Environmental transformation products of explosives

25
Environmental transformation products of explosives Mateusz Szala Military University of Technology Warsaw, Poland DAIMON Kick-off Meeting Sopot, Poland, February 8-10, 2016

Transcript of Environmental transformation products of explosives

Environmental transformation

products of explosives

Mateusz Szala

Military University of Technology Warsaw, Poland

DAIMON Kick-off Meeting Sopot, Poland, February 8-10, 2016

Outline

My background

(synthesis, NMR analysis, blasting properties)

Explosives – modern and common

(TNT, RDX, HMX, NTO, DAAF, HNIW)

Transformation o explosives in environment (degradation products, metabilites)

Toxicity of explosives (acute LD50 and LC50 for fish and mammalia)

Summary

Area of interest

Modern explosives

1980 1905

1964 1998 1987

1999 1998 1983

NH

N

NH

N

O

O

O

N N

N N

NN

NO2

NO2

O2N

O2N

NO2O2N

C

C

NH2 NH2

O2N NO2N N

O

NH2N

N N

O

N NH2

O

NH+

NH

NH

NH2

NH2

NH2

NH+

NH

NH

NH2

NH2

NH2

N

N

N

N

N

N

N

N

N

N

N

N N

N

OO

O

OO

O

CCH2 CH2

CH2

CH3

OHO

ONO2

H

n

1983

NTO

DAAF HNIW

DADNE

TAGAZ

ONC

TNAZ pNIMMO

Common explosives

CH3

N

N

N

O

O

O O

O

O

N

N

N

N

N

N

O

O

O O

O

O

N

N

N

N

N

N

O

O

OO

O

O N

NO

O

O

O

O

O

N

N

N

N

OO

O

O

O O

O

O

O

O

O

N

N

N

O

O

O

O

O

O

Pb

N

N

N

N

N

N

1846 1863

1894

1899 1941

1891 1833

O

CH O

CH

CHCH

CH

O

CH2

ONO2

CH CH

CH

OCH

CH

O

CH2O2NO

ONO2

ONO2

ONO2

ONO2

n

TNT RDX

HMX NG

PETN

NC

LA

Physicochemical propetries of selected common explosives

Chemical Properties Database, Gunpowder Services Inc. http://www.gsi-net.com/usefultools/chempropdatabasehome.asp (July 2008) .

HSDB hazardous substances data bank, national Library of medcine, Bethesda, MD, http://toxnet.nlm.nih.gov/ (July 2008)

D. Rosenblatt , The handbook of Environmental Chemistry, vol. 3, part G, Springer, Heidelberg, 1991, 195.

F. Monteil-Rivera, Physico-chemical measurements of Cl-20 for environmental applications, Comparison with RDX and HMX, J. Chromatogr. A., 1025, 125, 2004.

Common

name/ Acronym

Melting

point, °C

Water

solubility, mg·dm-3

Octanol/wat

er partition coef., log

Ko/w

Vapour

pressure at 25 °C, mm

Hg

2,4-DNT 71.0 270 1.98 1.47·10-4

TNT 80.6 130 1.6 1.99·10-4

Tetryl 129.5 75 2.04 5.69·10-9

TATB 350.0 (dec.) 5 0.7 1.34·10-11

Picric acid 121.8 12800 1.33 7.5·10-7

NC 206.0 (dec.) Insoluble nd nd

PETN 143.3 43 3.71 5.38·10-9

NG 13.0 13 1.62 2·10-4

RDX 204.0 56 0.9 4.0·10-9

HMX 286.0 4 0.17 3.3·10-14

Environmental transformation of TNT

CH3

O2N

NO2

NO2 CH3

O2N

HN

NO2

OH

[H]

CH3

O2N

NH2

NO2

[H]

CH3

O2N

NO2

NH2

CH3

O2N

NO2

NH

OH

N

N

CH3

CH3 NO2

NO2

O2N

O2N

[H]

[H]

CH3

H2N

NO2

NH2

CH3

O2N

NH2

NH2

N

N

CH3 NO2

NO2

O2N

O2N

CH3

N

N

CH3

NO2

NO2

O2N

O2N

CH3

TNT

2,4’-Az

4,4’-Az 2,2’-Az

D. Kaplan, A. Kaplan, Reactivity of TNT and TNT-microbial reduction products with soil components, Technical raport , NATICK/TR-83/041, US Army 1983.

