Epitaxial piezoelectric heterostructures for …...Cross Sectional TEM images of PMN-PT on silicon...

30
Seung-Hyub Baek Center for Electronic Materials Korea Institute of Science and Technology (KIST) 15 th Korea-U.S. Forum on Nanotechnology Epitaxial piezoelectric heterostructures for ultrasound micro-transducers

Transcript of Epitaxial piezoelectric heterostructures for …...Cross Sectional TEM images of PMN-PT on silicon...

  • Seung-Hyub Baek

    Center for Electronic Materials

    Korea Institute of Science and Technology (KIST)

    15th Korea-U.S. Forum on Nanotechnology

    Epitaxial piezoelectric heterostructures

    for ultrasound micro-transducers

  • • Personal information • Banking

    Security issue for mobile electronics

  • Voice

    Face

    Iris

    Vein

    Fingerprint

    • Highly secured

    • Convenient

    Fingervein

    Biometrics-based authentication systems

    Fingerprint

    • Easy to hack

  • Similar to medical imaging

    Not affected by sweat or dirt

    Convenient

    Small, low-power consumption

    3 dimensional recognition

    Fingerprint/vein/blood flow

    Ultrasonic transducer array

    Ultrasound-based fingerprint/vein recognition

  • Ultrasound Probe

    Human

    Body

    Ultrasonic

    Beam

    Reflected

    Signal

    Principle of ultrasound imaging

  • 2D Transducer Array !

    Beam-forming for 3D imaging

  • Wiring issue

    Not scalable

    Issues on 2D array with bulk piezoelectric materials

  • Electrodes Membrane

    Insulation

    Cavity

    Si substrate Deflection

    Vac+Vdc

    Electrodes Piezoelectric layer

    SiO2

    Cavity

    Si substrate Deflection

    Vac

    cMUT pMUT

    Electrostatically-driven Piezoelectrically-driven

    • Hard to fabricate

    • High DC-field (electric shock!)

    • Electrical charging

    • Non-linear behavior

    • Relatively easy to fabricate

    • No DC-field necessary

    • Stable

    • Linear behavior

    Micro-Machined Transducer (MUT)

  • Vein recognition without gel !

    vs.

    pMUT-based fingerprint/vein imaging system

    Ultrasonic transducer array

    Air Air

    Dermis

    vs.

    vein

  • • Giant piezoelectric material.

    PMN-PT Single crystal is 10 times

    higher than PZT ceramic.

    (d33= ~2000 pC/N, k33= ~0.92)

    Giant piezoelectric relaxor-ferroelectrics

    Pb(Mg1/3Nb2/3)O3 - PbTiO3 Single Crystals

    S-E. Park, T.R. Shrout , J. Appl. Phys. 82, 1804 (1997).

  • S-E. Park, T.R. Shrout , J. Appl. Phys. 82, 1804 (1997).

    > 1.7% strain Field-Induced Phase Transition in (001) PZN-8% PT Single Crystal

    Giant piezoelectric relaxor-ferroelectrics

  • • Anisotropic piezo-property: d33 [001] > d33 [111]

    Polycrystalline (001) Epitaxial

    Giant piezoelectric relaxor-ferroelectrics

  • Epitaxial PMN-PT thin films on Si

    Si substrate Diamond Cubic structure Lattice parameter: 5.4302 Å

    Conducting oxide Perovskite structure ~3.930 Å

    Piezoelectric material Perovskite structure ~4.02 Å

    Insulating oxide Perovskite structure 3.905 Å

    MBE

    Sputter

  • Off-Axis Sputtering for high-quality films

    Heater Block

    Sputtering gun Energetic particles

    Diffused particles

  • Challenge for PMN-PT film growth

    Voltage (V)

    Pola

    riza

    tion (

    µC/c

    m2)

    -40 -30 -20 -10 0 10 20 30 40

    -60

    -40

    -20

    0

    20

    40

    60

    Leaky!

