ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N....

36
ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader https://ess-ics.atlassian.net/wiki/display/CRYOM/ Cryomodules+Collaboration+space

Transcript of ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N....

Page 1: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

ESS Programme Plan and Schedule Update

C. Darve, Deputy WP05 and WP04 leader

Acknowledgement: N. Elias, WP05 and WP04

P. Bosland, WP05 leader

https://ess-ics.atlassian.net/wiki/display/CRYOM/Cryomodules+Collaboration+space

Page 2: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

2

Headline

ESS Programme Plan Scope

– Life-cycle flow for the cavities and cryomodules– Interface requirements between cavities and cryomodules see afternoon Workshop– Acceptance criteria and NC see afternoon Workshop– Use lessons-learned from ECCTD (and XFEL)

Schedule (time)

ESS Technical Annex (“schedule”)– PDR– CDR– Data packages– Tracking progress

Communication channels:– Follow-up– Collaboration Space web site– Video-conferences

Page 3: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

3

Headline

ESS Programme Plan Scope

– Life-cycle flow for the cavities and cryomodules– Interface requirements between cavities and cryomodules see afternoon Workshop– Acceptance criteria and NC see afternoon Workshop– Use lessons-learned from ECCTD (and XFEL)

Schedule (time)

ESS Technical Annex (“schedule”)– PDR– CDR– Data packages– Tracking progress

Communication channels:– Follow-up– Collaboration Space web site– Video-conferences

Page 4: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

Scope: Cavities and Cryomodules life-cycle

Cavity Cryomodule Technology Demonstrators:1 x Medium-beta, M-ECCTD <= FR-SW agreement1 x High-beta, H-ECCTD <= CEA/CNRS Early In-Kind

Production of cavities of the series with RF tests:36 x operating Medium-beta cavities <= LASA In-Kind84 x operating High-beta cavities <= STFC In-Kind

Production of all other cryomodule components (incl PC, CTS): <= CEA In-Kind

Cryomodule assembling: <= CEA In-Kind

Low-power tests of 3 first medium and high-beta cryomodules <= CEA FR In-KindRF and cryogenics for low power testing

Transport of cryomodules from assembly hall to ESS: 9 x Medium-beta cryomodules <= STFC In-Kind21 x High-beta cryomodules <= STFC In-Kind

4

Page 5: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

5

Name Description ClarificationPlug-compatible cavity design

The cavities installed in the MBL cryomodules shall be designed such that they are plug-compatible with the cryomodule designed for the MB-ECCTD

"Plug compatible" means that no alterations to the design of the remainder of the cryomodule components are necessary, e.g. Anchoring system. Note that design alterations resulting from the results of the MB-ECCTD are not ruled out by this requirement.

R/Q The R/Q of the cavities designed for the MBL cryomodules shall not differ from that of the ECCTD cavity by more than +/-3.5%

R/Q should be calculated at a beam velocity of beta = 0.705. Note that no alteration of the geometric beta of the cavity is suggested by the use of this value for beta.

Epeak/Eacc The ratio of the peak surface electrical field (Epeak) to the accelerating gradient (Eacc) for the cavities installed in the MBL cryomodules shall not exceed that of the ECCTD cavities

Eacc should be calculated for a beam velocity of beta = 0.705. Note that no alteration of the geometric beta of the cavity is suggested by the use of this value for beta.

