30

/201

0

1/31

/201

0

2/1/

2010

2/2/

2010

2/3/

2010

2/4/

2010

2/5/

2010

2/6/

2010

2/7/

2010

2/8/

2010

2/9/

2010

2/10

/201

0

2/11

/201

0

Date

SIRTA LHVP

Organic aerosol

Page 36: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

36

Composition comparison between sites

10

8

6

4

2

0

Ma

ss c

on

ce

ntr

atio

n (

g m

-3)

1/15

/201

0

1/16

/201

0

1/17

/201

0

1/18

/201

0

1/19

/201

0

1/20

/201

0

1/21

/201

0

1/22

/201

0

1/23

/201

0

1/24

/201

0

1/25

/201

0

1/26

/201

0

1/27

/201

0

1/28

/201

0

1/29

/201

0

1/30

/201

0

1/31

/201

0

2/1/

2010

2/2/

2010

2/3/

2010

2/4/

2010

2/5/

2010

2/6/

2010

2/7/

2010

2/8/

2010

2/9/

2010

2/10

/201

0

2/11

/201

0

Date

SIRTA LHVP

NH4

Page 37: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

37

Composition comparison between sites

25

20

15

10

5

0

Ma

ss c

on

ce

ntr

atio

n (

g m

-3)

1/15

/201

0

1/16

/201

0

1/17

/201

0

1/18

/201

0

1/19

/201

0

1/20

/201

0

1/21

/201

0

1/22

/201

0

1/23

/201

0

1/24

/201

0

1/25

/201

0

1/26

/201

0

1/27

/201

0

1/28

/201

0

1/29

/201

0

1/30

/201

0

1/31

/201

0

2/1/

2010

2/2/

2010

2/3/

2010

2/4/

2010

2/5/

2010

2/6/

2010

2/7/

2010

2/8/

2010

2/9/

2010

2/10

/201

0

2/11

/201

0

Date

SIRTA LHVP

NO3

Page 38: Estimation of hygroscopic growth for ambient single particles · 2 10 3 10 4 10 5 or 150-191 nm 191-244 nm 244-312 nm 312-399 nm 399-511 nm 511-653 nm 653-835 nm 835-1067 nm Box-plot

38

Composition comparison between sites

20

15

10

5

0

Ma

ss c

on

ce

ntr

atio

n (

g m

-3)

1/15

/201

0

1/16

/201

0

1/17

/201

0

1/18

/201

0

1/19

/201

0

1/20

/201

0

1/21

/201

0

1/22

/201

0

1/23

/201

0

1/24

/201

0

1/25

/201

0

1/26

/201

0

1/27

/201

0

1/28

/201

0

1/29

/201

0

1/30

/201

0

1/31

/201

0

2/1/

2010

2/2/

2010

2/3/

2010

2/4/

2010

2/5/

2010

2/6/

2010

2/7/

2010

2/8/

2010

2/9/

2010

2/10

/201

0

2/11

/201

0

Date

SIRTA LHVP

SO4