Munition wastewaters transformation of TNT

TNT

TNB

3,5-DNA

TN-Benzyl Alcohol

DNPhenol

DNBenzoic acid

CH3

O2N

NO2

NO2

C

O2N

NO2

NH2

O OH

CH2

O2N

NH2

NO2

OH

C

O2N

NO2

OH

O OH

CH3

O2N

NO2

NH2

CH3

O2N

NH2

NO2

+

O2N

NH2

NO2

C

O2N

NO2

O OH

O2N

NH2

NH2 O2N

NO2

OH

C

O2N

NO2

NO2

O OH

TNBA

ha

ha

T T

mic

Spanggord et al. Environmental fate studies on certain munition wastewater constituents, Phase IV – Lagoon model studies. Menlo Park, California: SRI Internationsl ADA 138550, 1983.

Abiotic transformations of TNT

TNT

TNBenzoic acid

CH3

NO2O2N

NO2

C

NO2O2N

NO2

O H

CH3

NH2O2N

NO2

CH3

NO2O2N

NH2

CH3

NO2O2N

NO2

OH

?

C

NO2O2N

NO2

O OH

CH3

NH2H2N

NO2

CH3

NH2O2N

NH2

CH3

NH2H2N

NH2

ha

Fe2+

base

TAT

D. Schmelling et al.. Photocalalytic transformation and mineralization of TNT i TiO2 slurries, Water Res. 29, 2651, 1995.

T. Hofstetter et al.., Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions, Environ. Sci. Technol., 33, 1479, 1999.

A. Mills et al.., Alkaline hydrolysis of TNT, Phys. Chem. 5, 3921, 2003.

Aerobic transformations of TNT

T. Kalafut, Biotransformation pattern of TNT by aerobic bacteria, Current Microbiol., 36, 45, 1998.

C. French et al., Aerobic degradation of TNT by enterobacter cloace PB2 and PETN reductase, Appl. Environ. Microbiol., 64, 2864, 1998.

M. Pasty-Grigby et al. Transformation of TNT by actinomycetes isolated from TNT-contaminated and uncontaminated environments, Appl. Environ. Microbiol. 62, 1120, 1996.

Bacterial strain TNT,

mg·dm-3

Degradation

%

Degradation products

NO2- Denitrat.

Prod. Meisenheimer

cmplx ADNT

Bacillus sp. 100 95 + 2A4NT nd +

Enterobacter cloacae PB2 113 98 + — + Nd

Methylobacterium sp. 25 100 nd nd nd +

Pseudomonas sp. 50 100 + DNT + +

Mycobacterium vaccae 113 98 + — + +

Pseudomonas fluorescens nd nd + — + +

Streptomyces chromofuscus A11

25 100 — nd nd +

Staphylococus sp. 100 98 + 2A4NT nd +

Degradation of TNT with Fungi

T. Fernando et al. Biodegradation of TNT by Phanerochaete chrysosporium, All. Environ. Microbiol. 56, 1666, 1990.

K. Scheibner, Screening for fungi intensively mineralizing TNT, Appl. Microbiol. Biotechnol., 47, 452, 1997.

Fungal strain TNT, mg·dm-3 CO2, % Biotransformation, %

Phanerochaete chrysosporium ATCC 1767

100.7 13.7 100

Phanerochaete chrysosporium BKM-F-1767

100.0 18.0 100

Phanerochaete chrysosporium

BKM-F-1767 40.0 10.0 100

Fomes fomentarius MWF01-4 22.7 8.0 93

Clitocybe odora TM3 22.7 5.1 88

Alternaria TMRZ/WN2 22.7 0.4 74

Mucor mucedro DSM810 22.7 0.1 95

Neurospora crassa TM 22.7 0.6 100

Rhizoctonia solani MWi5 22.7 0.2 90

Abiotic transformations of RDX

RDX

denitration

ha Fe2+

N

N

N

NO2

NO2O2N

N

N

NNO2O2N

N

N

N

NO

NO2O2N

N

NH

NNO2O2N

OH C

NH

NH

NNO2O2N

O

H

NHNH

NO2O2N

NHNH

O2N

O

H

+

N2O

NH3

HCOOH

HCOH

NH2COH

N

N

N

NO

NOO2NN

N

N

NO

NOON

Catalyst: Me0

reduction

electrolysis

L. Hundal et al. Removal of TNT and RDX from water and soil using iron metal, Environ. Pollut., 97, 55, 1997.

J. Hawari et al.. Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36, 5117, 2002.

V. Balakrishnan et al.. The alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, CL-20: New insights into degradation pathways obtained by theobservation of novel intermediates, Environ. Sci. Technol. 37, 1838, 2003.

