ESAS School 2011 SMES Tixador - Prizztech Oy · Ni-Cd batteries Long dura. flywh ... – Relay...

32
SMES Pascal Tixador Grenoble INP - Institut Néel / G2Elab Some materials provided by C. Luongo European Summer School on Superconductivity 2011 SMES Superconducting Magnetic Energy Storage

Transcript of ESAS School 2011 SMES Tixador - Prizztech Oy · Ni-Cd batteries Long dura. flywh ... – Relay...

SMES Pascal Tixador

Grenoble INP - Institut Néel / G2Elab

Some materials provided by C. Luongo

European Summer School on Superconductivity 2011

SMESSuperconducting

MagneticEnergyStorage

3 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Storage syst. characteristics

! Energy density (volume - mass)

! Power density / discharge duration

! Cost (/kWh - /kW) investment & running

! Operation security / fail characteristic

! Life time / cycles number

! State of the technology

– demonstration / emerging / mature

! Environnemental considerations

Introduction

4 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Comparisons, orders of magnitude

! 1 kg coal 8 kWh! 1 kg wood 4 kWh! 1 kg oil 10 - 12 kWh! 1 kg natural gas 10 - 14 kWh! 1 kg enriched uranium 600 000 kWh! 1 kg of water - 1000 m fall 0.003 kWh! 1 kg Pb battery 0.03 kWh! 1 kg lithium battery 0.2 kWh

(1 kWh : kinetic energy of a 10 ton truck at 100 km/h)

Introduction

5 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy storage in a coil

coilL, R

R = 0 => ! infinite => energy stored and available

Rare mean of electricity direct energy storageSuperconductors indispensable

!

W =1

2LI2

=Woe

"2t

#

Device: SMES (Superconducting Magnetic Energy Storage)

!

I .C. : t = 0 ; I = Io" I = I

oe

#t

$ $ =L

R

%

& ' (

) *

Introduction

6 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES: dual of capacitor

I I

V V VoltageCapacitor

CurrentSMES

SourceDischargeStorage

!

1

2L I

2

!

1

2C V

2

Introduction

7 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

First SC device in a grid

BPA SMES on the grid installed in 1979(transmission stabilization, low frequency power oscillation damping)

Pmax 10 MWf 0.35 HzWmax 30 MJWexch 9.1 MJIo - Vo 5 kA - 2.2 kVØmagnet 2.7 m

One year operation. Cryogenic problems andother solution to damp the oscillations.

Introduction

SMES

• Performances• Applications• Limits

9 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy and power densities

Ragone chart:

Performance

comparison

of storing

devices

Performances

0,001

0,01

0,1

1

10

100

1000

104

105

0,01 0,1 1 10 100 1000Mass

spe

cific

power

(kW

/kg)

Mass specific energy (Wh/kg)

Super

capacitor

Batteries

Dielect

ric

capa

cito

r

SMES

Batteries

Fly-

wheel

10 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES application

0,001

0,01

0,1

1

10

100

1000

104

105

0,01 0,1 1 10 100 1000Mass

spe

cific

power

(kW

/kg)

Mass specific energy (Wh/kg)

Super

capacitors

Batteries

Dielect

ric

capa

cito

rs

SMES

Batteries

Performances

Disch

arg

ing

time

Power

SMESHigh power

supercaps

Hours

Seconds

MinutesHigh power flywheels

Ni-Cd batteries

Lead-acid batteries

Lon

g d

ura

. fl

yw

h.

Li-ion batteries

NaS batteriesHigh energy

supercaps

Pumped

hydro

CAES

Metal-air

batteriesFlow batteries

100 MW100 kW1 kW

www.electricitystorage.org

11 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy & power limits

Metallic structure with 100 MPa: 12.5 kJ/kg (3.5 Wh/kg)

Metallic structure limit: 30 - 50 kJ/kg (present: 14 kJ/kg)

Composite structure limit (theoretical): 150 kJ/kg

Mechanics: very important for SMES

• Energy

!

W

Vol"1

2

B2

µo

" Magnetic flux density

Performances

" Mechanical stresses

!

Volstructure

"# (Viriel th)

!

" = J B R (solenoid)[ ]

B = 10 T => 40 MJ/m3 (11 kWh/m3)

12 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy limit: viriel theorem

!

W "#

d(Masstraction $Masscompression )

Performances

Infinite solenoid:

!

B = µoJ e

&

" = JB

2R

!

W

Vol=

W

2" Re h=

1

2 µo

B2" R

2h

2" Re h=

B

2 µo

B R

2e=J e

2

B R

2e=#

2

Same expression for flywheel (conversion machine required).

With compression stresses:

!

