Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices...

15
Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson University of Pennsylvania Department of Physics and Astronomy

Transcript of Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices...

Page 1: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon

Nanotube Electronic Devices

  Brett R. Goldsmith  Ye Lu

  Zhengtang Luo     A.T. Charlie Johnson

University of PennsylvaniaDepartment of Physics and Astronomy

Page 2: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Sources of Electronic Noise

measuring current noise power

Thermal Nyquist noise (~10-24)

Instrument Noise (~10-23)

Telegraph Noise (~10-18)

1/f noise 

intrinsic noise

edge states

defects

surrounding environment

Page 3: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Noise Characterization

Noise power is calculated fromthe power spectrum of the current.(using FFT)

b = 1 for most devices

Page 4: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

MeasurementsNoise Power: Noise Amplitude:

α(T) = Hooge Constant

N = number of conduction channels SI is given by the power spectrumof the current through the device.

Page 5: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Graphene Electronics

Page 6: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Resistance vs Temperature

measured in a high vacuum chamber, at a rate of 0.1 K/10 seconds

Page 7: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Noise Power vs Temperature - Graphene

Fit for noise power at 1 Hz.

Noise Power also does not change much with temperature

Page 8: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Graphene – Noise Amplitude

Lin, Avouris, Nano Lett., 2008, 8 (8), pp 2119–2125

Noise Amplitude can also be calculated using fit for noise power at 1 Hz

Page 9: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Reduced Graphene Oxide

• Use a strong oxidizer and rapid microwave heating to chemically exfoliate graphite

• Spin cast graphene oxide solution

• Reduce graphene oxide using hydrazine

• We’re using a large film of GO.50 mm

Lou, et. al., J. Am. Chem. Soc., 2009, 131 (3), pp 898–899

Page 10: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Reduced Graphene Oxide

Resistance has a strong temperature dependence. 

50 mm

Page 11: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Noise Power vs Temperature

Sharp peaks occur at particular temperatures

Stronger temperature dependence of noise power.

Page 12: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Assigning Noise PeaksLocation of water freezing point vs. Temperature and Pressure

Enhanced noise happens where we expect water to freeze in the vacuum chamber

Page 13: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Noise Amplitude

Page 14: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

CNT Network – Noise Amplitude

CNT noise amplitude changes quite dramatically with temperature.

The literature has attributed these types of noise peaks to environmental effects for a few years, even in single tubes.

Kingrey et. al. Nano Lett., 2006, 6 (7), pp 1564–1568

Page 15: Environmental Effects on Noise in Graphene, Graphene Oxide and Carbon Nanotube Electronic Devices Brett R. Goldsmith Ye Lu Zhengtang Luo A.T. Charlie Johnson.

Johnson Group UPenn

Prof. A.T. Charlie Johnson

Ryan Jones

Matthew Berck

Dan Singer

Nicholas Kybert

Thomas Ly

Dr. Zhengtang Luo

Dr. Brett Goldsmith

Dr. Sasa Zaric

Sam Khamis

Bob Johnson

Luke Somers

Ye Lu

Thanks to:IC PostdocDARPAARO

Conclusions:

• Graphene 1/f noise is weakly dependent on temperature

• Reduced graphene oxide 1/f noise shows very strong dependence on temperature and the surrounding environment

• Carbon nanotube 1/f noise is environmentally sensitive.

• Graphene seems to be coupled to it’s surroundings more weakly than carbon nanotubes.