Enterprise High Desity Cooling

67
1 . . . . . . . . . . . . . . . . . . . . ENTERPRISE HIGH PERFORMANCE COOLING FINAL REPORT PUMPED REFRIGERANT COOLING TECHNOLOGY Martin Pitasi/Principle Investigator

Transcript of Enterprise High Desity Cooling

Page 1: Enterprise High Desity Cooling

1

. . . . . . . . . .

. . . . . .. . . .

ENTERPRISE HIGH PERFORMANCE COOLING

FINAL REPORT

PUMPED REFRIGERANT COOLING TECHNOLOGY

Martin Pitasi/Principle Investigator

Page 2: Enterprise High Desity Cooling

2

INDEX

Page 3: Enterprise High Desity Cooling

3

1. PROPOSED COOLING TECHNOLOGY ASSESSMENT 1.1 Candidate Cooling Technologies 1.2 Evaluation Criteria 1.3 Candidate Assessment Study

2. SYSTEM DESIGN & ANALYSIS 2.1 System Concept Cooling 2.2 Feasibility Hardware Model 2.3 R-134a Flow Prediction 2.4 Pump Performance 2.5 System Design Constraints 2.6 R-134a Saturated Liquid dT/Dp 2.7 R-134a Saturated Liquid 2.8 Orifice Selection Criteria 2.9 Goals 2.10 Orifice Hardware 2.11 Pump Performance Curve 2.12 Pump Reference Data 2.13 Pump Dimensional Drawing

3. SYSTEM RESULT 3.1 Orifice Performance Results 3.2 Results 3.3 Pump Performance Summary 3.4 COP Test Results 3.5 System Pictures

4. COLD PLATE DESIGN STRATEGY 4.1 Thermal Budget 4.2 Alpha Thermal Design Specifications 4.3 Cold Plate Design Strategy 4.4 Copper Off-Set Strip Fin 4.5 Preliminary Prototype Cold Plate No. 1 4.6 Preliminary Prototype Cold Plate No. 2 4.7 Function Prototype Cold Plat No. 1 4.8 Function Prototype Cold Plat No. 2 (Not Built)

5. COLD PLATE TESTING 5.1 Cold Plate Test Fixture Block Diagram 5.2 Test Fixture Heat Balance Study 5.3 Cold Plate Power Measurement Study 5.4 Copper Cold Plate Summary of Results 5.5 Copper Cold Plate Heat Balance 5.6 Copper Cold Plate Operating Envelope 5.7 Copper Cold Plate Superheat Study 5.8 Copper Cold Plate Test Data

Page 4: Enterprise High Desity Cooling

4

6. WIRING AND CONTROLS 6.1 Level Balancing Resistor Specs. 6.2 R-134a Flow and Pressure Safety Control Schematic 6.3 Self Heated Thermistor Specifications 6.4 Quality Sensor Schematic 6.5 Start-Up Circuit 6.6 System Wiring Diagram 6.7 Instrumentation Pin-Out Table 6.8 Instrumentation Wiring Diagram Liquid 6.9 Power Switch Wiring Diagram 6.10 Data Acquisition PCB Data

7. CALIBRATION DATA 7.1 Orifice Calibration 7.2 R-134a Cold Plate Flow 7.3 R-134a Total Flow 7.4 Pressure Transducer 7.5 Cold Plate Power Transducers 7.6 Input Power Transducer 7.7 Quality Sensor 7.8 AeroQuip Quick Disconnects

8. BOM 8.1 Mechanical ID Block Diagram 8.2 Mechanical 8.2 MBOM Continued 8.3 Electrical

9. WHITE PAPER

Page 5: Enterprise High Desity Cooling

5

1. PROPOSED COOLING TECHNOLOGY ASSESSMENT

Page 6: Enterprise High Desity Cooling

6

VAPOR COMPRESSION

Two Phase Single Phase RefrigerationTFF

Parasitic Power Consumption 340 wt 2760 wt 2133 wtCOP

Air Cooled Condenser 17 2 3.0Water Cooled Condenser 106 12 19

ControlCondensation/Dew Point N/A N/A Difficult

Ambient Air Sink Easy Easy DifficultWater Sink Easy Easy DifficultChilled Water Sink Easy Easy DifficultLoad Management None Required Easy Difficult

Reliability 50K Hrs1 50K Hrs1 12K/20K Hrs2

Cost Lowest Intermediate HighestScalability Same Same SameHot Swap/Modularity Same Same SamePackage

Size Smallest Largest IntermediateWieght Lowest Largest Intermediate

Processor InterfaceCold Plate/Evaporator UA Highest Lowest HighestRequired Area Lowest Highest Lowest

1. Limited by pump life2. Limited by compressor life

PUMPED LIQUID

1.1 Candidate Cooling Technologies a. Pumped Liquid Systems d. Heat Pipes Technology

Two Phase TF&F Circular Heat Pipes Single Phase Looped Heat Pipes

b. Vapor Compression Refrigeration Vapor Chamber c. Thermoelectric Devices e. Air Cooled Heat Sinks

1.2 Evaluation Criteria a. Parasitic Power Consumption e. Cost b. COP f. Scalability c. Control g. Hot Swap/Modularity

Condensation/Dew Point Mgmt h. Size/Weight Variable Load/no Load Operation i. Processor Interface

d. Reliability Cold Plate/Evaporator (U*A)

1.3 Candidate Assessment Study

Page 7: Enterprise High Desity Cooling

7

2. SYSTEM DESIGN & ANALYSIS

Page 8: Enterprise High Desity Cooling

8

2.1 System Concept Cooling

2.2 Feasibility Hardware Model

Page 9: Enterprise High Desity Cooling

9

2.3 R-134a Flow Prediction

44

1111

66

9911

Determine R134a Flow P = 400wts x 16 = 6400 wt. (21,843 BTU/Hr-Lb.) m= 21843/(63-41) =992.9 Lb./Hr (16.5 Lb/Min) Adjust flow to reflect the 17 th line (liquid level sensor line) Total flow required= 992.9*(17/16) = 1055 pph Assume a liquid density of R134a @ 91 F=74.3 ppcf V =1055/(74.3*0.1337) ~ 106 gph Flow/Processor = 106/17 ~ 6.2 gph

Page 10: Enterprise High Desity Cooling

10

0

40

80

120

160

200

240

280

0 20 40 60 80 100 120 140 160 180 200

Volumetric Flow Rate (V) /gph

Pres

sure

(P) /

in w

c

DP

Max. Allowable System Resistance

PUMP PERFOMANCE DATAManufacturer….…..DTE Energy TechnologiesModel………….…...809-INDInput………………..110/120vac@60HzImpeller…………..…1.9" DiaSpeed…………..…..3450 RPMRefrigerant……...….R-134aSaturation Pres.…...102 psiaOperating Temp……91 F (33 C)

DESIGN LIMITdP= 0.0154m2

MAX ALLOWABLEdP= 0.0235m2

10

100

1000

10 100 1000

Volumetric Flow Rate (V) /gph

Pres

sure

(P)

/in

wc

PERFOMANCE DATARefrigerant……...….R-134aSaturation Pres.…...102 psiaOperating Temp……91 F (33 C)

2.4 Pump Performance

2.5 System Design Constraints

Page 11: Enterprise High Desity Cooling

11

2.6 R-134a Saturated Liquid dT/Dp

2.7 R-134a Saturated Liquid

dT/dP = 0.47P-0.69

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

0.040

0 20 40 60 80 100 120 140 160 180Pressure (psig)

dT/d

P (d

eg F

/in-w

c)

Tsat = 50.157Ln(Tsat) - 141.55

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

Pressure (psig)

Tem

pera

ture

(F)

Page 12: Enterprise High Desity Cooling

12

2.8 Orifice Selection Criteria

2.9 Goals

4 3 2 1 0

Liqu

id L

evel

Sens

or

6.2.

