Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction...

56
String Topology and the Based Loop Space Eric J. Malm Simons Center for Geometry and Physics Stony Brook University [email protected] 2 Aug 2011 Structured Ring Spectra: TNG University of Hamburg

Transcript of Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction...

Page 1: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

String Topology and the Based Loop Space

Eric J. Malm

Simons Center for Geometry and PhysicsStony Brook University

[email protected]

2 Aug 2011Structured Ring Spectra: TNG

University of Hamburg

Page 2: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

String Topology

Fix k a commutative ring. Let

• M be a closed, k-oriented, smooth manifold of dimension d

• LM = Map(S1,M)

Chas-Sullivan, ’99: H∗+d(LM) has operations

• graded-commutative loop product , from intersection producton M and concatenation product on ΩM

• degree-1 cyclic operator ∆ with ∆2 = 0, from S1 rotation

Make H∗+d(LM) a Batalin-Vilkovisky (BV) algebra:

• and ∆ combine to produce a degree-1 Lie bracket , onH∗+d(LM) (the loop bracket)

Eric J. Malm String Topology and the Based Loop Space 1/12

Page 3: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

String Topology

Fix k a commutative ring. Let

• M be a closed, k-oriented, smooth manifold of dimension d

• LM = Map(S1,M)

Chas-Sullivan, ’99: H∗+d(LM) has operations

• graded-commutative loop product , from intersection producton M and concatenation product on ΩM

• degree-1 cyclic operator ∆ with ∆2 = 0, from S1 rotation

Make H∗+d(LM) a Batalin-Vilkovisky (BV) algebra:

• and ∆ combine to produce a degree-1 Lie bracket , onH∗+d(LM) (the loop bracket)

Eric J. Malm String Topology and the Based Loop Space 1/12

Page 4: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

String Topology

Fix k a commutative ring. Let

• M be a closed, k-oriented, smooth manifold of dimension d

• LM = Map(S1,M)

Chas-Sullivan, ’99: H∗+d(LM) has operations

• graded-commutative loop product , from intersection producton M and concatenation product on ΩM

• degree-1 cyclic operator ∆ with ∆2 = 0, from S1 rotation

Make H∗+d(LM) a Batalin-Vilkovisky (BV) algebra:

• and ∆ combine to produce a degree-1 Lie bracket , onH∗+d(LM) (the loop bracket)

Eric J. Malm String Topology and the Based Loop Space 1/12

Page 5: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibitsimilar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and adegree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12

Page 6: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibitsimilar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and adegree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12

Page 7: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibitsimilar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and adegree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12

Page 8: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibitsimilar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and adegree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12

Page 9: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibitsimilar operations:

• HH∗(A) has a degree-1 Connes operator B with B2 = 0,

• HH∗(A) has a graded-commutative cup product ∪ and adegree-1 Lie bracket [ , ] compatible with ∪.

Goal: Find A so that HH∗(A) ≅ HH∗(A) ≅ string topology BV algebra

Candidates: DGAs associated to M

1. C∗M, cochains of M: requires M 1-connected

2. C∗ΩM, chains on the based loop space ΩM

Why C∗ΩM? Goodwillie, ’85: H∗(LM) ≅ HH∗(C∗ΩM), M connected

Eric J. Malm String Topology and the Based Loop Space 2/12

Page 10: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Theorem (M.)Let M be a connected, k-oriented Poincaré duality space of formaldimension d. Then Poincaré duality induces an isomorphism

D ∶ HH∗(C∗ΩM)→ HH∗+d(C∗ΩM).

Uses “derived” Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

• Generalize (co)homology with local coefficients E to allowC∗ΩM-module coefficients

• Cap product with [M] still induces an isomorphism

H∗(M; E)→ H∗+d(M; E).

Eric J. Malm String Topology and the Based Loop Space 3/12

Page 11: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Theorem (M.)Let M be a connected, k-oriented Poincaré duality space of formaldimension d. Then Poincaré duality induces an isomorphism

D ∶ HH∗(C∗ΩM)→ HH∗+d(C∗ΩM).

Uses “derived” Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

• Generalize (co)homology with local coefficients E to allowC∗ΩM-module coefficients

• Cap product with [M] still induces an isomorphism

H∗(M; E)→ H∗+d(M; E).

