Estimación estadística

23
Instituto Universitario de Instituto Universitario de Tecnología. Tecnología. Antonio José de Sucre. Antonio José de Sucre. Extensión Barquisimeto. Extensión Barquisimeto. Estadística Estadística Aplicada Aplicada Mariely J. Vargas Z. Mariely J. Vargas Z. V- 19.828.422 V- 19.828.422 Estadística II Estadística II Sección S1 Sección S1 2014-2i 2014-2i

description

SAIA Barquisimeto Lara

Transcript of Estimación estadística

Page 1: Estimación estadística

Instituto Universitario de Instituto Universitario de Tecnología.Tecnología.

Antonio José de Sucre.Antonio José de Sucre.Extensión Barquisimeto.Extensión Barquisimeto.

Estadística Estadística AplicadaAplicada

Mariely J. Vargas Z.Mariely J. Vargas Z.V- 19.828.422V- 19.828.422Estadística IIEstadística IISección S1Sección S1

2014-2i2014-2i

Page 2: Estimación estadística

Estimación de parámetrosEstimación de parámetros::

Estimación puntual y por intervalos. Características

deseables de un estimador. Cálculo de los intervalos de

confianza para los principales parámetros.

Page 3: Estimación estadística

Estimación: Estimación: puntual y por intervalos

Como ya hemos visto, a partir de los estadísticos que hemos obtenido en la/s muestra/s queremos obtener una idea de los valores de los parámetros en la población.

Se trata de emplear los estadísticos para estimar los parámetros.

VEREMOS DOS TIPOS DE ESTIMADORES:VEREMOS DOS TIPOS DE ESTIMADORES:

1)Estimación puntual. Aquí obtendremos un punto, un valor, como estimación del parámetro.

2)Estimación por intervalos. Aquí obtendremos un intervalo dentro del cual estimamos (bajo cierta probabilidad) estará el parámetro.

Page 4: Estimación estadística

Estimación puntual de Estimación puntual de parámetrosparámetros

Un estimador puntual es simplemente un estadístico (media aritmética, varianza, etc.) que se emplea para estimar parámetros (media poblacional, varianza poblacional, etc.).

Es decir, cuando obtenemos una media aritmética a partir de una muestra, tal valor puede ser empleado como un estimador para el valor de la media poblacional.

(Algunos autores comparan los estimadores con los lanzamientos en una diana; el círculo central sería el valor real del parámetro.)

Page 5: Estimación estadística

Propiedades deseables en Propiedades deseables en los estimadoreslos estimadores

Veremos CUATRO propiedades:Veremos CUATRO propiedades:

1.Ausencia de sesgo

2.Consistencia

3.Eficiencia

4.Suficiencia

Page 6: Estimación estadística

Propiedades deseables en Propiedades deseables en los estimadores (1)los estimadores (1)

1. Ser insesgado. Diremos que es un estimador insesgado de si la esperanza de es . Es decir,

( )E

La media muestral es un estimador insesgado de la media poblacional.

Pero la varianza muestral NO es un estimador insesgado de la varianza poblacional, pero sí lo es en cambio la cuasivarianza.

Page 7: Estimación estadística

Propiedades deseables en Propiedades deseables en los estimadores (2)los estimadores (2)

2. Consistencia. Consistencia. Se dice que un estimador es consistente si se cumple que lim 0

nP

Esta expresión indica que a medida que se incrementa el tamaño muestral, la diferencia entre el estimador y el parámetro será menos que cualquier número (e).

A diferencia de la “ausencia de sesgo” que se define para valores finitos de n, la “consistencia” es una propiedad asintótica.

Tanto la media muestral como la cuasivarianza son estimadores consistentes.

Nota: la varianza muestral ES un estimador consistente de la varianza poblacional, dado que a medida que el tamaño muestral se incrementa, el sesgo disminuye y disminuye.