    Volatile PbO

  • Miscut substrate to fix volatile PbO

    Step as a preferential nucleation site

  • X-ray diffraction with 2D area detector for

    PMN-PT /SrRuO3/Si

    Exact (001) Si 4o miscut (001) Si

  • SrRuO3

    PMN-PT

    2 nm Si

    SrRuO3

    PMN-PT

    100 nm

    SrTiO3

    Rocking Curve

    FWHM

    0.23o

    0.58o

    Cross Sectional TEM images of PMN-PT on silicon

    TEM by X.Q. Pan, Michigan 0.32o (bulk PMN-PT single crystal)

  • -600 -400 -200 0 200 400 600 -60

    -40

    -20

    0

    20

    40

    60

    Po

    lariza

    tio

    n (

    µC

    /cm

    2)

    Electrical field (kV/cm)

    3000

    0

    1000

    2000

    0

    0.1

    0.2

    0.3

    -100 0 100

    Electrical field (kV/cm)

    Die

    lectr

    ic c

    on

    sta

    nt

    Lo

    ss ta

    ng

    en

    t

    Strong Imprint- Unipolar Operation

    • Highly insulating (>600 kV/cm)

    • Strong imprint: unipolar operation

    • Reduced dielectric constant for better detection

  • Piezoelectric and energy harvesting FOM

  • MEMS performance

    • Simulations match experimental data using

    bulk PMN-PT parameters.

    • PMN-PT piezoelectric properties unaffected

    by processing.

    100 101 102

    0.0

    0.2

    0.4

    0.6

    0.8

    Tip

    dis

    pla

    cem

    ent

    (µm

    )

    Voltage (V)

    Modeled electrostatic cantilever

    Modeled PMN-PT cantilever

    Actual PMN-PT cantilever

    0 0.02 0.04 -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    Hei

    ght

    (µm

    )

    Length (mm)

    0V

    2.8V

    Cantilever clamping point

    Length:35µm

    0.375 µm / V deflection

    0.0 1.5 3.0 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Voltage (V)

    ∆Z

    (μm

    )

    S.H. Baek et al. Science 334, 958 (2011)

  • Development of relaxor-ferroelectrics

  • 1. Mn: Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3

    • Giant piezoelectricity &

    • high temperature field stability

    2. All sputtering process

    PMN-PZT heterostructure on SOI

  • -40 -20 0 20 40

    -40

    -20

    0

    20

    40

    Pola

    rization (C

    /cm

    2)

    Drive Voltage (V)

    20 30 40 50 60 7010

    0

    101

    102

    103

    104

    105

    106

    107

    Inte

    nsity (

    cps)

    2

    YSZ (

    002)

    YSZ (

    004)

    Si (004)

    CeO

    2 (

    002)

    CeO

    2 (

    004)

    LSM

    O (

    001)

    LSM

    O (

    002)

    PM

    N-P

    ZT (

    001)

    PM

    N-P

    ZT (

    002)

    XRD P – E Curve

    1 μm PMN-PZT/LSMO/CeO2/YSZ/Si

  • Summary • We have fabricated epitaxial PMN-PT piezoelectric heterostructures on silicon with unparalleled piezoelectric properties. (d33: 1200 pm/V and e31: -29 C/m

    2) (2-3 times better than best piezoelectric films ever reported and

    on Si !)

    • High strain piezoelectric heterostructures on silicon can be used

    for integrated MEMS devices for actuation, sensing and imaging • High frequency ultrasound transducer 2-D arrays • Hyper-Active NEMS • High frequency filters • Energy Harvesting

  • Buffer layer for epitaxial Oxide on Si

    Si 5.43 Å

    CeO2 5.41 Å

    YSZ 5.15 Å

    SRO, LSMO, PZT 3.86~3.93 Å

    Si substrate

    Perovskite oxides

    Buffer Layers

  • Doppler effect for blood flow imaging

    Principle of ultrasound imaging

  • (1960)

    (2003) Ceramic PZT transducer array At 1 MHz

    20x20 first 2-D array (currently 256x256 = 65,536 subdiced elements)

    S.W. Smith, Duke Univ.

    GE Medical