escanear0001

3
the duct, in lbf/in.? The density of the manometer fluid is 49.94Ib/ft 3 , and the acceleration of gravity is 32.2 ft/s2. 1.34 The absolute pressure inside a tank is 0.4 bar, and the surrounding atmospheric pressure is 98 kPa. What reading would a Bourdon gage mounted in the tank wall give, in kPa? Is this a gage or vacuum reading? 1.35 The barometer shown in Fig. P1.35 contains mercury (p = 13.59 g/cm"), If the local atmospheric pressure is 100 kPa and g = 9.81 rn/s", determine the height of the mercury col- urnn, L, in mmHg and inHg. Mercury vapor T L Liquid mercury, Pm = 13.59 g/cm ' C' P nq. 1.35 1.36 Water flows through a Venturi meter, as shown in Fig. Pl.36. The pres ure of the water in the pipe supports columns of water that differ in height by 10 in. Determine the differ- ence in pressure between points a and b, in lbf/in.? Does the pressure increase or decrease in the direction of flow? The atmospheric pressure is 14.7 Ibf/in. 2 , the specific volume of water is 0.01604 ft 3 /lb, and the acceleration of gravity is g = 32.0 ft/s2. Pa'm = 14.7 Ibf/in. 2 g = 32.0 fl/S 2 Water u =0.01604 ft 3 /lb L= 10 in. 1------'1_ o........c> -- - ---- - -- - =t:-- ---t::> ~~~~~~~~= Fig. P1.36 1.37 Figure P1.37 shows a tan k within a tank, each containing air. The absolute pressure in tank A is 267.7 kPa. Pressure gage A is located inside tank B and reads 140 kPa. The U- tube manometer connected to tank B contains mercury. Using data on the diagram, determine the absolute pressure inside tank B, in kPa, and the column length L, in cm. The atmos- pheric pressure surrounding tank B is 101 kPa. The accelera- tion of gravity is g = 9.81 m/s 2 . Problems: Developing Engineering Skills 27 Pa,m = 101 kPa Tank B Tank A,PA = 267.7 kPa Gage A Mercury (p = 13.59 g/crn'') g = 9.81 mls 2 Pgage. A = 140 kPa Fig. P1.37 1.38 As shown in Fig. P1.38, an underwater exploration vehi- cle submerges to a depth of 1000 ft. If the atmospheric pres- sure at the surface is 1 atm, the water density is 62.4 lb/Ir', and g = 32.2 ft/s 2 , determine the pressure on the vehicle, in atm. Palm = I atrn, g = 32.2 ftls 2 lOOOft Fig. P1.38 1.39 A vacuum gage indicates that the pressure of carbon dioxide in a closed tank is -10 kPa. A mercury barometer gives the local atmospheric pressure as 750 mmHg. Deter- mine the absolute pressure of the carbon dioxide, in kPa. The density of mercury is 13.59 g/crrr' and g = 9.81 mls 2 1.40 Refrigerant 22 vapor enters the compressor of a refrig- eration system at an absolute pressure of 20 lbf/in.! A pres- sure gage at the compressor exit indicates a pressure of 280 lbf/in? (gage). The atmospheric pressure is 14.6Ibf/in. 2 Determine the change in absolute pressure from inlet to exit, in lbf/in.", and the ratio of exit to inlet pressure. 1.41 As shown in Fig. P1.41, air is contained in a vertical pis- ton-cylinder assembly fitted with an electrical resistor. The atmosphere exerts a pressure of 14.7 lbf/irr' on the top of the

Transcript of escanear0001

Page 1: escanear0001

the duct, in lbf/in.? The density of the manometer fluid is49.94Ib/ft3, and the acceleration of gravity is 32.2 ft/s2.

1.34 The absolute pressure inside a tank is 0.4 bar, and thesurrounding atmospheric pressure is 98 kPa. What readingwould a Bourdon gage mounted in the tank wall give, inkPa? Is this a gage or vacuum reading?

1.35 The barometer shown in Fig. P1.35 contains mercury(p = 13.59 g/cm"), If the local atmospheric pressure is 100 kPaand g = 9.81 rn/s", determine the height of the mercury col-urnn, L, in mmHg and inHg.