W

Vol="

3

R

e

h

13 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy limit: viriel theorem

!

W "#

dMass

traction

Mechanics: very important for SMES

Performances

Very important to combine functions:Mechanical support & current transport

Ultimate limit:

Reduce mass: protection may become an issue

Rather low limit

14 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy & power limits

• Power (VI)" Voltage & current

# Good electric isolation

• He gas bad dielectrics

# High current conductor0,001

0,01

0,1

1

10

100

1000

104

105

0,01 0,1 1 10 100 1000

Mass

spe

cific

power

(kW

/kg)

Mass specific energy (Wh/kg)

SMES

Super-

capacitors

Batteries

Dielect

ric

capa

cito

rs

" Eddy current losses

# Cryostat

# Conductor (coupling losses)

Performances

15 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Summary: SMES

! High power density & large energy density

– Directly usable current source

! Quick response time

! Number of charge-discharge cycle very high (infinite)

! Static system / low maintenance

! Specific application of superconductivity

! Conversion efficiency may be high (> 97 %)

! «!Correct!» from environmental point of view

! Security of operation

! High costs (cryogenics - superconductor)

! Losses in storage mode (but not really a storage system!)

Performances

SMES

• Examples• Applications

17 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SC magnets: examples

ITER toroid41 GJ; 5600 tons

CMS solenoid2.6 GJ; 225 tons

11 kJ/kg(1.14 ton oil, 19 g U)

18 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES main applications

! UPS, voltage-power quality & reliability– Protection against voltage drop and sags– Relay before the starting of a generating unit

! FACTS (Flexible AC Transmission System)– Supply/absorption active & reactive powers– Grid stability improvement– Transmission voltage regulation

! Pulse power supply– Electric guns– Electromagnetic launchers

! Large energy storage– Daily load leveling– Spinning reserve / frequency control

19 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Energy storage for the grid

! Large energy storage– Daily load levelling (1000 MW / 5000 MWh)

– Spinning reserve (10-100 MVA / 5-50 MWh)

– Frequency control (10-100 MVA / 10-500 kWh)

– Transient stability (100 MVA / 50 kWh)

! Improvement of power quality

Reduction of voltage disturbances– Voltage sag smoothing (1-10 MVA / 1-10 kWh)

– Flicker mitigation (1-10 MVA / 1-10 kWh)

Grids in general requires more reactive than active power

20 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES for UPS or FACTS

ConverterEnergy

exchanges

Transformer

Control

Electric grid (AC)

SuperconductingMagnet (DC)Cryostat

Powerconditioning

system

Interface

grid/magnet

!

1

2L I

2

=

21 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Pulse power source

ControlPrimarysource

Switch

LOAD

22 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Electromagnetic launcher/catapult

Performances

Electric railgun:=> Oversteps the speed reached by chemical methods

IEEE Trans. onMagnetics,vol.!43, 2007

Load 4 kgDiameter 80 mmLength 22 mWkinetic 9,1 MJWelectric 27.3 MJ"max 13200 g"t 21 ms

Airplanes launcher:Electric (/steam) catapult

! Linear electric motor

! pulse power supply

SMES

The 4 sub-systems

24 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES - 4 sub-systems

• SC magnet with its supporting structure

• Cryogenic system

• Cryostat, vacuum pumps, cryocooler, …

• Power conditioning system

• AC/DC conversion (inverter + chopper)

• Control system

• Electronics, cryogenics, magnet protection, …

Sub-systems

SMES

Magnet• Topology• Mechanics

26 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES - magnet design

Magnet design

• Leak magnetic field

• Mechanical support

• Superconductor quantity

• AC losses

• Protection

Magnet

27 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

I

ToroidSolenoid

Magnet topologies

Magnet

28 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES magnet topology

Simple structure Stray fieldSOLENOID High stored energy Large coils

per conductor unit

TOROID Low stray fields Lower stored energy Smaller unit coils per conductor unit

Mechanical structure

Mechanics: very importantSMES magnets subject to strong Lorentz forces,

If not properly handled, rated performances not achieved.

Magnet

29 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Solenoid: stray field reduction

Stray field reduction: - active shielding - suitable configuration

Main solenoid

Compensating coils

Superconductor volume # x 2

Magnet

30 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Improved solenoids

Hexagonal arrangement

• modular design

• Reduced stray field

• “small” elementary coil

• solenoid simplicity

(force holding)

Magnet

31 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Mechanics - solenoid

Flux lines and electromagnetic forces(M. Wilson)

I

Independent turnsDependent turns

-100

-50

0

50

100

150 200 250 300 350 400 450

Pancakes 13 - 14

!" (MPa)

!'" (MPa)

Hoo

p st

ress

(M

Pa)

r (mm)

!