Eric J. Malm String Topology and the Based Loop Space 3/12

Page 12: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Theorem (M.)Let M be a connected, k-oriented Poincaré duality space of formaldimension d. Then Poincaré duality induces an isomorphism

D ∶ HH∗(C∗ΩM)→ HH∗+d(C∗ΩM).

Uses “derived” Poincaré duality (Klein, Dwyer-Greenlees-Iyengar)

• Generalize (co)homology with local coefficients E to allowC∗ΩM-module coefficients

• Cap product with [M] still induces an isomorphism

H∗(M; E)→ H∗+d(M; E).

Eric J. Malm String Topology and the Based Loop Space 3/12

Page 13: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Compatibility of Hochschild operations under D:

Theorem (M.)HH∗(C∗ΩM) with the Hochschild cup product and the operator−D−1BD is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)When M is a manifold, the composite

HH∗(C∗ΩM)

DÐ→ HH∗+d(C∗ΩM)

GoodwillieÐÐÐÐÐ→ H∗+d(LM)

takes this BV structure to that of string topology.

Generalizes results of Abbaspour-Cohen-Gruher (’05) and Vaintrob(’06) when M ≃ K(G, 1), so C∗ΩM ≃ kG.

Eric J. Malm String Topology and the Based Loop Space 4/12

Page 14: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Compatibility of Hochschild operations under D:

Theorem (M.)HH∗(C∗ΩM) with the Hochschild cup product and the operator−D−1BD is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)When M is a manifold, the composite

HH∗(C∗ΩM)

DÐ→ HH∗+d(C∗ΩM)

GoodwillieÐÐÐÐÐ→ H∗+d(LM)

takes this BV structure to that of string topology.

Generalizes results of Abbaspour-Cohen-Gruher (’05) and Vaintrob(’06) when M ≃ K(G, 1), so C∗ΩM ≃ kG.

Eric J. Malm String Topology and the Based Loop Space 4/12

Page 15: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

String TopologyHochschild HomologyResults

Results

Compatibility of Hochschild operations under D:

Theorem (M.)HH∗(C∗ΩM) with the Hochschild cup product and the operator−D−1BD is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)When M is a manifold, the composite

HH∗(C∗ΩM)

DÐ→ HH∗+d(C∗ΩM)

GoodwillieÐÐÐÐÐ→ H∗+d(LM)

takes this BV structure to that of string topology.

Generalizes results of Abbaspour-Cohen-Gruher (’05) and Vaintrob(’06) when M ≃ K(G, 1), so C∗ΩM ≃ kG.

Eric J. Malm String Topology and the Based Loop Space 4/12

Page 16: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and MethodsDerived Poincaré Duality

Derived Poincaré DualityReplace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM∗

(E, k), H∗(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗LC∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩMd (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E)→ E⊗LC∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-moduleshow a weak equivalence for all C∗ΩM-modules E.

Eric J. Malm String Topology and the Based Loop Space 5/12

Page 17: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and MethodsDerived Poincaré Duality

Derived Poincaré DualityReplace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM∗

(E, k), H∗(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗LC∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩMd (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E)→ E⊗LC∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-moduleshow a weak equivalence for all C∗ΩM-modules E.

Eric J. Malm String Topology and the Based Loop Space 5/12

Page 18: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and MethodsDerived Poincaré Duality

Derived Poincaré DualityReplace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM∗

(E, k), H∗(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗LC∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩMd (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E)→ E⊗LC∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-moduleshow a weak equivalence for all C∗ΩM-modules E.

Eric J. Malm String Topology and the Based Loop Space 5/12

Page 19: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and MethodsDerived Poincaré Duality

Derived Poincaré DualityReplace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM∗

(E, k), H∗(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗LC∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩMd (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E)→ E⊗LC∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-moduleshow a weak equivalence for all C∗ΩM-modules E.

Eric J. Malm String Topology and the Based Loop Space 5/12

Page 20: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and MethodsDerived Poincaré Duality

Derived Poincaré DualityReplace ΩM with an equivalent top group so C∗ΩM a DGA

• (Co)homology with local coefficients: for E a k[π1M]-module,

H∗(M; E) ≅ TorC∗ΩM∗

(E, k), H∗(M; E) ≅ Ext∗C∗ΩM(k, E)

• For E a C∗ΩM-module, take E⊗LC∗ΩM k and R HomC∗ΩM(k, E) as

“derived” (co)homology with local coefficients

• View [M] ∈ HdM as a class in TorC∗ΩMd (k, k). PD says

ev[M] ∶ R HomC∗ΩM(k, E)→ E⊗LC∗ΩM Σ

−dk

a weak equivalence for E a k[π1M]-module

• Algebraic Postnikov tower, compactness of k as a C∗ΩM-moduleshow a weak equivalence for all C∗ΩM-modules E.