Mercury vapor

TL

Liquid mercury, Pm = 13.59 g/cm ' C' Pnq. 1.35

1.36 Water flows through a Venturi meter, as shown in Fig. Pl.36.The pres ure of the water in the pipe supports columns ofwater that differ in height by 10 in. Determine the differ-ence in pressure between points a and b, in lbf/in.? Does thepressure increase or decrease in the direction of flow? Theatmospheric pressure is 14.7 Ibf/in.2, the specific volume ofwater is 0.01604 ft3/lb, and the acceleration of gravity isg = 32.0 ft/s2.

Pa'm = 14.7 Ibf/in.2g = 32.0 fl/S2

Wateru =0.01604 ft3/lb

L= 10 in.

1------'1_

o........c> -- - ---- - -- -=t:-- ---t::>~~~~~~~~=Fig. P1.36

1.37 Figure P1.37 shows a tan k within a tank, each containingair. The absolute pressure in tank A is 267.7 kPa. Pressuregage A is located inside tank B and reads 140 kPa. The U-tube manometer connected to tank B contains mercury. Usingdata on the diagram, determine the absolute pressure insidetank B, in kPa, and the column length L, in cm. The atmos-pheric pressure surrounding tank B is 101 kPa. The accelera-tion of gravity is g = 9.81 m/s2.

Problems: Developing Engineering Skills 27

Pa,m = 101 kPaTank B

Tank A,PA= 267.7 kPa Gage A

Mercury (p = 13.59 g/crn'')g = 9.81 mls2

Pgage. A = 140 kPa

Fig. P1.37

1.38 As shown in Fig. P1.38, an underwater exploration vehi-cle submerges to a depth of 1000 ft. If the atmospheric pres-sure at the surface is 1 atm, the water density is 62.4 lb/Ir',and g = 32.2 ft/s2, determine the pressure on the vehicle, inatm.

Palm = I atrn,g = 32.2 ftls2

lOOOft

Fig. P1.38

1.39 A vacuum gage indicates that the pressure of carbondioxide in a closed tank is -10 kPa. A mercury barometergives the local atmospheric pressure as 750 mmHg. Deter-mine the absolute pressure of the carbon dioxide, in kPa.The density of mercury is 13.59 g/crrr' and g = 9.81 mls2•

1.40 Refrigerant 22 vapor enters the compressor of a refrig-eration system at an absolute pressure of 20 lbf/in.! A pres-sure gage at the compressor exit indicates a pressure of280 lbf/in? (gage). The atmospheric pressure is 14.6Ibf/in.2

Determine the change in absolute pressure from inlet toexit, in lbf/in.", and the ratio of exit to inlet pressure.

1.41 As shown in Fig. P1.41, air is contained in a vertical pis-ton-cylinder assembly fitted with an electrical resistor. Theatmosphere exerts a pressure of 14.7 lbf/irr' on the top of the

Page 2: escanear0001

72 Capítulo 2 El sistema termodinámico

h

1

FIGURA 2-32

2-7(M)

Dos tanques, A y B, contienen aire (figura 2-32). El tanqueA está a una presión de 20 psig, y el tanque B a una pre ide 18 psig. Si los dos tanques se conectan a un manémetro de tubo en U, como se ve ¿cuál es la diferencia de altumh de las columnas de mercurio? (Nota: El peso específidel mercurio es 845 lbf/pie", y el peso específico del aire0.076 lbf/pie")

Un globo se llena con un gas cuyo volumen específico es0.9 mJ/kg. Si el volumen interno del globo es 4800 crrr'¿cuál es el peso del globo lleno de gas? No tome en cuentael peso del globo mismo, y suponga que g = 9.78 rn/s"

Un tanque se llena con hidrógeno gaseoso, y un manóme-tro indica que la presión dentro del tanque es 1.0 kPa.a) Si la presión atmosférica es 101 kPa ¿cuál es la presión

en el interior del tanque?b) ¿Cuál es la presión en el tanque, si la presión atmosfé-

rica es 768 mrn Hg?

Un tanque de 5 m de altura está lleno de agua a la mitad, yel resto del volumen está ocupado por aire a 13 kPa de pre-sión mano métrica. El tanque tiene 1.5 m de diámetro, y elcontenido está a 20°C.a) ¿Cuál es la presión manométrica en la superficie del agua?b) ¿Cuál es la presión mano métrica en el fondo del tanque?e) Si la presión atmosférica es 101 kPa, calcule la presión

absoluta en a) y en b).