0 gp

h

6.2.

0 gp

h

6.2.

0 gp

h

6.2.

0 gp

h

6.2.

0 gp

h

6.2.

0 gp

h

6.2.

0 gp

h

400

wts

400

wts

400

wts

400

wts

400

wts

400

wts

230

in

wc

180

in

wc

17 16 15 14

6.2.

0 gp

h40

0 w

ts

6.2.

0 gp

h40

0 w

ts

PUM

P

~ ~~ ~

Quality = 30%

Sens

or L

ine

106

gph

17/ 0.047 “ Orifices

Page 13: Enterprise High Desity Cooling

13

2.10 Orifice Hardware

Page 14: Enterprise High Desity Cooling

14

2.11 Pump Performance Curve

Page 15: Enterprise High Desity Cooling

15

2.12 Pump Reference Data

Page 16: Enterprise High Desity Cooling

16

2.13 Pump Dimensional Drawing

Page 17: Enterprise High Desity Cooling

17

3. SYSTEM RESULT

Page 18: Enterprise High Desity Cooling

18

3.1 Orifice Performance Results

3.2 Results

4 3 2 1 0

220

in w

c

6.7

gph

6.6

gph

7.5

gph

7.4

gph

7.3

gph

7.2

gph

7.1

gph

400

wts

400

wts

400

wts

400

wts

400

wts

400

wts

170

in w

c17

16.

15 14 13

6.8

gph

400

wts

6.9

gph

400

wts

PUM

P

~ ~~ ~

24% < x < 27% Orifice ID = 0.047”Orifice ID = 0.052”

Sens

or L

ine

120 g

ph

Liqu

id L

evel

Sen

sor

Page 19: Enterprise High Desity Cooling

19

Input # Total Ancillary1 Htr COP Air COP LiquidPower Power Power Condenser Condenser

(wt) (wt) (wt)

1 1590 54 15362 1189 25.5 11643 1526 0 15264 1510 4.82 1505

Total 5731

AC Fans 576 192 9.1 106.1DC Fan 285 95 16.9 106.1

1 Pump, Controls, Relays, Pilot Lights, etc.

3.4 COP TEST RESULT

3.3 Pump Performance Summary

3.4 COP Test Results

0

40

80

120

160

200

240

280

0 20 40 60 80 100 120 140 160 180 200

Volumetric Flow Rate (V) /gph

Pres

sure

(P) /

in w

c

DPOP

Max. Allowable System Resistance

System Design Resistance

PUMP PERFOMANCE DATAManufacturer….…..DTE Energy TechnologiesModel………….…...809-INDInput………………..110/120vac@60HzImpeller…………..…1.9" DiaSpeed…………..…..3450 RPMRefrigerant……...….R-134aSaturation Pres.…...102 psiaOperating Temp……91 F (33 C)

Page 20: Enterprise High Desity Cooling

20

3.5 System Pictures

Page 21: Enterprise High Desity Cooling

21

4. COLD PLATE DESIGN STRATEGY

Page 22: Enterprise High Desity Cooling

22

4.1 Thermal Budget

4.2 Alpha Thermal Design Specifications

Location Temperature Temperature Thermal UADifference Resistance

(C/F) (deg C/deg F) (deg C/wt) (Btu/hr-F)Junction 85/185Junction to case 45/81 0.225Case 40/104Interface 5./9. 0.025Wall 35/95Boiling dT 2.2/4 0.011 178.7Saturation Temp 32.8/87.8Log Mean Temp. 3.5/6.3 0.0175 3467Ambient 25/77Cond. Discharge Air. 31.6/88.9

COMPAQSPECIFICATIONS

A

200 wt.200 wt.

A

SECTION A-A

200 wt

T J? 85?C

T C ? 40?C

Tj= 85 º C

Tc= 40 º C

Page 23: Enterprise High Desity Cooling

23

4.3 Cold Plate Design Strategy

Fram Discharge Pool Distributed Flow

Convoluted Fin

B B

SECTION B-B

Manifold

30% 6.2 Gp L @ 26 C

28.3 C

∆ P/ ∆ P 0 1.00

0.1 0 0.01

Qu ality (%

30 15 0

200 WT 200 WT

In Line Cu Strip 0.10”HX2.00”WX6.50”L

Supply Reservoir

Null Cavity

∆ P 0

Page 24: Enterprise High Desity Cooling

24

4.4 Copper Off-Set Strip Fin

4.5 Preliminary Prototype Cold Plate No. 1

4.6 Preliminary Prototype Cold Plate No. 2

0.10” X 2.00” X 6.50” (20 FINS/INCH)

Page 25: Enterprise High Desity Cooling

25

4.7 Function Prototype Cold Plat No. 1

4.8 Function Prototype Cold Plat No. 2 (Not Built)

ALUMINUM COLD PLATE

LID

FRAME

DISCHARGE POOL

CONVOLUTED FIN

SUPPLY RESERVOIR

MANIFOLD

NULL CAVITY

Page 26: Enterprise High Desity Cooling

26

5. COLD PLATE TESTING

Page 27: Enterprise High Desity Cooling

27

5.1 Cold Plate Test Fixture Block Diagram

Page 28: Enterprise High Desity Cooling

28

5.2 Test Fixture Heat Balance Study

DATAPM1000

CASE PH Vol Tfi Tfo Power Tht Volts Amps Thr

(psig) (gpm) (deg C) (deg C) (watts) (deg C) (VRMS) (IRMS) (deg C)1D 100.3 0.88 18.0 21.1 805.0 41.0 100.9 3.6 39.62D 101.0 0.60 18.2 21.5 710.0 38.4 92.5 3.3 36.43D 100.3 0.48 18.3 21.8 590.0 35.9 84.2 3.1 34.44D 100.3 0.30 18.9 22.4 360.0 32.2 63.9 2.3 31.65D 100.6 0.50 18.1 21.7 651.0 36.4 87.4 3.2 34.96D 99.8 0.90 17.9 21.1 840.0 41.8 101.9 3.7 44.3

RESULTSPM1000

CASE PH Mass Tfi Tfo M*Cp*dT Power Tht Power Thr

(psig) (pph) (deg C) (deg C) (wts) (watts) (deg C) (wts) (deg C)1D 100.3 438.2 64.4 69.9 706.1 805.0 105.8 364.2 103.22D 101.0 298.8 64.7 70.7 525.2 710.0 101.1 308.1 97.53D 100.3 239.0 65.0 71.2 434.2 590.0 96.6 257.6 93.94D 100.3 149.4 66.1 72.3 271.4 360.0 89.9 147.6 88.85D 100.6 249.0 64.6 71.0 466.9 651.0 97.5 275.2 94.86D 99.8 448.2 64.3 69.9 735.3 840.0 107.2 371.9 111.7

Heater 2

Heater 2 Heat

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

Measured Input Power / wt.