" = J B R (independant turns)

Magnet

32 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Mechanics - toroid

Flux lines and electromagnetic forces(A. Devred)

Toroid coils submittedto a net large radialforce towards thecentral axis in additionto the transverse andlongitudinal forces.

+ pb in case of aquench

Magnet

SMES

AC losses

34 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

AC losses

AC losses + cryostat losses (eddy currents)

" Reduce the useful energy

" Increase the heat load for the cryocooler

" Increase the temperature: limits performances

Low AC loss conductor (LTS)

SMES

Magnet stability & protection

36 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Magnet stability

!

MQE = H (Tcs) "H (To)

(adiabatic)

!

MQE " cp To( ) Tc*(B) #To( ) 1#

I

Ic

$

% &

'

( ) 0,001

0,01

0,1

1

10

10 100

Cp (

MJ

/m3/K

)

Temperature (K)

Cu

He

Stability:magnet ability to tolerate an energy deposit (no quench)

Minimum Quench Energy (MQE)

# Low for LTS

# HeliumCooling improves LTS stability

37 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Magnet protection

Any SC magnet must be protected in case of a quench

Protection: temperature rise limitation(differential!contraction!stresses, material (resin) damages)

One of the most dangerous fault in a SMES: QUENCH

Protection:• Quench detection• Fast current reduction

+ adequate magnet design to prevent a quench andto limit its effect

38 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Basic magnet protection

Max. temperature reached after a quench(hot spot calculation)

!

F (Tmax ) = Jo2

Wmag

Vmax Io+ tdet ection

"

# $

%

& '

!

F (Tmax ) =cp (T )

" (T )To

Tmax

# dT

Power supply(current source)

SC coil(inductance L)

Protectionresistance

(Rd)

Tmax:

Vmax

Io

Quick detection

39 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

HTS magnet protection

Protection detectionis an issue!

vp "J

cp

#n $

T f %To

0,001

0,01

0,1

1

10

10 100

Cp (

MJ/m

3/K

)

Temperature (K)

Cu

He

HTS magnet protection is an issue!quench induces degradation

Tmax, dT/dz

SMES

Superconducting materials

41 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Superconducting materials

1G

2G

PIT BiSrCaCuOBi-2212 & Bi-2223

Coated conductorYBaCuO

10

100

1000

10000

100000

0 5 10 15 20 25 30

Jc (M

A/m

2)

Magnetic flux density (T)

20 K

20 K

50 K

50 K

77 K

77 K

Nb3Sn @ 4 K

NbTi @ 4 & 1,8 K

======= HTS =======

======= LTS =======

NbTi Nb3Sn

42 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES LTS conductor

Courtesy C. Luongo

• Cable in Conduct

• Developed & tested for

SMES ETM

• NbTi

• He @ 1.8 K

• Test: 200 kA, 5 T, 1.8 K

• Achieved 303 kA

(world record)

43 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Operating temperature

0

20

40

60

80

0 20 40 60 80 100

Cry

ogenic c

ost

(Carn

ot) (W

/W

)

Cold temperature Tf (K)

(Tc = 300 K)

20 K : 14 W/W

50 K : 5 W/W

4 K : 74 W/W

InterestHTS

&CC

10

100

1000

10000

0 2 4 6 8 10 12 14

Ic (A/cm)

Induction magnétique (T)

CC - 20 K

PIT - 20 K

PIT - 50 KCC - 50 K

CC - 77 KPIT - 77 K

" Cryogenic cost# running

# investment

" Stability# margins & perturbations

" Isolating thickness# voltage => power

0,0001

0,001

0,01

0,1

1

10

20 40 60 80 100

Cp (J/cm

3/K)

Temperature (K)

Cu

4 K : 1

20 K : 75

50 K : 900

=> Protection <=

SMES

HistoryExamples

45 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

History

! Introduced by Ferrier in 1969 to meet peak demands

! 30 MJ BPA experience

! 5-20 MWh / 100-500 MW ETM in the 80’ (SDI context)

! 3-6 MJ / 1 MW SMES in the 90’

– More secure sources for critical/sensitive loads (no voltage sags)

– FACTS

! First HTS «!large!» SMES in the 00’

46 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES evolutions

! LTS SMES– HTS current leads– Cryocoolers

– Power conditioning systems and control

! HTS SMES– Conductor developments (YBCO CC)

