Equation of Continuity II. Summary of Equations of Change.

36
Equation of Continuity II

Transcript of Equation of Continuity II. Summary of Equations of Change.

Page 1: Equation of Continuity II. Summary of Equations of Change.

Equation of Continuity II

Page 2: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

( π‘Ÿπ‘Žπ‘‘π‘’π‘œπ‘“π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’π‘œπ‘“ 𝑒𝑛𝑑𝑖𝑑𝑦 )=(𝑛𝑒𝑑 π‘Ÿπ‘Žπ‘‘π‘’π‘œπ‘“π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘œπ‘›

π‘œπ‘“ 𝑒𝑛𝑑𝑖𝑑𝑦 )+( 𝑛𝑒𝑑 π‘Ÿπ‘Žπ‘‘π‘’π‘œπ‘“π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘–π‘œπ‘›π‘œπ‘“ 𝑒𝑛𝑑𝑖𝑑𝑦 )

Page 3: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Page 4: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

𝝅=π‘πœΉ+𝝉The momentum molecular flux,

*

molecular stresses = pressure + viscous stresses

Page 5: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

𝒒=(hπ‘’π‘Žπ‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘π‘œπ‘Ÿπ‘‘π‘π‘¦ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘œπ‘›)+( hπ‘’π‘Žπ‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘π‘œπ‘Ÿπ‘‘π‘π‘¦ hπ‘’π‘Žπ‘ 𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑛𝑔𝑠𝑝𝑒𝑐𝑖𝑒𝑠 )

The energy molecular flux is the partial molar enthalpy of species Ξ±

Page 6: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Recall: the combined energy flux vector e

Page 7: Equation of Continuity II. Summary of Equations of Change.

Combined Energy Flux Vector

Convective Energy FluxHeat Rate from Molecular Motion

Work Rate from Molecular Motion

Combined Energy Flux Vector:

𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½)𝒗+ [𝝅 βˆ™π’— ]+𝒒

We introduce something new to replace q:

Page 8: Equation of Continuity II. Summary of Equations of Change.

Combined Energy Flux Vector

Combined Energy Flux Vector:

We introduce something new to replace q:

𝝅=π‘πœΉ+𝝉Recall the molecular stress tensor:When dotted with v: [𝝅 βˆ™π’— ]=𝑝𝒗+[𝝉 βˆ™π’— ]

Substituting into e:

𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½)𝒗+𝑝𝒗+[𝝉 βˆ™π’— ]+𝒒

Page 9: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Recall: Substituting the equation for q into e

Page 10: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Recall: Substituting the equation for q into e

partial molar

per unit mass

Page 11: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Recall: Substituting the equation for q into e

Page 12: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Page 13: Equation of Continuity II. Summary of Equations of Change.

Summary of Equations of Change

Dp

Dt

vg

πœŒπΆπ‘π·π‘‡π·π‘‘

=βˆ’ (𝛻 βˆ™π‘ž)βˆ’ (𝜏 βˆ™π›» 𝒗 )

πœŒπ·π‘€ 𝐴

𝐷𝑑=(𝛻 βˆ™ 𝜌 𝐷𝐴𝐡𝛻𝑀𝐴 )+π‘Ÿ 𝐴

Page 14: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

Example 1.

Hot condensable vapor, A, diffusing through a stagnant film of non-condensable gas, B, to a cold surface at y=0, where A condenses

Find:

Page 15: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

Assumptions:

1. Steady-state2. Ideal gas behavior3. Total c is constant4. Uniform pressure5. Physical properties are

constant, evaluated at mean T and x.