MC

p(To

-Ti)

/wt.

ACTUAL

IDEAL

No Thermal Insulation

Page 29: Enterprise High Desity Cooling

29

5.3 Cold Plate Power Measurement Study

Page 30: Enterprise High Desity Cooling

30

5.4 Copper Cold Plate Summary of Results

Page 31: Enterprise High Desity Cooling

31

5.5 Copper Cold Plate Heat Balance

COLD

HTR 3

THT

T3 = 28.3

HTR 2

THT

T

T

T

V = 6.2 gphL @ 26.6 ºC

Sub-Cooled Liquid

Saturated Vapor

HTR 2

M~61 pph Cp =0.18 WT-Hr/Lb-ºC

T2’ = 28. 3ºC

Q2=198.5 wt

Cu COLD PLATE

FINS

QL=Negligible

Cu COLD PLATE

RCU =0.017 d C/Wt

Th2 = 33.6 ºC

TS = TBD

Wall

Indium/Gallium Interface

T

26.5 ºC

28.3 ºC

Q3

R 2-S = (33.9-28.3)/198.5 = 0.028 deg. C/Wt R s-wall = 0.028-0.017 = 0.011 deg C/Wt

HTR 3

T3 = 28.3 ºC x = 30 % T2’ = 28.3 ºC

Q3=198.5 wt

Cu COLD PLATE

FINS

QL=Negligible

Cu COLD PLATE

Th3= 33.9 ºC

T

26.5 ºC

28.3 ºC

Q1 Q2

Q1 = (61*0.18*(28.3-26.6)) = 18.7 wt Q2 = (198.5-18.7) =179.8 Qave = (18.5/2) + 179.8 =189.1 wt 189.1/198.5 = (Ts-26.5)/ (28.3-26.5) = 28.2 ºC R 2-S = (33.6-TS)/198.5=0.0269 deg C/wt R s-wall = 0.027-0.017 = 0.010 deg C/Wt

33.6 ºC 33.9 ºC

Page 32: Enterprise High Desity Cooling

32

5.6 Copper Cold Plate Operating Envelope

Page 33: Enterprise High Desity Cooling

33

5.7 Copper Cold Plate Superheat Study

Page 34: Enterprise High Desity Cooling

34

5.8 Copper Cold Plate Test Data DATA

Case # Initial 101 102 103 104 105 106 107 AVEElapse Time (min) 0 30 50 70 90 110 170

Heaters 4 & 5Htr 4 Volts (VAC) 57.6 115.2 95.9 95.5 93.4 93.8 93.9 93.5 94.5

Current (AAC) 0.0 0.0 3.6 3.4 3.4 3.4 3.4 3.4 3.4

Htr 5 Volts (VAC) 58.0 115.2 95.9 95.4 93.7 94.0 94.4 93.5 94.7Current (AAC) 0.0 0.0 3.5 3.5 3.4 3.4 3.4 3.4 3.4

Water Vol (gpm) 0.0 0.0 0.9 0.8 0.85Ti (C) 22.6 23.2 18.7 18.7 18.7To (C) 21.9 22.4 21.4 21.4 21.4

Heaters 2,3,4 & 5Water otal Vol (gpm) 0.0 0.0 1.7 1.7 1.6 1.6 1.6 0.8 1.6

Ti (C) 22.6 23.2 18.4 18.4 18.4 18.4 18.4 18.7 18.4To (C) 21.9 22.4 20.8 20.7 20.8 20.8 20.8 21.4 20.8

System P1(psig) 75.0 88.5 101.0 100.0 100.0 100.0 100.0 100.0 100.2dP1(in wc) 0.0 130.0 90.0 90.0 80.0 85.0 85.0 130.0 86.0

Cold Plate Vol (gpm) 0.0 5.9 6.5 6.2 6.0 6.2 6.0 6.4 6.2dP4 (in wc) 10.0 9.0 10.0 10.0 10.0 10.0 9.7 10.5 9.9

T2 (C) 24.4 24.3 26.7 26.5 26.6 26.6 26.7 27.1 26.6T3 (C) 23.1 24.1 28.6 28.4 28.5 28.4 28.4 26.9 28.5

THTR2 (C) 22.9 24.1 34.1 34.1 33.9 33.7 33.9 27.2 33.9THTR3 (C) 22.9 26.5 C ( 79. 34.4 34.4 34.2 34.0 34.2 27.1 34.2TCP2 (C) 22.9 24.1 33.9 33.8 33.7 33.5 33.6 27.1 33.7TCP3 (C) 22.9 24.1 33.8 33.7 33.6 33.4 33.5 27.1 33.6

dP5 (in wc) 0.0 200.0 210.0 210.0 190.0 210.0 200.0 200.0 204.0VOLTS (rms) 44.0 28.3 C (82 64.4 63.9 63.2 62.8 63.2 108.0 63.5AMPS (rms) 0.0 0.0 6.4 6.4 6.3 6.3 6.3 0.0 6.3

C. Flow PM1000 Power Meter (wts) M~61 pph

Instrumentation 10.2 10.2Instrumentation+Pump 45.6 45.6

Total 1089.4 1232.0 1252.0 1214.0 1204.0 728.2

RESULTS

Water PropertiesDensity (ppcf) 62.4Cp (Btu/lb-F) 1.0

SystemHeat Balance

Htr 2 Htr 3 Htr 4 Htr 5 Htr 4&5 Htr2,3,4,&5 Htrs2,3I*E (wts) 201.4 201.4 323.6 325.1 648.7 1051.5 402.8

M(pph) 423.3 811.7 388.4MCpdT (wt) 341.0 0.0 -341.0%diff 47.4 100.0 184.7

Copper Cold PlateThermal Resistance Saturated Liquid Conditions Measred Calc. Ref. %diff

dP1 (psia) 111.80T(C) 28.5 30.1 -5.66Cp (BTU/lb-F) 0.34Density (ppcf) 74.3SG 1.19

Htr 2 Ref. Calc. (Based on Sat Temp)Vol (gph) 4.36M (pph) 43.07MCpdT (wt) 8.01Hfg(wt) 193.40Htr2 201.41T2AVE (C) 28.44