Interface requirements between cavities and cryomodules

Cavity design shall be compatible with :• Cold tuning system• Power coupler• Cryomodules component, e.g. thermal and magnetic

shield, tie-rod system• Assembly procedures• Tooling handeling• Use the technologies demonstrated via the ECCTD

Preliminary

Page 6: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

6

Cryomodule & main components

Similar to CEBAF/SNS cryomodule concept with 4 cavities per cryomodule

Common cryomodule design for medium and high beta cavities

Medium High

Geometrical beta 0.67 0.86Frequency (MHz) 704.42Maximum surface field in operation (MV/m) 45 45

Nominal Accelerating gradient (MV/m) 16.7 19.9

Nominal Accelerating Voltage (MV) 14,3 18,2

Q0 at nominal gradient > 5e9Cavity dynamic heat load (W) 4,9 6,5

Power Coupler(HIPPI type coupler)

• Diameter 100 mm • 1.1 MW peak power• Antenna & window water cooling• Outer conductor cooled with SHe• Doorknob transition equipped with a bias system

Cold Tuning System(Saclay V5 type modified for ESS cavities)

• stepper motor + gear box at cold• Max tuner stroke: ± 3 mm• Max tuning range: ~ 600 kHz• Tuning resolution: ~1 Hz• 2 piezo staks

Cavities without HOM coupler

5 cells high beta (0,86) cavity6-cells medium beta

(0,67) cavity

Page 7: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

7

Cavity Production

Transport to CEA

Assembly in Cryomodule

Acceptance Test in VC

Acceptance Test @ CEA-

in* Possible “partner’s transfer flagpoint”

*

Transport to ESS

Acceptance Test @ CEA-

out

*Acceptance

Test @ ESS-in High Power Test @ ESS

Acceptance Test Tunnel

Ready For InstallationIn tunnel

INFN/STFC

ESS/STFC

CEA

Scope: Cavities and Cryomodules Life-cycle

Ready For Assembly in CM

Page 8: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

8

Cavity Production

Transport to CEA

Assembly in Cryomodule

Acceptance Test

Acceptance Test

NC

Report

NCMinor

NCRepairable

at CEA

NC

Report

NCNot

Repairable at CEA

Repair

Out of Work

Data management and dealing with non-conformance

* “partner’s transfer flagpoint”

*

*

NCMinor

NCRepairable at

STFC/LASA

NCNot Repairable at STFC/LASA

Page 9: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

9

Data management

Action items:- Define a general Data management system, based on a simplified version of the XFEL DB, to

be implemented at the ESS. Study: system functionality and select data to store.

- Define simplified Data management system at ESS, CEA, LASA, STFC, Desy, Zanon, RI, etc..

Page 10: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

10

M&H Technology Demonstrators

Engineering studies completed

Fabrication of the components in progress

Assembly infrastructure and procedures

Preparation of the test stands (coupler processing & cryomodule tests)

Page 11: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

11

Technology Demonstrators: ECCTD

The goals of the ECCTD are to verify/validate the design to initiate the series production.

It shall verify (but not necessarily be limited to):

• Fabrication process and industrialization of ALL cryomodule components: e.g. Fabricate successfully the SRF 704 MHz cavities, chemical and heat treatments, power couplers, CTS, cryomodule equipment, assembly procedures, etc

• Validate RF design: e.g. performance of cavities in vertical cryostat and on the test stand; power coupler performance, test slow tuning system, fast tuning System, LLRF

• Validate thermal and vacuum cryomodule design: eg. cool-down rate, operating conditions; heat loads; cooling scheme efficiency, leak tightness;

• Validate the alignment techniques.

• Validate the toolings design: e.g. handling and transportation

• Validate the verification procedure and threshold: e.g. Acceptance criteria process, SAT, FAT

• Verify the non-conformity tracking process.

• Control command: e.g. Validate the PLC sequences and the fast acting system, verify the operating algorithms

• ES&H e.g. Complete risk analysis, Cavities and CM mechanical relief sizing.

