ESPRI project and nuclear density distributions · 2019. 3. 21. · Symmetry energy experiments for...

23
ESPRI project and nuclear density distributions Juzo Zenihiro, RIKEN Nishina Center for the ESPRI collaboration

Transcript of ESPRI project and nuclear density distributions · 2019. 3. 21. · Symmetry energy experiments for...

  • ESPRI project and nuclear density distributions

    Juzo Zenihiro, RIKEN Nishina Center

    for the ESPRI collaboration

  • Baryon density (fm-3)

    EOS

    (Me

    V)

    NM : d = 1

    SM : d = 0

    Slope L

    J

    Nuclear matter EOS

    Infinite Nuclear matter EOS

    Symmetry energy

    )(2

    )()( 32sym

    sat OK

    L +++= SS

    )()()0,(),( 42 ddd O++= SEE

    Radius

    Density

    Proton: p(r)

    Neutron: n(r)

    Neutron Skin

    Finite nucleus

    Density:

    Asymmetry: d

    0

    balanceNeutron

    Skin thickness

    2

    If d = 1, S() = EOSNM - EOSSM

    ?

    = J

    ?

    Known!

  • Symmetry energy experiments for 208Pb, 48Ca(, 132Sn)

    Our work : n & Drnpproton elastic scattering204-208Pb, 116-124Sn, 40-48Ca (RCNP)132Sn, 66,70Ni (RIBF, GSI)→ The ESPRI project

    PREX-I&II, CREX : rn & Drnpparity-violating electron elastic scattering208Pb(done), 48Ca(planned) (J-Lab)

    Dipole polarizability (DP)

    : aD (& Drnp)

    (p, p’) at 0 degree 208Pb, 120Sn, 90Zr, 48Ca (RCNP)

    3

    Symmetry energy at 0 208Pb(, 132Sn) : strong correlation by EDFs

    48Ca : • Correlation is not so strong.• ab initio methods available

    X. Roca-Maza et al., PPNP101, 96 (2018)

    G. Hagen et al., Nature Physics 12,186 (2015)

    208Pb

    208Pb

    208Pb

    48Ca

    132Sn

    52,54Cad = 208Pb : 0.21

    132Sn : 0.2448Ca : 0.1654Ca : 0.26

  • ch(r), p(r), n(r)

    ➢Stable nuclei✓Nuclear charge distribution ch(r)

    ✓ EM probe (very simple)

    ✓ For example, rch = 208Pb : 5.5010(9) fm (0.02% accuracy)

    ✓Proton density distribution p(r) : derived from ch(r)

    Neutron density distribution n(r) Hadronic probe (very complicated) (or electroweak probe like PREX at

    J-lab)

    Suffering from large uncertainties of incomplete knowledge of NNinteraction inside nucleus

    →Our work at RCNP

    ----------------

    ➢Unstable nucleiLittle information about ch(r), p(r), n(r)!

    → SCRIT for ch(r) : e-RI collision → T. Suda, K. Tsukada

    →ESPRI for p(r), n(r) : Our work at RIBF

    2015/11/19 HST15 4

    electron scattering

    proton scattering

  • How to determine p(r) & n(r) & Drnp

    5

    +Ze

    N+Z

    e- e-

    p p

    e- elastic scattering

    p elastic scattering

    @ 300 MeV

    g

    meson )()()( rrqF npnp ++

    ; Nuclear charge

    ; Nuclear matter

    MottddA

    chdd qF

    =

    2

    )(

    Based on RIA + an effective NN interaction at around 300 MeV(t-optical model : no structure model assumption)

    pnnp rrr −=D

    :established in 1980sH.De Vries, et al. ADNDT36,495(1987)

    : our work

    n(r)

    ch(r)

    inp

    ut

    c2 fitting of n(r)

    D. P. Murdock and C. J. Horowitz, PRC35, 1442. H. Sakaguchi et al., PRC57, 1749.

    Still in puzzle!