Page 35: Enterprise High Desity Cooling

35

DATA

Case # Initial 111 112 113 114 115 116 117 AVEElapse Time (min) 0 30 50 70 90 110 170

Heaters 4 & 5Htr 4 Volts (VAC) 94.31 93.60 92.98 94.20 94.90 93.60 93.92

Current (AAC) 3.35 3.38 3.17 3.39 3.42 3.37 3.34

Htr 5 Volts (VAC) 93.90 93.36 91.65 94.30 94.60 94.03 93.48Current (AAC) 3.47 3.45 3.41 3.41 3.43 3.39 3.43

Water Vol (gpm) 0.00 0.85 0.90 0.88Ti (C) 23.6 18.9 19.0 18.94To (C) 22.7 21.4 21.4 21.44

Heaters 2,3,4 & 5Water otal Vol (gpm) 1.60 1.69 1.65 1.65 1.65

Ti (C) 18.4 18.4 18.4 18.4 18.43To (C) 20.7 20.8 20.8 20.8 20.78

System P1(psig) 73.3 87.0 100.6 100.0 99.5 100.6 100.8 100.6 100.2dP1(in wc) 0.0 120.0 115.0 65.0 60.0 70.0 70.0 110.0 66.3

Cold Plate Vol (gpm) 0.0 7.5 7.0 7.5 7.0 7.7 7.6 7.2 7.5dP4 (in wc) 0.0 No Data 3.5 3.7 3.5 4.0 4.1 3.5 3.8

T2 (C) 23.5 24.1 27.1 26.6 26.5 26.7 26.7 27.1 26.6T3 (C) 23.5 23.9 26.9 28.2 28.2 28.5 28.4 26.9 28.3

THTR2 (C) 23.5 23.9 27.1 33.2 32.9 33.4 33.4 27.1 33.2THTR3 (C) 23.5 26.5 C ( 79. 27.1 33.5 33.1 33.6 33.7 27.1 33.5TCP2 (C) 23.6 24.1 27.1 33.1 32.7 33.2 33.2 27.1 33.1TCP3 (C) 23.6 24.1 27.1 32.9 32.6 33.1 33.1 27.1 32.9

dP5 (in wc) 0.0 210.0 200.0 200.0 180.0 200.0 210.0 200.0 197.5VOLTS (rms) 0.0 28.3 C (82 0.0 60.34 59.38 60.55 61.41 0.0 60.4AMPS (rms) 0.0 0.0 0.0 6.00 5.93 6.10 6.08 0.0 6.0

C. Flow PM1000 Power Meter (wts) M~61 pph

Instrumentation 10.2 10.2Instrumentation+Pump 47.1 47.1

Total 740 1178 1121 1184 1186 727

RESULTS

Water PropertiesDensity (ppcf) 62.4Cp (Btu/lb-F) 1.0

SystemHeat Balance

Htr 2 Htr 3 Htr 4 Htr 5 Htr 4&5 Htr2,3,4,&5 Htrs2,3I*E (wts) 182.1 182.1 313.7 320.2 633.9 998.0 364.2

M(pph) 435.7 820.4 384.7MCpdT (wt) 319.2 564.2 245.0%diff 49.6 43.5 32.7

Copper Cold PlateThermal Resistance Saturated Liquid Conditions Measred Calc. Ref. %diff

dP1 (psia) 112.53T(C) 28.3 30.3 -6.94Cp (BTU/lb-F) 0.34Density (ppcf) 23.5SG 0.38

Htr 2 Ref. Calc. (Based on Sat Temp)Vol (gph) 52.53M (pph) 164.18MCpdT (wt) 28.17Hfg(wt) 153.92Htr2 182.09T2AVE (C) 28.21

Page 36: Enterprise High Desity Cooling

36

DATA

Case # Initial 121 122 123 124 125 126 127 AVEElapse Time (min) 25 50 65 80 95 110 170

Heaters 4 & 5Htr 4 Volts (VAC) 96.28 95.08 95.52 95.36 95.86 96.06 96.45 95.70

Current (AAC) 3.47 3.43 3.44 3.44 3.47 3.43 3.47 3.45

Htr 5 Volts (VAC) 97.10 95.67 95.40 95.52 95.37 95.65 96.45 95.49Current (AAC) 3.52 3.47 3.46 3.46 3.48 3.45 3.50 3.46

Water Vol (gpm) 1.00 1.06 1.03Ti (C) 19.2 19.2 19.19To (C) 21.6 21.6 21.58

Heaters 2,3,4 & 5Water otal Vol (gpm) 1.80 1.84 1.81 1.85 1.85 1.84

Ti (C) 19.1 19.1 19.1 19.1 19.1 19.07To (C) 21.1 21.1 21.1 21.1 21.1 21.11

System P1(psig) 100.3 99.6 99.8 99.4 100.3 100.6 99.4 100.0dP1(in wc) 125.0 50.0 55.0 55.0 60.0 65.0 95.0 58.8

Cold Plate Vol (gpm) 6.0 7.0 7.0 7.0 7.2 7.7 7.0 7.2dP4 (in wc) 2.0 3.5 3.8 3.5 4.0 4.4 3.2 3.9

T2 (C) 26.8 26.4 26.5 26.4 26.5 26.6 26.8 26.5T3 (C) 26.7 28.3 28.2 28.2 28.3 28.3 26.8 28.2

THTR2 (C) 26.8 33.8 33.7 33.5 33.9 34.2 26.9 33.8THTR3 (C) Ti =26.5 C ( 79. 34.2 34.2 34.1 33.8 34.3 34.5 34.1TCP2 (C) 26.8 33.6 33.4 33.4 33.7 34.1 27.0 33.6TCP3 (C) 26.8 33.4 33.3 33.3 33.6 33.8 26.9 33.5

dP5 (in wc) 210.0 190.0 190.0 185.0 200.0 205.0 180.0 195.0VOLTS (rms) To = 28.3 C (82 64.10 63.75 63.93 64.84 65.23 0.0 64.4AMPS (rms) 0.0 6.43 6.26 6.35 6.44 6.41 0.0 6.4

C. Flow M~61 pph

PM1000 Power Meter (wts)Instrumentation 0.0

Instrumentation+Pump 0.0Total 769.0 1211 1245 1249 1260 1271 758

RESULTS

Water PropertiesDensity (ppcf) 62.4Cp (Btu/lb-F) 1.0

SystemHeat Balance

Htr 2 Htr 3 Htr 4 Htr 5 Htr 4&5 Htr2,3,4,&5 Htrs2,3I*E (wts) 205.1 205.1 329.7 330.6 660.3 1070.4 410.1

M(pph) 512.9 915.0 402.1MCpdT (wt) 359.0 547.3 188.4%diff 45.6 48.9 54.1

Copper Cold PlateThermal Resistance Saturated Liquid Conditions Measred Calc. Ref. %diff

dP1 (psia) 112.60T(C) 28.2 30.3 -7.44Cp (BTU/lb-F) 0.34Density (ppcf) 74.3SG 1.19