• Training: e.g. fabrication follow-up, testing procedure, assembly, operation,

Page 12: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

12

Ex: “HoA - ANNEX C: H-ECCTD Test Plan”

Before installation:vacuum tightness checks

alignment measurements

After installation / RF power OFF: Cryogenics and vacuum connections leak checks

Temperatures measurement during cool down

Static losses measurement

RF resonant frequencies measurement (fundamental and HOMs)

Alignment measurement at room temperature and at cold temperature

At cold temperature with RF power (limited to 3 months)Measurement of every cavity from 1 to 4 at low power:

external coupling factors measurements: Q i, Qt

Tuning operations study

Test of every cavity from 1 to 4 at high power in pulsed modeMaximum accelerating gradient measurement

Lorentz force detuning compensation study

Dynamic losses at 2 K measurement

Field emission thresholds and quench limits determination

Cryogenic behaviors study

Temperature measurements

Couplers: variation of He mass flow and CM consumption as a function of RF power (to optimize coupler static losses)

Page 13: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

PROTOTYPES ECCTD 34 ms Jeu 01/01/15 Lun 13/11/17

M-ECCTD 27 ms Jeu 01/01/15 Mar 11/04/17

Tests 4 ms Lun 10/10/16 Mer 08/02/17

Mid-test flag 0 ms Ven 09/12/16 Ven 09/12/16

PRR review decision 0 ms Ven 23/12/16 Ven 23/12/16

End of the tests - Disassembly 2 ms Jeu 09/02/17 Mar 11/04/17

H-ECCTD 28 ms Lun 06/07/15 Lun 13/11/17

Tests 2 ms Mer 13/09/17 Lun 13/11/17

Mid-test flag 0 ms Ven 13/10/17 Ven 13/10/17

PRR review decision 0 ms Ven 13/10/17 Ven 13/10/17

CAVITIES 49 ms Ven 23/12/16 Mer 10/02/21

Medium beta production (INFN) (36) 21 ms Ven 23/12/16 Mar 02/10/18

Cavity delivery (3 cav/m.) 12 ms Jeu 28/09/17 Mar 02/10/18

High beta production (STFC) (84) 39 ms Ven 27/10/17 Mer 10/02/21

Cavity delivery (3 cav/m.) 30 ms Jeu 02/08/18 Mer 10/02/21

COUPLERS 64 ms Lun 01/06/15 Mer 21/10/20

Conditioning stand 24 ms Lun 01/06/15 Mer 07/06/17

Manufacturing & RF processing (36+84) 51 ms Lun 01/06/15 Mar 17/09/19

Pre-serial manufacturing (4) 13 ms Ven 09/12/16 Ven 12/01/18

RF conditionning Pre-serial (2 pairs) 6 ms Jeu 08/06/17 Ven 08/12/17

Restart serial prod delay 4 ms Ven 08/09/17 Mar 09/01/18

manufacturing MBC 1-36 (6cpl./m.) 6 ms Mer 10/01/18 Jeu 12/07/18

RF conditionning MBC (4 cpl./m.) 10 ms Mar 13/03/18 Lun 14/01/19 Mb couplers processing manufacturing HPC 1-84 (6cpl./m.) 14 ms Ven 13/07/18 Mar 17/09/19

RF conditionning HBC 1-44 (4 cpl./m.) 11 ms Mar 15/01/19 Mer 18/12/19 Hb couplers processing RF conditionning HBC 45-84 (4 cpl./m.) 10 ms Jeu 19/12/19 Mer 21/10/20 Hb couplers processing