Page 8: Estimación estadística

Propiedades deseables en Propiedades deseables en los estimadores (3)los estimadores (3)

3. Eficiencia. Eficiencia. Se emplea para COMPARAR estimadores.

Si tenemos dos estimadores y de un mismo parámetro q, diremos que es más eficiente que si tenemos que var( )<var( )

Se puede comprobar que la varianza muestral es más eficiente que la cuasivarianza muestral a la hora de estimar la varianza poblacional. (Aún así, se prefiere la cuasivarianza muestral como estimador de la varianza poblacional por ser un estimador insesgado.)

1

1

2

2

2

1

2

Page 9: Estimación estadística

Propiedades deseables en Propiedades deseables en los estimadores (4)los estimadores (4)

4. Suficiencia. Diremos que es un estimador suficiente del parámetro si dicho estimador basta por sí solo para estimar

Page 10: Estimación estadística

Intervalos de confianza para Intervalos de confianza para los principales parámetroslos principales parámetros

El caso de la media (1)

En este caso, en lugar de indicar simplemente un único valor como estimación del parámetro, lo que haremos es ofrecer un intervalo de valores que sea asumible con cierta probabilidad por el parámetro que queremos estimar.

-Intervalo de confianza: Intervalo de confianza: Es el intervalo de las estimaciones (probables) sobre el parámetro.

-Límites de los intervalos de confianza: Límites de los intervalos de confianza: Son los dos valores extremos del intervalo de confianza

Page 11: Estimación estadística

Intervalos de confianza para los Intervalos de confianza para los principales parámetros: principales parámetros: El caso de El caso de

la media (2)la media (2)Ahora bien, ¿cuán grande habrá de ser el intervalo de confianza?

Evidentemente, si decimos que el intervalo de confianza va de menos infinito a más infinito, seguro que acertamos...pero eso no es muy útil. Por su parte, el extremo es la estimación puntual, en la que lo usual es que no demos con el valor del parámetro...La idea es crear unos intervalos de confianza de manera que sepamos en qué porcentaje de casos el parámetro estará dentro del intervalo crítico.

¿Y cómo fijamos tal porcentaje de casos? Usualmente se asume un porcentaje del 95%. Al calcular un intervalo de confianza sobre la media al 95% ello quiere decir que el 95% de las veces que repitamos el proceso de muestreo (y calculemos la media muestral), la media poblacional estará dentro de tal intervalo.

Page 12: Estimación estadística

Intervalos de confianza para los principales parámetros: El caso de

la media (3)

Pero, ¿cómo calculamos estos dos Pero, ¿cómo calculamos estos dos límites?límites?

Sabemos que la distribución subyacente es normal, lo cual nos ayuda enormemente.

En una distribución normal tipificada, es muy fácil saber qué puntuación típica (z) deja a la izquierda el 2.5% de los datos (yendo a las tablas es -1.96) y cuál deja a la izquierda el 97.5% de los datos (o a la derecha el 2.5% de los datos: 1.96).

Ahora habrá que pasar esos datos a puntuaciones directas....

Page 13: Estimación estadística

Intervalos de confianza para los principales parámetros: El caso de

la media (3)

Pero, ¿cómo calculamos estos dos límites?

Vamos a ver DOS casos.

Primero, veremos el caso de que sepamos la varianza poblacional.

Segundo, veremos el caso de que NO sepamos la varianza poblacional

Page 14: Estimación estadística

Intervalos de confianza para los principales parámetros: El caso de

la media (4)

Nuestra distribución es normal, pero con cierta media y cierta desviación típica, las cuales sabemos por el tema anterior:

1) La media de la distribución muestral de medias es la media poblacional m

2) La varianza de la distribución muestral de medias es s2/n

O lo que es lo mismo, la desviación típica de la dist.muestral de medias es

2Conocemos

n

Page 15: Estimación estadística

Intervalos de confianza para los principales parámetros: El caso de

la media (5)

Estimador de es

X Recordad que

O lo que es análogo

Y para pasar directas-típicas:

2Conocemos

i iX z Xn

/i

i

X Xz

n

Page 16: Estimación estadística

z 0’975z 0’025

En definitiva

Intervalos de confianza para los principales parámetros: El caso de

la media (6)

Aplicando la lógica de pasar de puntuaciones típicas a directas

En Punt.típicas

En Punt.directas

2Conocemos

0.025 0.975 0.95P X z X zn n

0.025X zn

0.975X z

n

Page 17: Estimación estadística

Intervalos de confianza para la media: CASO DE DESCONOCER LA VARIANZA

POBLACIONALPara la media (cuando conocemos la varianza poblacional), tenemos la expresión

Pero si no conocemos la varianza poblacional, no podemos emplear

En su lugar hemos de emplear

Ahora la distribución ya no es exactamente una distribución normal...