Eric J. Malm String Topology and the Based Loop Space 5/12

Page 21: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 22: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 23: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 24: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 25: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 26: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]

D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality

to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 27: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Hochschild Homology and Cohomology

Produce D ∶ HH∗(C∗ΩM)≅

Ð→ HH∗+d(C∗ΩM) from Poincaré duality

• Classical HH∗(kG,M) ≅ H∗(G,Mc) from simplicial isomorphismB(∗,G,G ×Gop) ≅ B(G,G,G) of bar constructions

• Let Ad be C∗ΩM with C∗ΩM-module structure from conjugation

HH∗(C∗ΩM) Ext∗C∗ΩM(k,Ad)

HH∗+d(C∗ΩM) TorC∗ΩM∗+d (Ad, k)

≅ ev[M]D

• Chains: Need Eilenberg-Zilber, additional A∞-morphisms

• Apply derived Poincaré duality to get D

Eric J. Malm String Topology and the Based Loop Space 6/12

Page 28: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 29: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 30: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 31: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 32: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 33: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 34: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Homotopy-Theoretic Loop Product

Cohen-Jones, ’01: Construct loop product on Thom spectrum LM−TM

• Umkehr map ∆! from M∆Ð→M×M makes LM−TM a ring spectrum

Goal: Relate to topological Hochschild cohomology THHS(Σ∞+ ΩM)

Construct LM−TM using parametrized spectra:

• LM a space over M via ev ∶ LM→M

• Form fiberwise suspension spectrum Σ∞M LM+ over M

• Twist with S−TM, stable normal bundle of M, then mod out by M:

LM−TM= (Σ∞M LM+ ∧M S−TM

)//M

Essentially homological; twist allows umkehr map f! for f ∶ NM

Eric J. Malm String Topology and the Based Loop Space 7/12

Page 35: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

General StatementFor spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN ΓN(f∗E)

f∗

f!

• For f ∶ N→M, pullback f∗

corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)

Eric J. Malm String Topology and the Based Loop Space 8/12

Page 36: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

General StatementFor spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN ΓN(f∗E)

f∗

f!

• For f ∶ N→M, pullback f∗

corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)

Eric J. Malm String Topology and the Based Loop Space 8/12

Page 37: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

General StatementFor spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN

ΓN(f∗E)

f∗

f!

• For f ∶ N→M, pullback f∗

corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)

Eric J. Malm String Topology and the Based Loop Space 8/12

Page 38: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

General StatementFor spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN ΓN(f∗E)

f∗

f!

• For f ∶ N→M, pullback f∗ corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)

Eric J. Malm String Topology and the Based Loop Space 8/12

Page 39: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

General StatementFor spectrum E over M, can also take section spectrum ΓM(E)

• (Klein; May-Sigurdsson) Natural equivalence

E−TM ΓM(E)

(f∗E)−TN ΓN(f∗E)

f∗

f!

• For f ∶ N→M, pullback f∗ corresponds to umkehr map f!

When E = SM, recovers classical Atiyah duality M−TM ≃ F(M+, S)

Eric J. Malm String Topology and the Based Loop Space 8/12

Page 40: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 41: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 42: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 43: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 44: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 45: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Parametrized Atiyah Duality

Back to String TopologyNow take E = Σ∞M LM+

• ΓM(Σ∞M LM+) a ring spectrum by ∆∗, loop concatenation

• Atiyah duality: LM−TM ≃ ΓM(Σ∞M LM+) as ring spectra

Move towards Σ∞+ΩM:

• Using M ≃ BΩM, classical equiv LBG ≃ EG ×G Gc,

ΓM(Σ∞M LM+) ≃ ΓBΩM(EΩM+ ∧ΩM Σ∞+ ΩMc)

≃ FΩM(EΩM+, Σ∞+ ΩMc) = (Σ∞

+ΩMc

)hΩM

• (Σ∞+ΩMc)hΩM a ring spectrum via convolution product

Eric J. Malm String Topology and the Based Loop Space 9/12

Page 46: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Topological Hochschild Constructions