6. Neglect radiative heat transfer

Page 16: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

πœ•π‘π΄πœ•π‘‘

+(𝛻 βˆ™π‘π΄π‘£π‘€ )βˆ’ (𝛻 βˆ™π‘π· 𝐴𝐡𝛻π‘₯𝐴 )=𝑅𝐴

Equations of Change:

Continuity (A)

πœ•π‘π΄πœ•π‘‘

=βˆ’ (𝛻 βˆ™π‘π›Ό )+𝑅𝐴

𝑑𝑁 𝐴 𝑦

𝑑𝑦=0

Page 17: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

Equations of Change:

Energyπœ•πœ•π‘‘πœŒ(οΏ½Μ‚οΏ½+1

2𝑣2)=βˆ’ (𝛻 βˆ™π’† )+(πœŒπ’— βˆ™π’ˆ )

𝑑𝑒𝑦𝑑𝑦

=0

* Both NAy and ey are constant throughout the film

Page 18: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the mole fraction profile:

Recall: The molar flux for diffusion of A through stagnant B

Page 19: Equation of Continuity II. Summary of Equations of Change.

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑁 𝐴=βˆ’π‘π·π΄π΅

𝑑π‘₯𝐴𝑑𝑧

+π‘₯𝐴(𝑁 𝐴+𝑁𝐡)

Since B is stagnant,

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴𝑑𝑧

Page 20: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the mole fraction profile:

Recall: The molar flux for diffusion of A through stagnant B

𝑁 𝐴 𝑦=βˆ’π‘π· 𝐴𝐡

(1βˆ’ π‘₯𝐴)𝑑π‘₯𝐴𝑑 𝑦

Recall: Integration of the above equation

Page 21: Equation of Continuity II. Summary of Equations of Change.

Concentration Profiles

I. Diffusion Through a Stagnant Gas Filmβˆ’ ln (1βˆ’ π‘₯𝐴 )=𝐢1𝑧+𝐢2

Let C1 = -ln K1 and C2 = -ln K2,

1βˆ’π‘₯𝐴=𝐾 1𝑧𝐾 2

B.C.

at z = z1, xA = xA1

at z = z2, xA = xA2 ( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴1 )=( 1βˆ’π‘₯𝐴21βˆ’π‘₯𝐴1 )π‘§βˆ’ 𝑧 1𝑧 2βˆ’ 𝑧1

Page 22: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the mole fraction profile:

Recall: The molar flux for diffusion of A through stagnant B

𝑁 𝐴 𝑦=βˆ’π‘π· 𝐴𝐡

(1βˆ’ π‘₯𝐴)𝑑π‘₯𝐴𝑑 𝑦

( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴 0 )=( 1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )𝑦𝛿

Using the appropriate B.C.s

at y = 0, xA = xA0

at y = Ξ΄, xA = xAΞ΄

Page 23: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the mole fraction profile:

( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴 0 )=( 1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )𝑦𝛿𝑁 𝐴 𝑦=βˆ’

𝑐𝐷 𝐴𝐡

(1βˆ’ π‘₯𝐴)𝑑π‘₯𝐴𝑑 𝑦

Evaluating NAy from the equations aboveNote that:

𝑑(1βˆ’π‘₯ΒΏΒΏ 𝐴)

𝑑𝑦=βˆ’

𝑑π‘₯𝐴𝑑 𝑦

ΒΏ 𝑁 𝐴 𝑦=𝑐𝐷 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑

(1βˆ’π‘₯ΒΏΒΏ 𝐴)𝑑𝑦

ΒΏ

Page 24: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

𝑑(1βˆ’π‘₯ΒΏΒΏ 𝐴)

𝑑𝑦=βˆ’

𝑑π‘₯𝐴𝑑 𝑦

ΒΏ 𝑁 𝐴 𝑦=𝑐𝐷 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑

(1βˆ’π‘₯ΒΏΒΏ 𝐴)𝑑𝑦

ΒΏ

𝑁 𝐴 𝑦 𝑦=𝑐𝐷𝐴𝐡 ln1βˆ’π‘₯𝐴1βˆ’π‘₯𝐴0

( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴 0 )=( 1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )𝑦𝛿

BUT…]