Por el tema anterior sabemos que la distribución muestral de

2s

n

2

n

/

X

s n

no es una distribución normal, sino una distribución t de Student con n-1 grados de libertad.

0.025 0.975 0.95P X z X zn n

Recordad, en el caso de varianza conocida teníamos:

/i

i

Xz

n

Page 18: Estimación estadística

Intervalos de confianza para la media: CASO DE DESCONOCER LA VARIANZA

POBLACIONALEn definitiva, para la media (cuando conocemos la varianza poblacional), tenemos la expresión

Pero si no conocemos la varianza poblacional (el caso realista), tenemos la expresión:

En todo caso, recordad que si "n" es grande, la distribución t de Student será virtualmente una distribución normal N(0,1). En otras palabras, si "n" es grande, ambas fórmulas dan unos intervalos virtualmente idéntico, y emplear la distribución normal es correcto.

0.025 0.975 0.95P X z X zn n

0.025 1 0.975 1 0.95n n

s sP X t X t

n n

Page 19: Estimación estadística

Intervalos de confianza para los principales parámetros: El caso de la

media (7)¿Qué quiere decir la expresión siguiente?

Quiere decir que cada vez que extraigamos una muestra y hallemos la media, el parámetro desconocido m estará entre los límites de dicho intervalo el 95% de las veces. (O el 99% si hubiéramos elegido un intervalo al 99%, etc.)

0.025 0.975 0.95P X z X zn n

Page 20: Estimación estadística

Intervalos de confianza para los principales parámetros: Tamaño

muestral y la amplitud del intervalo de confianza

Es claro que a medida que el tamaño muestral aumente, la amplitud del intervalo disminuye. (Evidentemente, esto es general, no sólo para la media.) Veamos, en todo caso un ejemplo:

Caso A1. Media muestral=10, varianza pobl=4, tamaño muestral=12

Caso A2. Media muestral=10, varianza pobl=4, tamaño muestral=20

Para el caso de la media hemos visto que

0.025 0.975 0.95P X z X zn n

2 210 ( 1.96) 10 1.96 9.12 10.88 0.95

20 20P P

2 210 ( 1.96) 10 1.96 8.87 11.13 0.95

12 12P P

Page 21: Estimación estadística

Intervalos de confianza para los principales parámetros: Amplitud del intervalo de confianza y el valor del

índice de confianza

Pero evidentemente es posible emplear intervalos a, digamos, el 99%. En tal caso, tendremos más seguridad de que el parámetro de interés se halle en los límites del intervalo. El problema es que incrementar tal índice aumenta así mismo la amplitud del intervalo.

Caso A1. Media muestral=10, varianza pobl.=4, tamaño muestral=12. Intervalo al 95%

Caso A2. Media muestral=10, varianza pobl=4, tamaño muestral=12. Intervalo al 99%

El caso "usual" (por defecto) es emplear intervalos al 95%.

0.025 0.975 0.95P X z X zn n

2 210 ( 2.57) 10 2.57 8.52 11.48 0.99

12 12P P

2 210 ( 1.96) 10 1.96 8.87 11.13 0.95

12 12P P

Page 22: Estimación estadística

Intervalos de confianza para OTROS parámetros

Intervalos de confianza para las proporciones

Caso de muestras grandes

.025 .975

(1 ) (1 )0.95

P P P PP P z P z

n n

Caso de muestras pequeñas

Page 23: Estimación estadística

Intervalos de confianza para OTROS parámetros

Intervalos de confianza para la varianza

2 22

2 2.975 1 .025 1

0.95n n

n S n SP