CRYOMODULES 75,64 ms Mar 01/09/15 Ven 14/01/22

Components manufacturing 54 ms Mar 01/09/15 Jeu 19/03/20

MBL Modules assembly 16 ms Ven 29/12/17 Lun 06/05/19

Assembly 14 ms Ven 29/12/17 Mar 05/03/19

n°1 4 ms Ven 29/12/17 Mar 01/05/18

n°2-3 4 ms Mer 02/05/18 Ven 31/08/18

n°4-9 6 ms Lun 03/09/18 Mar 05/03/19

RF power tests at Lund 11 ms Ven 01/06/18 Lun 06/05/19

n°1 2 ms Ven 01/06/18 Mer 01/08/18

n°2-3 3 ms Jeu 02/08/18 Jeu 01/11/18

n°4-9 6 ms Ven 02/11/18 Lun 06/05/19

HBL Modules 33 ms Ven 05/04/19 Ven 14/01/22

Assembly 31 ms Ven 05/04/19 Lun 15/11/21

n°1-11 16 ms Ven 05/04/19 Lun 10/08/20

n°12-21 15 ms Mar 11/08/20 Lun 15/11/21

RF power tests at Lund 31 ms Jeu 06/06/19 Ven 14/01/22

n°1-11 16 ms Jeu 06/06/19 Ven 09/10/20

n°12-21 15 ms Lun 12/10/20 Ven 14/01/22

2021 20222015 2016 2017 2018 2019 2020

HBL cryomodules

MBL cryomodulesMBL assembly

CM manufacturingCryomodules procurement assembly and tests

Couplers procurement assembly and testsConditionning stand

Manufacturing & RF processing

Cavities production Mb & HbMb cavities prod

Mb delivery

Hb cavities deliveryHb cavities production

Task name duration start date end date

1

2

6

MBL tests

1

2

6

11 HBL

10 HBL

tests 21 HBL

11 HBL

11 HBL

Assembly 21 HBL

1st April 2015 TAC11 13

M-ECCTD CDR review decision

H-ECCTD CDR review decision

2) Power couplers contract awarded

RF power source ready for coupler processing

Cryomodule components contract awarded

Planning Ready For Installation OK with ESS schedule:03/09/18 => 02/05/19 1CM/month

Planning Ready For Installation OK with ESS schedule:Q1 + Q2 2021: installation of HBL n° 1 to 11Q1 + Q2 2022: Installation of HBL n° 12 to 21

Overall WP5 planning

1) Mb cavities contract awarded

1) Hb cavities contract awarded

Mb – CDR – 15/09/16

Hb – CDR – 15/09/17

CDR – 23/12/16

CDR – 13/10/17

Page 14: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

14

Proposed Milestones for LASAIKC “Technical Annex”

Page 15: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

15

Proposed Milestones for LASA IKC “Technical Annex”

Page 16: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

16

Proposed Milestones for STFC IKC “Technical Annex”

Page 17: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

17

Proposed Milestones for STFC IKC “Technical Annex”

Page 18: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

18

Headline

ESS Programme Plan Scope

– Life-cycle flow for the cavities and cryomodules– Interface requirements between cavities and cryomodules see afternoon Workshop– Acceptance criteria and NC see afternoon Workshop– Use lessons-learned from ECCTD (and XFEL)

Schedule (time)

ESS Technical Annex (“schedule”)– PDR– CDR– Data packages– Tracking progress

Communication channels:– Follow-up– Collaboration Space web site– Video-conferences

Page 19: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

19

Technical Annex - TOC

SCHEDULE AIK [ACCSYS WP NUMBER . ACCSYS IKC REGISTER NUMBER] TO THE IN-KIND CONTRIBUTION AGREEMENT SIGNED BETWEEN ESS and [name of partner] on DATE

1. Scope

2. Related documents

2.1 Applicable Documents

2.2 Reference documents

3. Terms and Definitions

4. Project definition

4.1 Deliverable Item definition

4.2 Project Stages Definition

4.2.1 Stage 1: Design Stage

4.2.2 Stage 2: Realization and Verification

4.2.3 Stage 3: Installation, Commissioning and Initial Operations

Page 20: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

20

PDR - Definition

“Preliminary Design Review(s) reviews preliminary design, sometimes referred to as conceptual design. A PDR assesses preliminary design options and decisions in comparison with ESS input baseline reference design including requirements.

A successful PDR demonstrates that design is sufficiently developed, clear and agreed between ESS and the Partner.

Preliminary design updates the baseline reference design which was agreed at Kick-off, and a successful PDR establishes a new baseline, described in [CMP] The ‘Allocated Baseline’ from which the Partner may proceed to detailed design, including any agreed pre-series prototyping.

For planning purposes, a PDR should be limited to no more than one working day.”