Htr 2 Ref. Calc. (Based on Sat Temp)Vol (gph) 5.10M (pph) 50.36MCpdT (wt) 8.78Hfg(wt) 196.29Htr2 205.07

Page 37: Enterprise High Desity Cooling

37

DATA

Case # Initial 131 132 133 134 135 136 137 AVEElapse Time (min) 25 50 65 80 95 110 170

Heaters 4 & 5Htr 4 Volts (VAC) 87.55 87.66 87.66 87.66 87.66 87.66 87.86 87.66

Current (AAC) 3.20 3.16 3.17 3.11 3.14 3.19 3.16 3.15

Htr 5 Volts (VAC) 87.32 86.98 87.78 87.88 87.30 88.10 87.88 87.61Current (AAC) 3.12 3.16 3.19 3.17 3.17 3.19 3.19 3.18

Water Vol (gpm) 0.75 0.75 0.75Ti (C) 19.3 19.2 19.25To (C) 21.8 21.8 21.81

Heaters 2,3,4 & 5Water otal Vol (gpm) 1.60 1.60 1.60 1.60 1.60 1.60

Ti (C) 19.1 19.2 19.2 19.2 18.9 19.11To (C) 21.2 21.3 21.3 21.3 21.2 21.27

System P1(psig) 90.0 100.2 100.7 100.4 100.4 100.7 100.90 100.48dP1(in wc) 120.0 120.0 65.0 70.0 70.0 65.0 70.0 78.00

Cold Plate Vol (gpm) 7.0 7.2 7.5 7.7 7.2 7.2 7.5 7.36dP4 (in wc) 4.0 4.2 4.6 4.2 4.1 4.5 4.30 4.32

T2 (C) 26.8 26.6 26.6 26.6 26.5 26.5 27.0 26.54T3 (C) 26.6 28.3 28.3 28.2 28.2 28.2 26.9 28.26

THTR2 (C) Ti =26.5 C ( 79. 33.5 33.6 33.4 33.4 33.5 27.1 33.49THTR3 (C) 26.8 33.8 33.8 33.7 33.7 33.8 27.1 33.78TCP2 (C) 26.8 33.4 33.4 33.3 33.3 33.3 27.1 33.34TCP3 (C) 26.8 33.3 33.2 33.1 33.1 33.3 27.1 33.19

dP5 (in wc) To = 28.3 C (82 195.0 205.0 200.0 200.0 200.0 200.0 200.00VOLTS (rms) 0.0 64.10 63.75 63.93 64.84 65.23 0.0 64.37AMPS (rms) C. Flow 6.43 6.26 6.35 6.44 6.41 0.0 6.38

M~61 pphPM1000 Power Meter (wts)

Instrumentation 0.0Instrumentation+Pump 44.9 44.9

Total 640.0 1108 1123 1099 1111 1116 644

RESULTS

Water PropertiesDensity (ppcf) 62.4Cp (Btu/lb-F) 1.0

SystemHeat Balance

Htr 2 Htr 3 Htr 4 Htr 5 Htr 4&5 Htr2,3,4,&5 Htrs2,3I*E (wts) 205.3 205.3 276.5 278.2 554.7 965.3 410.6

M(pph) 373.5 796.7 423.3MCpdT (wt) 279.6 503.2 223.5%diff 49.6 47.9 45.5

Copper Cold PlateThermal Resistance Saturated Liquid Conditions Measred Calc. Ref. %diff

dP1 (psia) 112.36T(C) 28.3 30.3 -7.10Cp (BTU/lb-F) 0.34Density (ppcf) 74.3SG 1.19

Htr 2 Ref. Calc. (Based on Sat Temp)Vol (gph) 5.19M (pph) 51.30MCpdT (wt) 8.74Hfg(wt) 196.53Htr2 205.28T2AVE (C) 28.22

Page 38: Enterprise High Desity Cooling

38

6. WIRING AND CONTROLS

Page 39: Enterprise High Desity Cooling

39

6.1 Level Balancing Resistor Specs.

Page 40: Enterprise High Desity Cooling

40

6.2 R-134a Flow and Pressure Safety Control Schematic

CIRCUIT DESIGN

BLOCK DIAGRAM

Page 41: Enterprise High Desity Cooling

41

6.3 Self Heated Thermistor Specifications

Page 42: Enterprise High Desity Cooling

42

6.4 Quality Sensor Schematic

T +24 vdc

75 Ω

0.80/1.00vdc OUT

10K Ω 500 Ω

0

100 Ω

Page 43: Enterprise High Desity Cooling

43

6.5 Start-Up Circuit

OV

ER

PR

ES

SU

RE

PR

ESS

UR

EE

ME

RG

AN

CE

OFF

SW

ITC

H11

0 V

AC N

110 VACNBUSS

110 VACLBUSS

+12

VD

C

-12

VD

C

HE

ATER

S

+12

VD

C

-12V

DC

-12V

DC PS

I*C

NT’L

FLO

WC

NT’L

-12V

DC

PUM

PC

NT’L

HTR

CNT

’L

12 V

DC

PS

24 V

DC

PS

FLO

W &

PR

ES

SU

RE

CO

NTR

OL

STA

RT C

IRCU

IT

*50

PSI <

P<1

50 P

SI

30 J

uly,

200

2

PU

MP

+ 12

VD

C

Page 44: Enterprise High Desity Cooling

44

6.6 System Wiring Diagram

Page 45: Enterprise High Desity Cooling

45

6.7 Instrumentation Pin-Out Table

Function Patch Panel Connector 5 Connector 1 Connector 7 Connector 4

Coolant Flow 20 3 10R-134a Flow 21 2 11CldPlt Flow 22 10 3 11Pump Disc. Pressure 23 1 8 10CldPlt Disc. Pressure 24 18 2CldPlt dP 25 11 1Input Power 26 15 -CldPlt Power 27 7 -Quality 28 17 - 9Open 29 19No Pin 4No Pin 5No Pin 6Common 8 7 7No Pin 9No Pin 10No Pin 12Liquid Level 13Liquid LevelNo Pin 16Over Press. Switch 4Over Press. Switch 5 1Ground 6 -12vdc (Common) 7 +12 vdc (Common) 9 +12vdc (Pump) 12 -24 vdc (Solinoid) 13 +24 vdc (Solinoid) 14(2 Cnt'l) +24 vdc (Solinoid) 15(15 Cnt'l) +24 vdc (Solinoid) 16(5 Cnt'l)Thermistor Quality 17 8No Pin 18Thermistor Quality 14 19110VAC N Buss 2Power Controller Pot 3 & 4

