Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#];...

16
Flow rate: [ ! ! " ]; cross section: [m # ]; void fraction: (fluid volume/column volu superficial velocity: = $ % * ! " +; interstitial velocity: = & ’ ; phase ratio: = ()’ ’ Fluid phase concentration of the solute : [mol/m * ]; adsorbed phase concentration: [mol/m * ] Phase equilibrium, adsorption isotherm: = ( ) = +, 1+-, : Langmuiradsorption isot Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is co ( ) = ( ) = + ( 1βˆ’ ) 9+ ( 1βˆ’ ) . ( ) : / + 0 =0 = (, ) Equilibrium chromatography (isothermal adsorpti Tuesday, 5 May 2020 13:01

Transcript of Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#];...

Page 1: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 2: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 3: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 4: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 5: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 6: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 7: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 8: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 9: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 10: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 11: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 12: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 13: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 14: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 15: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01

Page 16: Equilibrium chromatography (isothermal adsorption)...Flow rate: ! [!! "]; cross section: % [m#]; void fraction: ’ (fluid volume/column volume); superficial velocity: ( = $ +; interstitial

Flow rate: 𝑄[!!

" ]; cross section: 𝐴[m#]; void fraction: πœ–(fluid volume/column volume);

superficial velocity: 𝑒 = $% *

!" +; interstitial velocity: 𝑉 = &

' ; phase ratio: 𝜈 = ()''

Fluid phase concentration of the solute : 𝑐[mol/m*];adsorbed phase concentration: 𝑛[mol/m*]

Phase equilibrium, adsorption isotherm: 𝑛 = 𝑓(𝑐) = +,1+-,: Langmuiradsorption isotherm

Assumptions: isothermal; flux is due only to convection (no diffusion); equilibrium between fluid and solid; solute dissolved in a solvent, which is inert; superficial velocity is constant.

𝐹(𝑐) = 𝑒𝑐𝑀(𝑐) = πœ–π‘ + (1 βˆ’ πœ–)𝑛

9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):𝑐/ + 𝑒𝑐0 = 0𝑐 = 𝑐(𝑑, 𝑧)

π‘šπ‘œπ‘™π‘š#

π‘š#

π‘”π‘”π‘š* =

π‘šπ‘œπ‘™π‘š*

𝑐1. 𝑐+𝑐

𝑛

𝜎(𝑐) =9πœ– + (1 βˆ’ πœ–)𝑓.(𝑐):

𝑒 =1 + πœˆπ‘“.(𝑐)

𝑉 .𝜎.(𝑐) =πœˆπ‘“β€²β€²(𝑐)𝑉 < 0

𝑓(𝑐) =𝐻𝑐

1 + 𝐾𝑐.𝑓.(𝑐) =

𝐻(1 + 𝐾𝑐)#

. 𝑓..(𝑐) < 0. πœ†(𝑐) =1

Οƒ(𝑐)=𝑑𝑧𝑑𝑑

𝑧 = 0𝑧 = 𝐿

DESORPTION (𝑐1 = 0), simple wave

𝑧 = 0𝑧 = 𝐿

ADSORPTION (𝑐1 = 0)

𝑧 = 0𝑧 = 𝐿

Mean of the slopes (through integration)1.Red line splits triangle in two equal parts2.

Conservation law in finite form9𝑀(𝑑 + Δ𝑑) βˆ’ 𝑀(𝑑):Δ𝑧 = 9𝐹(𝑧) βˆ’ 𝐹(𝑧 + Δ𝑧):Δ𝑑

N9πœ–π‘(𝑑 + Δ𝑑) + (1 βˆ’ πœ–)𝑛(𝑑 + Δ𝑑): βˆ’ 9πœ–π‘(𝑑) + (1 βˆ’ πœ–)𝑛(𝑑):O Δ𝑧 = 9𝑒𝑐(𝑧) βˆ’ 𝑒𝑐(𝑧 + Δ𝑧):Δ𝑑 = 𝑒Δ𝑑(𝑐+ βˆ’ 𝑐1)= 9(πœ–π‘+ + (1 βˆ’ πœ–)𝑛+) βˆ’ (πœ–π‘1 + (1 βˆ’ πœ–)𝑛1):Δ𝑧