Page 21: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

21

PDR - DeliverablesThe contents of the technical data package for PDR(s) shall include but not be limited to:• Requirements, agreed or proposed updates to documents comprising the baseline reference

design.

• Design Reports, including reports of prototyping and other preliminary design-related analyses, tests, simulations.

• Design Data, (preliminary design level of detail) including 3D CAD models and CAD drawings, general arrangement drawings, P&ID, FE models, etc., and interface descriptions including at least interface identification and any preliminary design definition.

• RAMI Report, an initial version of a report of the estimation of the probability and consequences of failures in equipment as well as main maintenance tasks and proposed spare parts.

• Safety Report, an initial version of the safety risk assessment report (including identifying hazards and evaluating likelihood of incidents occurring and severity of potential consequences, also list of existing control measures).

• [PQP], any outline draft for the Project Quality Plan including initial identification of Standards to be applied, initial planning for compliance testing and inspection, and initial planning for verification.

Page 22: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

22

CDR - Definition

“Critical Design Review(s) conclude Stage 1. The CDR assesses if the design meets all facility element requirements with acceptable risk and within the cost and schedule constraints.

The CDR demonstrates that the maturity of the design is appropriate to support proceeding with full-scale fabrication, assembly, integration, test, and future operation and decommissioning.

The CDR should also review initial planning for verification.

Detailed design updates the baseline reference design which was agreed at

Kick-off, and any ‘Allocated Baseline’ of preliminary design established by PDR. A successful CDR establishes a new baseline, described in [CMP] as the ‘Design Baseline’ from which the Partner may proceed to Stage 2 Realisation and Verification. “

Page 23: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

23

CDR

“The contents of the technical data package for CDR(s) shall include but not be limited to:

Requirements, agreed or proposed updates to documents comprising the baseline reference design.

• Design Reports, including reports of prototyping and other design-related analyses, tests, simulations.

• Design Data, (detailed design level) including 3D CAD models and CAD drawings, general arrangement drawings, P&ID, FE models, etc., and detailed interface descriptions including interface identification and definition for controlling interface design.

• RAMI Report, a report of the estimation of the probability and consequences of failures in equipment as well as main maintenance tasks and proposed spare parts.

• Safety Report, safety risk assessment report (including identifying hazards and evaluating likelihood of incidents occurring and severity of potential consequences, also list of existing control measures).

• Verification Plan, (including planned FAT and SAT activities)

• [PQP], a full draft for the Project Quality Plan including identification of Standards applied in design, procurement, manufacture and assembly, and planning for compliance testing and inspection.”

Page 24: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

24

CDR

“The CDR data package shall also contain documentation to initiate a competitive tender for the procurement of the facility element and to support the project activities. The CDR data package should additionally include but not necessarily be limited to:

Procurement Package, a complete documentation package for the procurement of the facility element including as a minimum a statement of work, manufacturing follow-up description, applicable and reference documentation

Project Plan , updated plan in Gant chart form, describing in detail remaining Stage 1 activities, describing in detail Stage 2 Realisation & Verification activities, and an outline of any Stage 3 Installation, Commissioning and Initial Operations activities for the Partner.

Risks, Risk Register, showing identified project management risks and/or technical risks.”

Page 25: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

25

Example of status/doc at CDR-phaseTo start stage 2 the necessary prerequisite are the following:• The interface document of the cryomodules with the tests stations at CEA Saclay, with the

transport to ESS-Lund, with the test stand at ESS-Lund and with the LINAC infrastructure is settled by the end of stage 1.

• The acceptance criteria for the cryomodule assembly are settled by the end of stage 1. The ESS acceptance management process is operational.

• The verification plan followed up all along the cryomodule assembly, at the test stand at Saclay until the shipment to ESS-Lund is settled by the end of stage 1.