El vapor de agua tiene un ~Iumen específico de 10.07pievlbm, a 80 psia de presión y 900°F de temperatura. Enesas condiciones, y suponiendo que g = 32.1 pie/s", deter-mine:a) Su densidad.b) Su peso específico.e) Su gravedad específica.

2-11(E)

2-8(M)

2-12(E)

Una bomba hidráulica produce 250 psig de presión, en ulínea de aceite como el que se ve en la figura 2-33. ¿Quéfuerza, en libras-fuerza, se aplicará al pistón de l pie ndiámetro?

2-9(M)

2-13(E)

Calcule la presión máxima de vacío posible dentro de untanque, con las siguientes condiciones de su entorno:a) Una presión atmosférica de 14.8 psia.b) Una atmósfera cuya presión es 14 pulg Hg.

2-14(C)

.•Convierta las siguientes presiones:a) 14.7 psi a pulgadas de mercurio.b) 460 mm Hg a kPa.e) 300 pulg Hg a libras por pulgada cuadrada.d) + 50 psi a kPa.e) 20 kPa a libras por pulgada cuadrada.f) 20 pulg de agua, manométricas (WG), a psig.g) 50 cm de agua a kPa.

2-10(E)

•• bomba hidráulica

línea de aceite

FIGURA 2-33

2-15 U(E) ur

g~¿o

FIGU

2-16(M) va

8¿o

Seccioi2-17 UJ(M) m

tébA

FIGU

2-18 U(E) y2-19 U(M) e!

~2-20 U(M) lo

de

~lu

2-21 SI(E) se

CI

Page 3: escanear0001

lO

'e

conexiónde- referencia

medicióndevoltaje

de tempe-)distintosJocambi~y ese vol-combina-:aci6n de(tipoK).de 'la ter-mperatu-de hielomo la dede tern-la inter-juctoresusar uni el vol-os nue-gar delerie deopifa.

2-10 Temperatura y termómetros 61

W!LA2-3 FEM térmicaV) dealgunos termopares Cobre vs. Hierro vs. Cromel vs.

emanes, en función de laTemperatura constantán constantán alumel

~mperatura(unión de °F °C T J Kreferenciaa O°C). -300 -184.4 -5.341 -7.519 -5.632

-250 -4.745 -6.637 -5.005-200 -128.9 -4.419 -5.760 -4.381-150 -3.365 -4.623 -3.538-100 -73.3 -2.581 -3.492 -2.699

-50 -1.626 -2.186 -1.693O -17.8 -0.674 -0.885 -0.692

50 0.422 0.526 0.412100 37.8 1.518 1.942 1.520150 2.743 3.423 2.667200 93.3 3.967 4.906 3.819250 5.307 6.425 4.952300 148.9 6.647 7.947 6.092350 8.085 9.483 7.200400 204.4 9.523 11.023 8.314450 11.046 12.564 9.435500 260.0 12.572 14.108 10.560600 15.834 17.178 12.865700 371.1 19.095 20.253 15.178800 23.338 17.532

1000 537.8 29.515 22.2511200 26.9111500 815.6 33.9131700 38.2872000 1093.3 44.8562500 1371.1 54.8453000 1648.9

EJEMPLO 2-9 Convertir una medición de 3.100 milivolts (mV) obtenida con un termopar de cromel-alumel,en grados Celsius y en grados Fahrenheit.

Solución Para un termopar de cromel-alumel tipo K, 3.100 mV queda entre los elementos de 2.667(a 150°F) y 3.819 (a 200°F) de la tabla 2-3. La interpolación lineal se puede escribir comosigue:

T - 200°F = 3.100 mV - 3.819 mV = 0.624150 - 200°F 2.667 mV - 3.819 mV

entonces,T - 200 = (150 - 200)(0.624) = -31.2

yRespuesta T = 168.8°F

De la ecuación (2-22), la temperatura en grados Celsius esRespuesta Te = (%)(Tf - 32) = 76.0°C

Los termistores son instrumentos de medición de temperatura, cuya resistencia eléctricavaría al cambiar la temperatura, de modo que para determinada resistencia eléctrica hay rela-cionada una temperatura específica con ella. Un termistor es en esencia una longitud precisa