𝑁 𝐴 π‘¦βˆ«0

𝑦

𝑑𝑦=𝑐𝐷𝐴𝐡

(1βˆ’π‘₯𝐴)∫π‘₯ 𝐴 0

π‘₯ 𝐴

𝑑(1βˆ’π‘₯ΒΏΒΏ 𝐴)ΒΏ

Page 25: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

𝑁 𝐴 𝑦=𝑐𝐷 𝐴𝐡

𝛿ln (1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )

]

Page 26: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

𝑁 𝐴 𝑦=𝑐𝐷 𝐴𝐡

𝛿ln (1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )

Rearranging and combining

( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴 0 )=( 1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )𝑦𝛿

𝑁 𝐴 𝑦

𝑐𝐷𝐴𝐡

= 1𝛿ln (1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 ) ln ( 1βˆ’π‘₯𝐴1βˆ’π‘₯𝐴0 )= 𝑦𝛿 ln(

1βˆ’π‘₯𝐴δ1βˆ’π‘₯𝐴0 )

ln ( 1βˆ’π‘₯𝐴1βˆ’π‘₯𝐴0 )=𝑦𝑁𝐴 𝑦

𝑐𝐷 𝐴𝐡

Page 27: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

@ y = y, xA = xA

ln ( 1βˆ’π‘₯𝐴1βˆ’π‘₯𝐴0 )=𝑦𝑁𝐴 𝑦

𝑐𝐷 𝐴𝐡

( 1βˆ’π‘₯𝐴1βˆ’ π‘₯𝐴 0 )=exp[(𝑁 𝐴 𝑦

𝑐𝐷𝐴𝐡)¿𝑦 ]ΒΏ

1βˆ’( 1βˆ’π‘₯𝐴1βˆ’π‘₯𝐴0 )=1βˆ’exp [(𝑁 𝐴 𝑦

𝑐𝐷 𝐴𝐡)ΒΏ 𝑦 ]ΒΏ

( π‘₯π΄βˆ’π‘₯𝐴01βˆ’π‘₯𝐴0 )=1βˆ’ exp[( 𝑁𝐴 𝑦

𝑐𝐷 𝐴𝐡)ΒΏ 𝑦 ]ΒΏ

Page 28: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

@ y = y, xA = xA

( π‘₯π΄βˆ’π‘₯𝐴01βˆ’π‘₯𝐴0 )=1βˆ’ exp[( 𝑁𝐴 𝑦

𝑐𝐷 𝐴𝐡)ΒΏ 𝑦 ]ΒΏ

@ y = Ξ΄, xA = xAΞ΄

( π‘₯π΄π›Ώβˆ’π‘₯𝐴01βˆ’ π‘₯𝐴 0 )=1βˆ’ exp[( 𝑁 𝐴 𝑦

𝑐𝐷𝐴𝐡)¿𝛿]ΒΏ

Taking the ratios of the two equations

Page 29: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the temperature profile:

Note:

where the enthalpy of mixing is often neglected for gases at low to moderate pressures

Page 30: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

To determine the temperature profile:

𝑑𝑒𝑦𝑑𝑦

=0

βˆ’π‘˜ 𝑑2𝑇𝑑𝑦2

+𝑁𝐴𝑦~𝐢𝑝𝐴

𝑑𝑇𝑑𝑦

=0

The general solution is

𝑇=𝑐1+𝑐2 exp(π‘Ÿ 2𝑦 ) where

Page 31: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

where

At y = 0, T = T0 𝑇 0=𝐢1+𝐢2

At y = Ξ΄, T = TΞ΄

𝑇=𝑐1+𝑐2 exp(π‘Ÿ 2𝑦 )

𝑇 𝛿=𝑐1+𝑐2 exp(π‘Ÿ2𝛿)

Subtracting the two equations

𝑇 0βˆ’π‘‡ 𝛿=𝑐2 ΒΏ

𝑐2=𝑇 0βˆ’π‘‡ 𝛿

1βˆ’ exp (π‘Ÿ2𝛿¿)ΒΏ

Page 32: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

𝑐1=𝑇 0(1βˆ’ exp (π‘Ÿ 2𝛿 ))βˆ’(𝑇 0βˆ’π‘‡ 𝛿)