Δ𝑑Δ𝑧

= 𝜎P(𝑐1, 𝑐+) =1 + πœˆΞ”π‘›Ξ”π‘

𝑉=1𝑉Q1 + 𝜈

[𝑓][𝑐]R 𝜎(𝑐) =

1𝑉(1 + 𝜈

𝑑𝑓𝑑𝑐)

[𝑓][𝑐]

=1

𝑐+ βˆ’ 𝑐1Q

𝐻𝑐+1 + 𝐾𝑐+

βˆ’π»π‘1

(1 + 𝐾𝑐1)R =

𝐻(1 + 𝐾𝑐+)(1 + 𝐾𝑐1)

𝑑𝑓𝑑𝑐

=𝐻

(1 + 𝐾𝑐)#

1. Langmuir isotherm, anti-Langmuir, BET 28-29, 322. Chromatographic cycle 29-303. Pair of equations (32-38)4. Sedimentation 38-39 5. Constant pattern/shock layer 30-32 (19.05)

Residue Curve Maps applied to batch distillation (26.05)

𝑐

𝑛

𝑓(𝑐) =𝐻𝑐

1 βˆ’ 𝐾𝑐

𝑓(𝑐) = π‘Žπ‘ + 𝑏𝑐#

Adsorption: simple wave Desorption: shock

Adsorption:

𝑓1 βˆ’ 𝑓2𝑐1 βˆ’ 𝑐2

= 𝑓′(𝑐2)

BET isotherm

𝑑+ = 𝜎(𝑐+)𝐿.𝑑1 = 𝜎(𝑐1)𝐿𝑑(𝑐) = 𝜎(𝑐)𝐿. 𝑐(𝑑). 𝑑+ ≀ 𝑑 ≀ 𝑑1𝑉𝑑𝐿= 1 + 𝜈

𝐻(1 + 𝐾𝑐)2

. (1 + 𝐾𝑐)2 =𝜈𝐻

𝑉𝑑𝐿 βˆ’ 1

𝑑3: pulse

𝑑2 =𝐿𝑉Q1 +

𝜈𝐻1 + 𝐾𝑐+

R

Breakthroughtimedependson𝑐4556 = 𝑐+

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑3: pulse

𝑑7 = 𝑑3 +𝐿𝑉(1 + 𝜈𝐻)

Regenerationtimedoesnotdependon𝑐4556

𝑑8 =function(𝑐8)

𝑒𝐴𝑐9𝑑3 = 𝑒𝐴h 𝑐(𝑑)𝑑𝑑 =:

7

π‘’π΄πΏπœˆπ‘‰

h 𝑐𝑓..(𝑐)𝑑𝑐 =⬚

7

,"

=π‘’π΄πΏπœˆπ‘‰

[𝑐𝑓. βˆ’ 𝑓],"7 =

π‘’π΄πΏπœˆπ‘‰

9𝑓(𝑐8) βˆ’ 𝑐8𝑓.(𝑐8):Singleimplicitequationin𝑐8

𝑑(𝑐) = 𝜎(𝑐)𝐿

𝑑𝑑 = πΏπ‘‘πœŽ =πΏπ‘‘πœŽπ‘‘π‘ 𝑑𝑐 =

𝐿𝑉 πœˆπ‘“

..(𝑐)𝑑𝑐

𝐾𝑐8 =𝛽

1 βˆ’ 𝛽. 𝛽 = √

𝑐9𝑑3π‘‰πΎπΏπœˆπ»

Equilibrium chromatography (isothermal adsorption)Tuesday, 5 May 2020 13:01