Topological Hochschild Cohomology(Σ∞

+Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B(∗,G,G ×Gop) ≅ B(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM≃ (Σ∞

+ΩMc

)hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild HomologySimilarly, Σ∞

+LM ≃ Σ∞

+ΩMc

hΩM ≃ THHS(Σ∞+ΩM)

• Compatible with LM−TM, (Σ∞+ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism

Eric J. Malm String Topology and the Based Loop Space 10/12

Page 47: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Topological Hochschild Constructions

Topological Hochschild Cohomology(Σ∞

+Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B(∗,G,G ×Gop) ≅ B(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM≃ (Σ∞

+ΩMc

)hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild HomologySimilarly, Σ∞

+LM ≃ Σ∞

+ΩMc

hΩM ≃ THHS(Σ∞+ΩM)

• Compatible with LM−TM, (Σ∞+ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism

Eric J. Malm String Topology and the Based Loop Space 10/12

Page 48: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Topological Hochschild Constructions

Topological Hochschild Cohomology(Σ∞

+Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B(∗,G,G ×Gop) ≅ B(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM≃ (Σ∞

+ΩMc

)hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild HomologySimilarly, Σ∞

+LM ≃ Σ∞

+ΩMc

hΩM ≃ THHS(Σ∞+ΩM)

• Compatible with LM−TM, (Σ∞+ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism

Eric J. Malm String Topology and the Based Loop Space 10/12

Page 49: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Topological Hochschild Constructions

Topological Hochschild Cohomology(Σ∞

+Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B(∗,G,G ×Gop) ≅ B(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM≃ (Σ∞

+ΩMc

)hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild HomologySimilarly, Σ∞

+LM ≃ Σ∞

+ΩMc

hΩM ≃ THHS(Σ∞+ΩM)

• Compatible with LM−TM, (Σ∞+ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism

Eric J. Malm String Topology and the Based Loop Space 10/12

Page 50: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Topological Hochschild Constructions

Topological Hochschild Cohomology(Σ∞

+Gc)hG and THHS(Σ∞+ G) both Tots of cosimplicial spectra

• Equivalent via simplicial homeo B(∗,G,G ×Gop) ≅ B(G,G,G)

• Both ring spectra via McClure-Smith cup-pairing:

LM−TM≃ (Σ∞

+ΩMc

)hΩM

≃ THHS(Σ∞+ ΩM) as ring spectra

Topological Hochschild HomologySimilarly, Σ∞

+LM ≃ Σ∞

+ΩMc

hΩM ≃ THHS(Σ∞+ΩM)

• Compatible with LM−TM, (Σ∞+ΩMc)hΩM, THHS(Σ∞+ ΩM) actions

(last two by “cap-pairing” on (co)simplicial level)

Recover chain-level results by applying − ∧Hk, Thom isomorphism

Eric J. Malm String Topology and the Based Loop Space 10/12

Page 51: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap onz ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆

Eric J. Malm String Topology and the Based Loop Space 11/12

Page 52: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap onz ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆

Eric J. Malm String Topology and the Based Loop Space 11/12

Page 53: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap onz ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆

Eric J. Malm String Topology and the Based Loop Space 11/12

Page 54: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap onz ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆

Eric J. Malm String Topology and the Based Loop Space 11/12

Page 55: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

BV Algebra Structures

HH∗(A) has cap-product action on HH∗(A) for any algebra A

• From THH equivs, D iso given by Hochschild cap onz ∈ HHd(C∗ΩM):

D(f) = f ∩ z

• z is image of [M], so B(z) = 0 by naturality

• Algebraic argument of Ginzburg, with signs corrected by Menichi,shows that HH∗(C∗ΩM) a BV algebra under ∪ and −D−1BD

• Recover Hochschild Lie bracket [ , ] as “free” BV Lie bracket

D and Goodwillie isom take ∪ to loop product and −D−1BD to ∆

Eric J. Malm String Topology and the Based Loop Space 11/12

Page 56: Eric Malmericmalm.net/ac/research/string-topology/hamburg-2011-slides.pdf · Introduction Background Results and Methods String Topology Hochschild Homology Results String Topology

IntroductionBackground

Results and Methods

Hochschild Homology and CohomologyRing StructuresBV Algebras

Thanks for your attention!

Slides online soon athttp://www.ericmalm.net/work/

Eric J. Malm String Topology and the Based Loop Space 12/12