  • p(r) Radius equation:

    .4

    3

    so

    2

    2

    2

    nch

    2

    pch

    2

    pp

    2

    Ach rM

    rZ

    Nrrr ++++=

    nuclear charge

    point-proton

    proton charge

    neutron charge

    Darwin-Foldycorrection

    Spin-orbit correction

    0.033 fm2~ -0.116 fm2

    (CODATA)0.768(CODATA) vs0.706(mu-X) fm2

    .)(

    )(22

    =

    r

    r

    dr

    drrr

    ρ

    ρ

    Correction terms

    SO effect on 48Ca : -0.135 = +0.028 + -0.163 fm2 by RMF (FSUGold)

    48Ca : sqrt() = sqrt(3.477^2 – 0.77 + (28/20)*0.116 + 0.135) = 3.41 fm

    w/o spin-orbit correction = 3.39 fm

    However, SO term depends on the single-particle state of the nucleus

    ? fm2

    C.J.Horowitz and J. Piekarewicz, PRC 86, 045503 (2012)

    ~0.02 fm

    ~0.01fm > ~0.02fm

  • Rch and Rp of Ca isotopes

    3.35

    3.4

    3.45

    3.5

    3.55

    3.6

    40 42 44 46 48 50 52

    Radiu

    s (

    fm)

    Mass no.

    r ch

    r p

    r p w/ SO

    r ch of 40

    Ca

    r p of 40

    Ca

    Rch

    Rp w/o SO

    Rp w/ SO

  • Experiments @RCNP, Osaka Univ.

    polarized

    proton beam

    scattering

    chamber

    VDCs & plastic

    scintillators

    GR LAS ⚫ beam : proton Energy : 295 MeVpolarization : 70~80%intensity : 1 ~ 400 nA

    ⚫ Energy resolution : ~100keV (FWHM)⚫ target : 204,206,208Pb, 116-122Sn, 90-94Zr, 58Ni, 40-48Ca

  • pre-ESPRI : Extraction of density distributions in nucleiPolarized proton elastic scattering at 300MeV (RCNP, Osaka University)

    ⇒We have succeeded in extracting neutron density distributions of Sn, Pb isotopes systematically.

    S.Terashima et al.,

    Phys. Rev. C 77,

    024317 (2008)

    J.Zenihiro et al.,

    Phys. Rev. C 82,

    044611 (2010)

    Sn

    Pb

    d/d, Ay n(r) Drnp

    RIA

    +

    Medium

    Effect

    by c2 fitting

    Drn/rn < 0.5%

    9H. Sakaguchi and J. Zenihiro, PPNP 97, 1 (2017)

  • 40,48Ca

    10

    experimental data

    p

    n

    p(r), n(r)

    2019/1/23

  • Proton elastic scattering of Unstable nucleiThe ESPRI project at RIKEN RIBF

    11

  • ESPRI project

    【nuclear chart】

    : doubly magic nuclei process from 208Pb

    208Pb@RCNP

    132Sn@RIBF

    12

    66,70Ni@GSI

    9,10,11,16C@HIMAC, RIBF

    Extension of proton elastic scattering method to unstable nuclei

    ESPRI detector setup

  • ESPRI devices

    13

    θlab = 66° - 80°, Ep=20-120 MeV, ΔΩ〜10 msr/deg.q=1-2.2 fm-1, ΔEx = 400-500 keV

    Recoil drift chamber 436x436 mm2 (x-y-x’-y’-x’-y)

    Plastic scintillator 440x440 mm2 x 2 mmt

    NaI(Tl) calorimeter 431.8x45.72 mm2 x 50.8 mmt

    Recoil Proton Spectrometer (RPS)

  • RIBF

    2019/1/23 14

    ESPRI setup

    SRC

    BigRIPS

  • ESPRI detectors: p-elastic scattering from RI beams

    15

    1 mmt

    φ30 mm

    2019/1/23

    beam detectors for HI RI beams

    recoil particle spectrometer (RPS)

    solid hydrogen target (SHT)

    RIs

    1

    2

    3

    gas-Xe scintillator large thin SHT good DE resolution (400keV())

    beamXe(99.999%)+PMT

    good radiation hardness and E and T resolutions

  • [deg]

    Pro

    ton

    en

    ergy

    by

    NaI

    [ch

    ]P

    roto

    n t

    of

    [ch

    ]

    908580757065

    Clear elastic event

    Recoil proton angle

    1mmt solid hydrogen target

    ESPRI detector setup

    132Sn:flag ship nucleus

    • 132Sn (p, p) at 200 MeV/u in FY2016 !!