K. Gregory et al.., Abiotic transformation of RDX by Fe bound to magnetite. Environ. Sci. Technol. 38, 1408, 2004.

MEDINA

MEFNDA

Biotic transformations of RDX

RDX anaerobic aerobic

J. Zhao et al. Biodegradation of RDX and its mononitroso-derivative by Klebsiella peneumoniae strain SCZ-1 isolated from and anaerobic sludge, Appl. Environ. Microbiol. 68, 5336, 2002.

N. Coleman et al. Aerobic biodegradation of RDX as a nitrogen source by Rhodococcues sp. strain DN22, Soil. Biol. Biochem, 30, 1159, 1998.

http://www.fakt.pl/wydarzenia/odporna-na-antybiotyki-bakteria-klebsiella-pneumoniae-ndm-w-polsce,artykuly,488341.html

N

N

N

NO2

NO2O2N

N

N

NNO2O2N

N

N

NO2N

NHNH

NO2O2N

NHNH

O2N

O

H

N2O

NH3

HCOOH

HCOH

NH2COH

NH

NH

NO2N

OH

OH

N

NH

NO2N

OH

NO2

Klebsiella peneumoniae

Biotic transformations of HMX

denitrifiers

methanogens

reductase

Microbial degradation of RDX and HMX, SERDP Project CU1213, 2004.

NN

N N

NO2

NO2O2N

O2N

NN

N N

NO2

NOO2N

O2N

NN

N N

NO2

NOO2N

ON

NN

N N

NO2

NOON

O2N

+

CH2

NOH

CH2

N

H

NO2 NO2

3

NHCH2

NH

NO2 NO2

CH2

NOH

CH2

N

CH2

NO2 NO2

OH

CH2

N

CH2

NO2

OHOH

N

NH2

O O

N

NH

OH ON

NH2

O O

N2O N2

HCHO HCOOH CO2 CH4+

MEDINA

unidentified

products

Biotic transformations of PETN

PETN

Enterobacter cloacae

reductase

P. Binks et al.. Degradation of PETN by Enterobacter cloace PB2, Environmental Microbiology, 1996, p.1214.

C

CH2

CH2

CH2CH2

O

O

O

O

O2N

NO2

NO2

O2N

C

CH2

CH2

CH2CH2

O

OH

O

O

O2N

NO2

O2N

C

CH2

CH2

CH2CH2

O

OH

O

OH

O2N

NO2

C

CH2

CH2

CCH2

O

O

O

OH

O2N

NO2

HC

CH2

CH2

CC

O

O

O

O

O2N

NO2

H

H

C

CH2

CH2

CH2CH2

O

OH

O

OH

O2N

NO2

Biotic transformations of NG

NG

glycolysis

CO2

J. Husserl, Biodegradation of NG as a growth substrate, Thesis, Georgia Institure of Technology, 2011.

http://www.hkbs.co.kr/?m=bbs&bid=special15&uid=131292

a

CH2

CH

CH2

O

O

O

NO2

O2N

NO2

CH2

CH

CH2

O

OH

O

NO2

NO2

CH2

CH

CH2

O

O

OH

NO2

O2N

CH2

CH

CH2

OH

OH

O

NO2

CH2

CH

CH2

OH

O

OH

O2N

CH2

CH

CH2

OH

OH

OH

CH2

CH

CH2

OH

O

OH

O2NCH2

CH

CH2

OH

O

O

O2N

P

O

OHOH

H2O

Arthrobacter sp. Strain JBH1

Acute Oral Median Lethal Dose (LD50) to Western Fence Lizard

(Sceloporus occidentalis)

http://s202.photobucket.com/user/Zygote_photos/media/Ready_0199.jpg.html

C. McFarland et al. Toxicity of RDX in western fence lizards, Environ. Toxicol. Chem. 27, 1102, 2008.

J. Suski et al.. Dose-related effects following oral exposure of 2,4-DNT on the western fence lizard, Environ. Toxicol. Chem. 27, 352, 2008.