• The configuration items for cryomodule is clearly defined. • The cavity string configuration with individual cavity performance for each cryomodule is known 3

weeks before the assembly.• The last version of all assembly drawings and P&ID is released at the end of stage 1. Each

design change needs an acceptance from CEA and the assembly drawing has to be updated and released to CEA.

• The ESS change management process is operational. • The ESS-“CHESS” interface is operational to upload the cryomodule assembly documentation.• The ESS non-conformity management process is operational.• Transport test is successfully performed.•  Could this sentence be more specific?•  Should we clearly refer to a “document management database”?

Page 26: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

26

Headline

ESS Programme Plan Scope

– Life-cycle flow for the cavities and cryomodules– Interface requirements between cavities and cryomodules see afternoon Workshop– Acceptance criteria and NC see afternoon Workshop– Use lessons-learned from ECCTD (and XFEL)

Schedule (time)

ESS Technical Annex (“schedule”)– PDR– CDR– Data packages– Tracking progress

Communication channels:– Follow-up– Collaboration Space web site– Video-conferences

Page 27: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

27

Communication channels

• SRF collaboration Kick-off meeting at Saclay: 23 June 2015

• SRF collaboration at STFC: 15 December 2015

• Medium-beta cavity design: 2-3 November 2015

• Weekly Vidyo meeting: Fridays mornings

• Monthly Project reports

Collaborative Project Objectives: • Freeze the cavities design • List interfaces requirements• CEA needs to analyse the impact on the cryomodule design and on the

toolings before approval• Track actions items • Etc

Page 28: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

Cryomodules Collaboration space

Interface between Cryomodule and Cavities- Within EMR

2015-11-02 Interfaces Meeting @ LASA - Medium-beta cavity/cryomodules

2015-12-15 Interface Meeting @ STFC - Collaboration for SRF Elliptical Cavities Collaboration

Interface with Radio-Frequences - RFS - WP08

Interface with RF sources

Interface with RFS/LLRF2015-06-10 - Interface Meeting between EMR and LLRF - Meeting notes (LLRF Interface)

2015-10-21 - Interface Meeting between EMR and RF systems - Meeting notes

Interface with RFS/RFDS

Interface with RFS/Interlocks

Interface with Cryogenics (Cryoplant, Distribution System) - CRYO - WP11

2015-02-16: Interface Meeting - Cryogenic InstrumentationMinutes of meeting 16-Feb-2015 (Cryogenic Instrumentation)

2015-03-04: PED Meetings - Pressure Equipment Directive

2015-03-09: Interface Meeting - Cryomodule instrumentationMinutes of 2015-03-09 (Cryomodule instrumentation)

2015-08-31: Interface Meeting - Pressure Configuration

Page 29: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

Cryomodules Collaboration space

Interface with Vacuum - VAC - WP122015-07-21: Interface Meeting - Cryomodules vacuum2015-10-12 Interface meeting - Cryomodules VacuumBeam Vacuum Interface RequirementsInsulation Vacuum Interface Requirements

Interface with Cabling and Conventional Power - CNPW - WP15

Interface with Cooling support - WTRC - WP16

Interface with Power Supplies, HV Power Converters - PWRC - WP17

Interface with Proton Beam Instrumentation - PBI - WP07

Interface with Test Stands - WP10Interface with Control and Command - Integrated Control System (ICS)Interface with Survey and Alignment

Page 30: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

30

Thanks for your attention

Page 31: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

31

Compliance with European Pressure Equipment Directive (PED)

• Volumes of the helium circuits and vessels < 48 l• 1.431 bara < Working pressure• Ps = 1.04 barg

TUV Nord analysis report:The elliptical and Spoke cryomodules are

classified according to PED article 3.3

Cryo pipes designed to reduce the overpressure in case of beam vacuum

failure

continuous diphasic pipe Ø=100 with large

curvatures

2 Ø=100 bursting disks at each extremity

Page 32: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

- 32 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule overall life cycle

Appro Niobium

FabricationCavité

Traitement surfaceCavité

Assemblagecavité

Salle blanche

Test en CV

COMPONENT

PHAS

EEx

port

/de

liver

yTe

st /

valid

ation

Prép

arati

on/

asse

mbl

ySU

pply

/Pr

oduc

tion

Niobium Cavities Couplers vesselVacuum

Cryomod.Full.