0 5 112 4

110VAC L Buss 13

Page 46: Enterprise High Desity Cooling

46

6.8 Instrumentation Wiring Diagram Liquid

29 A

ugus

t, 20

02

LEG

3 P

OW

ER

CO

NTR

OL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CO

NN

1C

ON

N 5

Com

mon

+12

vdc

+24

vdc

+24

vdc

+24

vdc

+12

vdc

Common

Pat

ch P

anel

21

Pat

ch P

anel

20

Qly

Sig

Pat

ch P

anel

27

Pat

ch P

anel

22

Pat

ch P

anel

25

Pat

ch P

anel

26

Pat

ch P

anel

28

Pat

ch P

anel

24

Pat

ch P

anel

29

OV

ER

PR

ES

.S

WIT

CH

R-1

34 a

Tot

al F

low

Cld

Plt ∆P

Cld

Plt

Flow

Cld

Plt

Dis

c P

Sol

enoi

d 1

Sol

enoi

d 2

Sol

enoi

d 3

Coo

lant

Flo

w

Pum

p

Sys

Std

by

Com

mon

Qlt

Tran

s

CO

NN

7

Cntl

+24Q

ualit

y S

igna

lH

our M

eter

Cld

Plt

Flow

Qua

lity

Tran

sduc

er

1 2

3

4

5 6

7

8

9 1

0 1

1 1

2 1

3 1

4

Em

erge

ncy

Off

N

LOAD

L11

0 V

AC

Pum

p D

isc

PP

atch

Pan

el 2

3

Cld

Plt

Pw

rTr

an

Inpu

t Pw

rTr

an.

Com

mon

(Vol

ts)

(Vol

ts)(A

mps

)(A

mps

)

(Am

ps)

(Am

ps)

(Am

ps)

(Am

ps)

(Am

ps)

(Am

ps)

Page 47: Enterprise High Desity Cooling

47

6.9 Liquid Condenser Flow Control Wiring Diagram

5 2 15

6 1 16

+24

vdc

14-2

4 vd

cCONNECTOR 1

PIN

13

PIN

15

PIN

14

WATLOW CONT’LModel 988A-22FD-JARG

Sole

noid

/102

psi

g

Sole

noid

/100

psi

g

Sole

noid

/101

psi

g

2122

110

vac

11

G

910

+12

vdc

Com

m Pum

p D

isc

Pres

sure

Tra

nsdu

cer

5/12

/200

2

Page 48: Enterprise High Desity Cooling

48

6.10 Power Switch Wiring Diagram

6.11 Data Acquisition PCB Data

60 Hz

LOA

D

12

3

Red

White

Black

Notes:Radio Shack SN 900-7813 Red IlluminatedRocker Switch 3P SPST ON-Off/10 A 125 VAC

PCI-DAS-TC Thermocouple Board

• 16 Thermocouple Inputs• On-Board Processor• Utilizes Noise-Immune V/F Converter• J, K, E, T, R, S, B Thermocouple Types

PCI-DAS1602-16 I/O Board

• Model 16-Bit Analog Input Resolution• 330 kHz Sample Rate (PCI-DAS1602-16)• On Board Sample FIFO• Dual High Speed Analog Outputs• 24-Bits High Drive I/O (for PCI-DAS1602-16)• Fully Plug-and-Play

Page 49: Enterprise High Desity Cooling

49

7. CALIBRATION DATA

Page 50: Enterprise High Desity Cooling

50

7.1 Orifice Calibration

Page 51: Enterprise High Desity Cooling

51

7.2 R-134a Cold Plate Flow

7.3 R-134a Total Flow

M = 76.6Ln(ma) - 128.1

0

10

20

30

40

50

60

70

80

90

100

1 10 100

Flow Meter Output (ma)

Mas

s Fl

ow R

ate

(pph

)

Notes:Flow Meter No.……………..2Fluid…………………....WaterTemp……………….……...70FPress………………...120 psiaOrientation…………...VerticalFlow Meter Sn…… .1391358Range………………. ..0-2 psid

M = 142.7Ln(ma) - 177.4

0

50

100

150

200

250

300

1 10 100

Flow Meter Output (ma)

Mas

s Fl

ow R

ate

(pph

)

Notes: Flow Meter No……………….3Fluid …………………... WaterTemp……… …….....…..70 FPressure………...... .120 psiaOrientation……...….HorizontalTransducer Sn……....1405480Range………………. ...0-2 psid

Page 52: Enterprise High Desity Cooling

52

7.4 Pressure Transducer

7.5 Differential Pressure Transducers

7.6

0

40

80

120

160

200

240

280

4 8 12 16 20

Transducer Output (ma)

Pres

sure

(psi

g)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

4 8 12 16 20 24

Transducer output (ma)

Pres

sure

Dro

p (p

sid)

Page 53: Enterprise High Desity Cooling

53

7.7 Power Transducer

0

400

800

1200

1600

2000

2400

2800

3200

4 8 12 16 20 24

Transducer Output (ma)

Pow

er (w

t)

