Entropy balance in electromagnetic gyrokinetic m e/m i=5.669أ—10-4, T e=T i, خ² i=1%, خ½...

download Entropy balance in electromagnetic gyrokinetic m e/m i=5.669أ—10-4, T e=T i, خ² i=1%, خ½ i=2أ—10-3v

If you can't read please download the document

  • date post

    19-May-2020
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Entropy balance in electromagnetic gyrokinetic m e/m i=5.669أ—10-4, T e=T i, خ² i=1%, خ½...

  • Entropy balance in electromagnetic gyrokinetic simulations 電磁的ジャイロ運動論的シミュレーションにおけるエントロピーバランス

    Shinya Maeyama1), Akihiro Ishizawa2), Tomohiko Watanabe2), Noriyoshi Nakajima2), Shunji Tsuji-Iio1), Hiroaki Tsutsui1)

    前山伸也1), 石澤明宏2), 渡邉智彦2), 中島徳嘉2), 飯尾俊二1), 筒井広明1) 1) Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku 152-8550, Japan 2) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

    Motivation

    We presented two methods for electromagnetic gyrokinetic simulations.

    An electromagnetic gyrokinetic code is successfully developed. The outflow boundary condition reduces numerical oscillations in the

    field-aligned coordinate. The entropy conservative difference substantially reduces numerical

    errors in entropy balance.

    Summary

    Electromagnetic effects on turbulent transport play important roles in high beta plasmas. Rapid parallel motions of kinetic electrons bring some numerical difficulties to electromagnetic gyrokinetic simulation.

    Recently, we extended the GKV code for electromagnetic gyrokinetic simulations. Here, we develop numerical methods to treat kinetic electrons and discuss benefits of the methods.

    δf gyrokinetic equations Availability of the schemes for electromagnetic simulations

    Linear simulations

    17th Next Meeting March 15, 2012 Kashiwa, Japan

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0 0.4 0.8 1.2 1.6 2

    γGENE ωGENE/4 γGKV ωGKV/4

    Li n e ar

    g ro

    w th

    ra te

    γ L n

    /v ti ,

    R e a l f

    re q u e n cy

    ω L n

    /v ti

    Ion beta value βi [%]

    Benchmark test with the GENE code: Beta dependence of linear instabilities

    Zero-fixed Outflow

    o te

    n ti a l 1

    10-1

    Profile of the eigenfunction of electrostatic potential along the field file

    Outflow boundary

    First of all, the developed electro- magnetic GKV code is compared with the GENE code3.

    The electromagnetic GKV code shows good agreements with the GENE code.

    Following two tests are carried out to check the usefulness of the outflow boundary condition.

    Plasma parameters: Ln/LTi=3.1, Ln/LTe=0, R/Ln=2.22, r/R=0.18, q=1.4, s=0.786, me/mi=5.669×10-4, Te=Ti, βi=1%, νi=2×10-3vti/Ln, νe=νi×√mi/me.

    Numerical settings for linear runs: -11.9