    2019/1/23 16→ Next : 132Sn(p,p) at 300 MeV/u (FY2019).

  • 17

    +Ze

    N+Z

    e- e-

    p p

    Electron scattering

    Proton scattering

    @ 300 MeV

    g

    meson

    )()()(

    )()(

    rqFqF

    rqF

    pp

    p

    ch

    A

    ch

    A

    ch

    )()( rqF npnp ++

    )(),( rr np

    ; Nuclear charge

    ; Nuclear matter

    MottddA

    chdd qF

    =

    2

    )(

    pnnp rrr −=D

    : well established in 1980s

    : our work

    For stable nuclei

    Simultaneous extraction from two-energy p-elastic data

  • 18

    N+Z

    p p

    Proton scattering

    @200MeV

    Proton scattering

    @ 300 MeV

    meson

    )(),( rr np pnnp rrr −=D

    For unstable nuclei

    N+Z

    p p

    meson )()()()(200200 rrqFtqFt npnpnppp ++

    )()()()( 300300 rrqFtqFt npnpnppp ++

    Simultaneous extraction from two-energy p-elastic data

  • Why two energies? 200 & 300 MeV/u

    19

    p-A @300 → ESPRI → n(r) + p(r)

    e-A → SCRIT → ch(r)→ n(r), p(r)

    Idea: energy dependences of pp & pn interaction

    p-A @300 → ESPRI → an(r) + bp(r)

    p-A @200→ ESPRI → cn(r) + dp(r)

    101

    102

    103

    10 100 1000

    pppnnp

    Elab. [MeV]

    Cro

    ss s

    ecti

    on

    [m

    b]

    200 300 400

    → Demonstration of the new method with Zr data

  • Simultaneous extraction from two-energy p-elastic data

    20

    Fitting results for 90Zr @ 200 & 300 MeV

    Simultaneous search of Neutron & Proton

    From 300 & 200 MeV data

    rn rp Drnp

    4.300(17) 4.210(20) 0.090(26)

    Extracted densities of 90Zr

    (all in fm)(4.20 from e-90Zr)

  • Future : new ESPRI device w/ storage Ring

    • Towards Rare-RIs (54Ca, 78Ni, 100Sn, etc.)• typically, more than 105 cps RI beam is necessary.

    • upgrade of the accelerator → 10 times

    1. post-ESPRI device : high precision• larger solid angle

    2. Recycling w/ storage Ring: high efficiency• →Wakasugi-san

    21

  • 2nd SSD1st SSD

    SHT

    post-ESPRI project

    • keep RPS performance• DEx < 500keV

    • large solid angle• become compact (1/5 of RPS)

    • 8 times solid angle

    • design• SHT→10cm→SSD→10cm→SSD+Calorimeters

    • elastic scattering

    • knock-out reaction

    2019/1/23 22

    Si tracker + GAGG ballby RIKEN+TUD (planned)

    ~ 50cm

  • RI beam recycling w/ storage ring

    • How to realize reaction measurements w/ Rare RIs (1 cps)

    •→ beam recycling technique!!

    2019/1/23 23

    RI beam more than 99% RIs areabandoned.

    ~1mg/cm2

    reactionparticle

    if 1MHz recycling is realized,gain is 106!!

    → effective intensity : 1 Mcpsw/ 1cps production rate RIs

    → ring can work mass separator : pure RI beam

    post ESPRI device

    coolerreaccelearation