Page 54: Enterprise High Desity Cooling

54

8. BOM

Page 55: Enterprise High Desity Cooling

55

8.1 Mechanical ID Block Diagram

HEATER SUB-AS

Heate

Extensi

Therm

Heate

5/8 x 5/8 x 1/

(2 Places

1/4 x 1/4 x 1/

(2 Places

1/4 D Stiff

Page 56: Enterprise High Desity Cooling

56

8.2 Mechanical ITEM NO. DESCRIPTION STATUS P/N PRICE COST

Test TFF Compaq Spares

100 1 1 0 PUMP/MOTOR IN HOUSE 001-100

110 1 1 0 MANIFOLD SUB ASS'Y TBB* 002-100 $50.00 $50.00

120 1 1 0 SEPARATOR SUB ASS'Y TBB* 003-101 $100.00 $100.00

130 1 1 0 CONDENSER/SUB ASS'Y IN HOUSE 004-101 $0.00 $0.00

140 1 1 0 RECEIVER SUB ASS'Y TBB* 005-100

141 1 1 24"L X 3"D COPPER TUBE TBB* 005-101 $0.00 $0.00

142 2 2 3" X 3' X 5/8" COPPER TEE TBB* 005-102 $0.00 $0.00

143 2 2 3" D END CAPS TBB* 005-103 $0.00 $0.00

150 0 1 0 SAFETY LINE TBB* 006-000

151 0 0 1 0 5/8 PRESSURE RELIEF VALVE PURCHASE 006-101 $54.64 $54.64

160 3 16 16 DISTRIBUTION LINES TBB* 006-202

161 0 32 32 4 1/4" BALL VALVES PURCHASE 006-303 $22.22 $1,422.08

162 0 16 16 4 1/4" TEE" ACCESS VALVE PURCHASE 006-404

163 3 16 16 3 1/4" SIGHT GLASSES PURCHASE 006-505 $10.38 $394.44

170 3 16 16 0 HEATER SUB ASS'Y TBB* 007-100

171 32 32 1/4" X 1/4" X 1/4" TEES PURCHASE 007-101 $1.25 $125.00

172 32 32 5/8" X 5/8" X 1/4" TEES PURCHASE 007-102 $2.00 $200.00

173 16 16 5/8" X 3 " TUBES PURCHASE 007-103 $0.00 $0.00

174 16 16 5/8" X 1/4" FPT ADAPTERS COMPAQ 007-104 $0.00 $0.00

177 32 32 5/8" D Heater Extension TBB* 007-107 $1.13 $36.00

178 32 32 1/4"D X 2.5 " Stiffener TBB* 007-108 $0.24 $7.60

180 3 16 16 3 ORIFICE SUB ASS'Y TBB 008-100

181 16 16 1/4" ORIFICES PURCHASE 008-101 $4.50 $72.00

181 16 16 1/4" ORIFICE ADAPTERS TBB 008-102 $0.92 $14.72

190 NA 1 NA FLOW METER SUB ASS'Y TBB* 009-000

192 6 6 3/8 ' X 3/8" X 1/4" TEES TBB* 009-002 $0.00 $0.00

193 2 2 1/4 Metering Valves PURCHASE 009-003 $47.60 $95.20

193 2 2 FLOW METERS PURCHASE 009-003 $265.00 $530.00

200 NA TUBE + FITTINGS + VALVES220 2 2 5/8' FLEX LINE SUB ASS'Y IN HOUSE 010-001 $0.00 $0.00

221 36' 36' 1/4" TUBING PURCHASE 010-002 $1.23 $44.16

222 6' 6' 3/8 " TUBING PURCHASE 010-003 $1.81 $10.87

223 12' 12' 5/8 " D TUBING IN HOUSE 010-004 $0.00 $0.00

224 6' 6' 2" TUBING IN HOUSE 010-005 $0.00 $0.00

225 2 2 2" CAPS PURCHASE 010-006

226 1 1 2"X2"X5/6" TEE'S PURCHASE 010-007

228 1 1 5/8" BALL VALVE IN HOUSE 010-009 $0.00 $0.00

229 5 5 3/8" BALL VALVE IN HOUSE 010-010 $49.80 $99.60

230 0 1 0 0 RACK ASSEMBLY231 0 1 0 0 Frame PURCHASE 011-001 $269.46 $269.46

232 0 1 0 0 Panel PURCHASE 011-002 $110.86 $110.86

233 0 2 0 0 Side 55 PURCHASE 011-003 $95.42 $190.84

234 0 1 0 0 Top 18 PURCHASE 011-004 $58.27 $58.27

235 0 1 0 0 P-B166 100 mm base PURCHASE 011-005 $95.31 $95.31

236 0 1 0 0 Casters PURCHASE 011-006 $67.99 $67.99

QTY

Page 57: Enterprise High Desity Cooling

57

8.3 MBOM Continued

237 1pk PANEL NUTS PURCHASE 011-007

240 HEATERS241 16 4 500 WT/120 VOLT/ 4 " L PURCHASE 007-109 $28.04 $560.80

242 16 2 400 WT/120 VOLT/ 4 " L PURCHASE 007-110 $28.10 $505.80

243 4 500 WT/120 VOLT/ 4 " L WITH J TC PURCHASE 007-111 $76.50 $306.00 Q y g $50 00

250 PRESSURE SWITCH

251 1 1 PURCHASE 012-001 $47.00 $94.00

260 MISC.

261 120 FRONT FERRULS PURCHASE 013-001 $0.26 $31.20

262 1 ORIFICES PURCHASE 014-000 $4.95 $4.95

263 1 ORIFICES PURCHASE 014-001 $4.95 $4.95

264 3 30# CANISTERS OF R-134A PURCHASE 015-000 $125.00 $375.00

265 20 1/4" SAE FLARE NUTS PURCHASE 015-001 $0.34 $6.80

266 20 1/4" FLARE SWEAT ADAPTERS PURCHASE 015-002 $0.61 $12.20

267 20 1/4" 90 DEG. ELLS PURCHASE 015-003 $1.23 $24.60

268 1 HAND BLIND RIVIT TOOL PURCHASE 015-004 $45.50 $45.50

269 2 BX BLIND RIVITS PURCHASE 015-005 $11.80 $23.60

270 1 BX BLIND RIVITS PURCHASE 015-006 $11.95 $11.95

271 1 BX BLIND RIVITS PURCHASE 015-007 $28.49 $28.49

272 1 1/4"D X 72" L SS ROD PURCHASE 015-008 $15.80 $15.80

273 2 TOOLING & CONSTRUCTION BALLS PURCHASE 015-009 $12.10 $24.20

274 6 7/32 " DIA. BRASS ROD PURCHASE 015-010 $0.55 $3.31

275 4 1/8 " DRILL BITS PURCHASE 015-011 $0.84 $3.36

276 1 7/32" D TRANSFER PUNCH PURCHASE 015-012 $1.59 $1.59

277 2 7/32 " DRILL BITS PURCHASE 015-013 $1.42 $2.84

278 2 1/4' COUNTER BORE PURCHASE 015-014 $5.77 $11.54

279 2 CARBIDE DEBURING BIT PURCHASE 015-015 $7.69 $15.38

280 6 1/4" BRASS BARE PURCHASE 015-016 $0.63 $3.78

281 1 1/16"TX2 1/2" W X 24"L C-1018 STELL PURCHASE 015-017 $18.55

282 1 1" X 1" X 1" AL CHANNEL 1/8' WALL PURCHASE 015-018 $18.40

283 1 3/4" X 3/4" X 6 FT BRASS BAR PURCHASE 015-019 $35.04

284 2 1/16" T X 1/2"W X 6' L BRASS BAR PURCHASE 015-020 $4.73 $9.46

285 4 1" X 1" X 8'L AL ANGLE 1/8" WALL PURCHASE 015-021 $14.48 $57.92$ ,

* TBB TO BE BUILT

Page 58: Enterprise High Desity Cooling

58

8.4 EBOM

ITEM NO. QTY DESCRIPTION STATUS P/N

500 4 AC POWER SUPPLY SYSTEM IN HOUSE 001-100501 4 20 AMP CIRCUIT BREAKER TBB* 001-101502 4 140/20 AMP VARIAC IN HOUSE 001-102503 4 20 AMP CONTACTERS IN HOUSE 001-103

510 4 HTR BANK TBB* 002-100511 16 5 AMP FUSS HOUSINGS TBB* 002-101512 16 5 AMP FUSSES TBB* 002-102513 16 0.5 kW /120 VAC CARTRIDGE HTS TBB* 002-103514 16 MECH. THERMOSTATS TBB* 002-104515 16 5 AMP TOGGLE SWITCHE/LIGHTS TBB* 002-105

520 4 POWER INSTRUMENTATION TBB* 003-100521 4 20 AMP CONTACTERS PURCHASE 003-101522 1 WATT METER IN HOUSE 003-102523 1 4 POSITION ROTARY SWITCH IN HOUSE 003-103524 1 2 POSITION ON/OFF SWITCH IN HOUSE 003-104525 1 110/120 VAC TO 48 VDC PWR SUPPLY IN HOUSE 003-105