1βˆ’exp (π‘Ÿ 2𝛿)

𝑐2=𝑇 0βˆ’π‘‡ 𝛿

1βˆ’ exp (π‘Ÿ2𝛿¿)ΒΏSince 𝑇 0=𝐢1+𝐢2

𝑇=𝑐1+𝑐2 exp(π‘Ÿ 2𝑦 )

𝑇=𝑇 0(1βˆ’ exp (π‘Ÿ 2𝛿 ))βˆ’(𝑇 0βˆ’π‘‡ 𝛿)

1βˆ’exp (π‘Ÿ 2𝛿)+

𝑇0βˆ’π‘‡ 𝛿

1βˆ’exp (π‘Ÿ2𝛿¿)exp (π‘Ÿ2 𝑦 )ΒΏ

Page 33: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

𝑇=𝑇 0(1βˆ’ exp (π‘Ÿ 2𝛿 ))βˆ’(𝑇 0βˆ’π‘‡ 𝛿)

1βˆ’exp (π‘Ÿ 2𝛿)+

𝑇0βˆ’π‘‡ 𝛿

1βˆ’exp (π‘Ÿ2𝛿¿)exp (π‘Ÿ2 𝑦 )ΒΏ

𝑇 (1βˆ’ exp (π‘Ÿ 2𝛿 ))=𝑇 0 (1βˆ’exp (π‘Ÿ2𝛿 ))βˆ’ (𝑇 0βˆ’π‘‡ 𝛿 )+(𝑇 0βˆ’π‘‡ 𝛿)(exp (π‘Ÿ 2𝑦 ))

(𝑇 βˆ’π‘‡ 0 ) (1βˆ’exp (π‘Ÿ2𝛿 ) )= (𝑇 π›Ώβˆ’π‘‡ 0 )(1βˆ’exp (π‘Ÿ2 𝑦 ))

where (𝑇 βˆ’π‘‡ 0 )(𝑇 π›Ώβˆ’π‘‡ 0 )

=1βˆ’ exp (π‘Ÿ 2 𝑦 )1βˆ’exp (π‘Ÿ2𝛿 )

Page 34: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

If we did not consider mass transfer

𝑒𝑦=βˆ’π‘˜π‘‘π‘‡π‘‘π‘¦π‘‘π‘’π‘¦π‘‘π‘¦

=0βˆ’π‘˜ 𝑑2𝑇𝑑𝑦2

=0

βˆ’π‘˜π‘‘π‘‡π‘‘π‘¦

=𝑐1

𝑑𝑇𝑑𝑦

=𝑐1βˆ’π‘˜

𝑇=𝑐1π‘¦βˆ’π‘˜

+𝑐2

@ 𝑦=0 ,𝑇=𝑇 0

𝑐2=𝑇 0

@ 𝑦=𝛿 ,𝑇=𝑇 𝛿

𝑇 𝛿=𝑐1π›Ώβˆ’π‘˜

+𝑇0

𝑐1=(𝑇0βˆ’π‘‡ 𝛿 ) (π‘˜π›Ώ )=βˆ’π‘˜ 𝑑𝑇𝑑𝑦

Page 35: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

With mass transfer

βˆ’k𝑑𝑇𝑑𝑦

∣@ 𝑦=0=𝑇0βˆ’π‘‡ 𝛿

1βˆ’ exp[(𝑁𝐴𝑦 π‘π‘ƒπ΄π‘˜ )𝛿 ] (

𝑁 𝐴𝑦 π‘π‘ƒπ΄π‘˜ )βˆ—π‘˜

Page 36: Equation of Continuity II. Summary of Equations of Change.

Simultaneous Heat and Mass Transfer

Comparison of the energy flux with & without the presence of mass transfer:

Rate of heat transfer is directly affected by simultaneous mass transferBUT mass flux is not directly affected by simultaneous heat transfer