compon..Cryomod.

stringCavityCTS …

Transport -> site

assemblage

Transport -> Fabriquant

cavités

FabricationEnceinte

Cryomodule

Transport -> site

assemblage

Appro Compos.

cryomodule

Transport -> site

assemblage

Assemblagetrain

cavités

Transport -> site

assemblage

FabricationSAF

AssemblageSAF

Test à chaud SAF

Transport -> site

assemblage

Assemblagecryomodule

Test àchaud

Transport -> Uppsala

FabricationCoupleur

Préparation salle blanche

coupleurs

Conditionn-ement

coupleurs

Transport -> site

assemblage

Page 33: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

33

Charge to the Committee

 This review constitutes the principal technical and project review of the Work Package  for this year. Additional specific design reviews may also be held. Keeping in mind the current status of the Accelerator Project, the committee is asked to review the information presented, answer to the extent possible the questions below and make specific recommendations to increase the likelihood of success of the Work Package.

The result of the review will be a short report that includes recommendations. The committee serves in an advisory capacity to the Work Package Leader and the ACCSYS management team.

 

• Has the work package reached a level of technical maturity consistent with its current status on the schedule?• Are there any technical concerns regarding the work package?• Is any additional development or testing required for the work package to meet its goals?• Are the requirements for the work package well understood and documented?• Are all the interfaces between the work packages and other work packages and products properly defined,

understood and agreed upon?• Have all safety issues in the work package been properly identified and dealt with?• Are there sufficient resources (funding, staff) assigned to the work package to allow the goals of the work

package to be met?• Are there decisions that need to be made in order to allow the work package to meet scope, cost and schedule?• Are there any outstanding procurements or personnel actions that are limiting the progress on the Work

Package?• Is the Work Package on track to meeting its milestones?• Are there any adjustments to the schedule and milestones that should be made?• Are there any changes to the work package scope that should be made?• Are additional reviews warranted before the next annual audit?

Page 34: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

34

Technical Annex - TOC

4.3 Project Schedule and Key Milestones

4.3.1 Kick-off meeting

4.3.2 Status meetings

4.3.3 Design Review(s) in Stage 1

4.3.4 Readiness / Acceptance Review(s) in Stage 2

4.3.5 Review(s) in Stage 3

4.4 Deliverables

4.4.1 Status reports

4.4.2 Technical Data Package(s) for Design Review(s), Stage 1.

4.4.3 Technical Data Package(s) for Review(s), Stage 2

4.4.4 Final report

4.4.5 Documentation package for supply

Page 35: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

35

Technical Annex - TOC

5. Tasks applicable to all project stages

5.1 Project management and control

5.1.1 Use of a Planning Tool

5.1.2 Delivery Milestones

5.1.3 Milestone Definition List

5.1.4 Interim Milestones

5.1.5 EV – Weighted MS value

5.1.6 Monthly Forecasting

5.2 Risk Management

5.2.1 ESS Risk Management Process

5.2.2 ESS risk criteria

5.2.3 Risk register

5.2.4 Risk status report

Page 36: ESS Programme Plan and Schedule Update C. Darve, Deputy WP05 and WP04 leader Acknowledgement: N. Elias, WP05 and WP04 P. Bosland, WP05 leader Collaboration+space.

36

Technical Annex - TOC

5.3 Configuration management

5.4 Organization

5.5 Product & Quality assurance and safety

5.5.1 Applicable law, legislation and standards

5.5.2 Safety

5.5.3 Quality

5.5.4 Licensing

6. Documentation format

7. Transportation and DELIVERY

8. Warranty

9. Excluded Background