• Low cost• Mechanical properties• High current conductor

47 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

«!Commercial!» SMES

Trailerized Installation

GE Industrial Systems

Voltage Sag Protection

Power ratingsLoad voltage: 400 V to 20 kV

Unit Output: 1.3 MVA

Response Time: subcycle

System efficiency: > 97 %

Magnet (NbTi) dataStored energy: 3 MJ

Recharging time: < 90 s

Duty cycles nber: unlimited

SMES examples

48 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES SC (NbTi) magnet

SMES examples

49 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES as FACTS

! Voltage instability– voltage drop (50 %) )

D-SMES2,8 MVA2,0 MW

! 6 D-SMES– 90 % in less than 0.5 s

– 95 % in less than 1 s

– Grid capacity + 15 %

– Better voltage quality

SMES examples

50 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

CAPS 100 MJ SMES

Solenoid coil with pancakes

4 kA - 24 kV (96 MW)

86 MJ @ 4 kA

100 MJ @ 4.3 kA

CIC NbTi conductor

Courtesy C. Luongo

2 m

Stoped before completion

SMES examples

51 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Some HTS SMES

Grid stabilizationYBCOMJ class2012JapanChubu

Power qualityYBCO2.5 MJ2011KoreaKERI

Pulse appl.Bi-22120.8 MJ2007FranceDGACNRS

Power, voltagequality

Bi-22230.6 MJ2007KoreaKERI

Bi-22230.5 MVA, 1 MJ2007ChinaCAS

Voltage stabilityBi-22121 MVA, 1 MJ2004JapanChubu

ApplicationSCDataYearCountryOrgan.

52 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

800 kJ SMES project

• SMES potentialities for military uses– High power pulse sources (electric weapons)

Projects in progress

• Phase 1 (04-07) DGA - Nexans - CNRS

Basic technology of HTS SMES development

SMES HTS 800 kJ with “transparent” cryogenics

• Phase 2 (08-11) DGA - ISL - CNRS

HTS SMES suitable to electric gun development

Supply optimization

SMES performances (weigth)

53 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES HTS DGA/CNRS/ Nexans

Renforct

Kaptonisolation

3 solderedBi-2212tapes

• 800 kJ• Ø = 300 / 814 mm• h = 222 mm• I = 315 A• T = 20 K

Conductioncooling

Conductor based on Bi-2212 tapes

Projects in progress

54 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES HTS DGA/CNRS/ Nexans

-100

-50

0

50

100

0 50 100 150 200

Lower

Upper

Currents (A)

Time (s)

-100

-50

0

50

100

0 10 20 30 40

Lower

Upper

Currents (s)

Time (s)

Projects in progress

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

i1i2

i3iload

Curr

ents

(A)

Time (s)

55 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Korea (Keri)

• 2.5 MJ

• YBCO tapes (22 km)

• 550 A

• 20 K conduction cooled

• Bmax = 6.24 T

• Tests in 2011 ?

Power quality

56 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Japanese project

Courtesy of Chubu Electric

FACTSSystcontrol

Projects in progress

57 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

20 MJ LTS & HTS SMES

NbTi SMES with 4 K heliumpool boiling cooling system

YBCO SMES with 20 Kcryocooler cooling

Courtesy S. Nagaya

Projects in progress

58 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

New US SMES project (arpa)

Projects in progress

Partners: ABB, Brookhaven, SuperPower, Houston university

Specifications:• 2.5 MJ / 20 kW• Up to 25 T (4 K)• 2G wires

Objective:• Load levelling on thegrid with renewableenergies

SMES

Conclusions

60 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Conclusions

! Technology status– Currently available for short term power– Capability of SMES demonstrated– Successful experiences on years– Too high initial cost: the major bottleneck– Competition by more mature technologies

! Future– HTS, coated conductors

• Specific energy improvement• Reduced cryogenics

61 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

SMES : pulse current source

! SMES, best solution– In the intermediate range of power-energy plan or for

extreme powers

– for current type load

(batteries: energy sources, capacities: pulse voltage sources)

! Application examples– Electromagnetic launcher/catapult/gun

– Some FACTS, UPS (Uninterruptible Power Supply)

– Pulse applications (electron lasers, pulse field, ...)

Summary

62 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

Some references

! W. Hassenzahl, “Superconducting Magnetic Energy Storage”, IEEETrans. On Magnetics, 1989, pp. 750-758.

! C. Luongo, “Superconducting Storage Systems: an overview”, IEEETrans. on Magnetics, Vol. 32, 1996, pp. 2214-2223.

! H. W. Lorenzen and al., “Small and fast-acting SMES”, Handbook ofApplied Superconductivity, B. Seeber, vol. 2, 1998 IOP, ISBN-10:0750303778.

! ASC, MT & EUCAS proceedings mainly

63 P. TixadorInstitut Néel, G2Elab

2011 ESASSummer school

1 MWh/500 MW SMES concept

C. Luongo