D. Liu et al. Toxicity of TNT wastewaters to aquatic organisms, Report DAMD 17-25-C-5056, 1983.

RDX,

mg·kg-1

DNT,

mg·kg-1

TNT,

mg·kg-1

Males 72 380 1038

Females 88 577 1579

Toxicological interactions of TNT and RDX

Fathead minnow

https://www.studyblue.com/notes/note/n/lab-practical-1/deck/1314004

http://blog.survivalsage.com/2013/04/when-shtf-find-these-fish-and-tarp.html

D. Liu et al. Toxicity of TNT wastewaters to aquatic organisms, Report DAMD 17-25-C-5056, 1983.

Explosive 96h LC50,

mg·dm-3

TNT 2.4

RDX 4.5

TNT/RDX (1:1) 5.4

TNT/RDX (1:3) 6.8

TNT/RDX (3:1) 1.9

Transformation

product

96h LC50,

mg·dm-3

TrinitroBenzene 1.1

TrinitroBenzAldehyde 1.0

TriNitroBenzoNitrile 2.0

DinitroAnthranil 0.16

Toxicological interactions of TNT and RDX

Daphnia Magna

http://www.evolution.unibas.ch/ebert/publications/parasitismdaphnia/ch2f12.htm

D. Liu et al. Toxicity of TNT wastewaters to aquatic organisms, Report DAMD 17-25-C-5056, 1983.

Explosive 48h LC50,

mg·dm-3

TNT 1.27

RDX 12.9

Transformation

product

48h LC50,

mg·dm-3

TrinitroBenzene 2.7

TrinitroBenzAldehyde 1.5

TriNitroBenzoNitrile 1.0

DinitroAnthranil 0.34

Acute toxicity of selected explosives

http://www.evolution.unibas.ch/ebert/publications/parasitismdaphnia/ch2f12.htm

http://cfb.unh.edu/phycokey/Choices/Anomalous_Items/invertebrates/Hydroids/HYDRA/Hydra_image_page.html

http://www.mountainanglers.com/Rainbow-Trout.html

D. Liu et al. Toxicity of TNT wastewaters to aquatic organisms, Report DAMD 17-25-C-5056, 1983.

Species

Explosive

Acute toxicity 96h LC50,

mg·dm-3

TNT RDX NG NQ

Invertebrates (D. Magna) 1.27 12.9 34.0 2.7

Hydra cladoceran n/a 17.0 17.8 2.1

Rainbow trout 2.6 12.7 1.9 1.5

Acute oral toxicities of explosives to rats

Mammalian toxicity of munition compounds: phase I. Acute oraz toxicity, primary skin and eye irritation, dermal sensitiaztion, and disposition and metabilism, Project No 3900-B, 1975.

http://sciencegraydon.blogspot.com/2012/10/journal-entry-7-typhoid-animal-model.html

Explosive LD50, mg·kg-1

Males Females

TNT 1010 820

RDX 71 70

Mustard gas 20* 20*

Nitrocellulose >5000 >5000

White phosphorus 4.85 4.82

Genotoxicity of Explosives

Mammalian toxicity of munition compounds: phase I. Acute oraz toxicity, primary skin and eye irritation, dermal sensitiaztion, and disposition and metabilism, Project No 3900-B, 1975.

http://sciencegraydon.blogspot.com/2012/10/journal-entry-7-typhoid-animal-model.html

TNT and it’s metabolites

Microorganism: Salmonella typhimurium Vibrio fischeri Escherichia coli Neurospora crassa Saccharomyces cerevisiae

Mammalia: Mouse P388 – lymphoma Chinese hamster – HGPRT locus

Mammalia:

Chinese hamster V79 CH3

NH2H2N

NH2

N

N

CH3

NO2

NO2

O2N

O2N

CH3

CH3

O2N

NO2

NH2

CH3

O2N

NH2

NO2

CH4

Summary (1) – potential markers

Summary (2) TNT (nitroaromatics) and nitroamines are susceptible to

environmental transformation. The main reaction paths

are recognized. For fast identification e.g. by using HPLC

methods is possible but standards are required.

Aqueous toxicity of common explosives is well known for

variety of freshwater and marine species. Especially RDX

and TNT is acutely toxic to fish and aquatic invertebrates.

Some of energetic compounds metabolites are more

toxic than starting compounds due to the solubility in

body fluids.

Common explosives and it’s metabolites are acutely

(chemical), genetically toxic to water and land species.

Thank you for your attention!

Dr Mateusz Szala

e-mail: [email protected]

tel. + 48 261 83 93 82