530 1 PRESSURE CONTROL SYSTEM/ALARM TBB* 004-100531 1 CONDENSER FAN/MOTOR IN HOUSE 004-101532 1 IRON-CONSTANTAN TC ASSEMBLY PURCHASE 004-102533 1 TEMP/PRESSURE CNT'L PURCHASE 004-103534 1 ? AMP CONTACTER PURCHASE 004-104535 2 LIGHT/NOISE ALARMS PURCHASE 004-105

540 1 LIQUID LEVEL CONTROL TBB* 005-000541 1 LIQUID LEVEL CONTROL SENSOR PURCHASE 005-001542 1 100 AMP CONTACTER PURCHASE 005-002543 1 ? AMP CONTROLLER PURCHASE 005-003

550 1 AMBIENT ALARM + SAFETY TBB* 006-000551 1 AMBIENT TEMP. SENSOR PURCHASE 006-001552 1 100 AMP CONTACTER PURCHASE 006-002553 1 ? AMP CONTROLLER PURCHASE 006-003554 1 ALARM (VISUAL+NOISE) PURCHASE 006-004

560 MISC. SWITCHES 007-000561 1 FAILSAFE PRES. SWITCH PURCHASE 007-001562 1 HIGH PRES. SAFETY SWITCH PURCHASE 007-002563 1 SYSTEM POWER SWITCH PURCHASE 007-003564 1 START/STOP SWITCH PURCHASE 007-004

570 MISC. HARDWARE 008-000571 TBD NEMA BOXES PURCHASE572 TBD WIRE PURCHASE573 TBD WIRE NUTS PURCHASE574 TBD ETC PURCHASE

Page 59: Enterprise High Desity Cooling

59

9. WHITE PAPER

Page 60: Enterprise High Desity Cooling

60

To: Joe Marsala From: Marty Pitasi Subject: Pumped Two-Phase Cooling Paper Date: 18 December, 2008 References: a. Refrigerant 134a (R-134a), “2001 ASHRAE Handbook of Fundamentals” pages 20.16 &

20.17 b. Pump curve, “hy/save 809-IND Performance Curve” for 60 HZ, 3450 PRM, 1.95”D impeller c. Quick disconnects AeroQuip Corporation “P/N AE71406B, Coupling Half, Modular, and P/N

AE71572B, Coupling Half, Rack.” d. Pump Reliability, Hy-Save Energy Conservation Technologies letter, Subject “Refrigerant

Pump Reliability,” date August 23,2001 Enclosures: 1. R-134a PUMPED (2Φ) COOLING SYSTEM FLOW DESIGN 2. PROTOTYPE COLD PLATE FLOW CONCEPT 3. PROPOSED COLD PLATE 4. SYSTEM PERFORMANCE 5. HARDWARE INTERGRATION 6. COLDPLATE PERFORMANCE SUMMARY 1. Summary A new and versatile high performance, isothermal-cooling design, currently capable of cooling 6.4 kW at 33°C (91°F) with a COP of 100 is discussed. The system is a pumped liquid two-phase (2Φ) cooling design that uses a 1/20 HP motor-hermetic pump prime mover. The fluid is refrigerant 134a (R-134a), an ecologically friendly refrigerant used in car air conditioners. The design consists of pumping R-134a through a series of metered distribution lines that delivers refrigerant to heat exchangers/cold plates (evaporators). Heat is absorbed by the refrigerant changing it from a liquid to a vapor. The vapor is then converted back to a liquid via an air or liquid cooled condenser. This technique is scalable. A simplified 0.5kw system was built as a demo. Specifics of the design are similar to those discussed in the paper. 2. Introduction In anticipation of a 200wt. ALPHA processor (or equivalent) for the next generation of Enterprise Computer, Compaq Computer’s Alpha Server Division surveyed all available cooling technology. Their goal was to establish a cooling strategy that would be applicable for future system and component cooling needs. As a result of the survey a pumped liquid 2Φ cooling system was identified and developed. This system is able to meet all design constraints including envelope size, cabinet integration, reliability, parasitic power limits, cooling demands, and control issues. The proof of concept flow diagram (enclosure 1) shows the R-134a fluid being pumped into a distribution manifold. Flow metering orifices uniformly distribute the R-134a into 16 parallel ¼” D lines. Custom 400 wt heaters simulate 2 x 200 wt processor packages converting the liquid to vapor. To enhance the system performance the vapor is discharged into a vapor-liquid separator where gravity causes the saturated liquid to displace the vapor to the condenser. Sub-cooled fluid flowing from the condenser mixes with the saturated fluid prior to the pump. To prevent heat exchanger burn out, orifices are sized to deliver flow at rates that guarantee a vapor quality not to exceed 30%. Enclosure 1 shows an additional line. Line 17 is at the top of the system and is used to monitor the refrigerant charge. The thermal budget limited the heat exchanger‘s case-to-sink thermal resistance to 0.011°C/wt. Flow analysis of the problem showed that an inline convoluted strip fin design with a pitch of 10

Page 61: Enterprise High Desity Cooling

61

fins/ inch and measuring 0.10”H x 2.00”W would meet the 0.011°C/wt requirement. The subsequent design shown in enclosure 2 depicts the heat exchanger flow components. Flow enters the heat exchange via a ¼” D line and pools behind a distribution manifold, then uniformly flows across the fins into a vapor reservoir prior to discharge via 1/2” D line. To ensure a uniform flow across the fins, therefore uniform cooling, and the manifold flow loss is designed as the primary loss exceeding the fin, fluid expansion, and entrance and exit effect. The heat exchanger accommodates 2/200wt processor packages approximately 2” W x 2” D, resulting in an overall proof-of-concept cold plate size of approximately 2 7/8” W x 8 5/8’” L x 5/8” H. A sketch of the proposed final deign is shown in enclosure 3. Briefly, the two goals are to build and demonstrate: (1) a proof-of-concept pumped liquid, two-phase (2Φ) cooling system capable of uniformly cooling 16/400 wt (6.4kw.) loads at temperatures below 33°C, and (2) a heat exchanger with a sink-to-case thermal resistance ≤ 0.011°C/wt. 3. Results A diagram of the proof-of-concept hardware is shown in enclosure 1. As described earlier the primary system components of motor-pump, distribution manifold, orifices, vapor/liquid separator, and condenser are clearly visible. Other support hardware such as reservoir, liquid level sensor, and sight glasses are also shown. Specifics regarding the system design point were extracted from the R-134a phase diagram (Reference a) and the pump performance curve (Reference b). The vapor enthalpy (hfg) for 30% quality and 33°C (91°F) produces approximately 6.4 wt-Hr/Lb. Combining this value with an overall load of 6.4kw and adjusting for the 17th leg results in a total flow requirement of 100 gph. Using the pump performance curve, figure 1 of enclosure 4, a maximum allowable design pressure of 7.6 psi was extracted and used to determine the orifice sizes. As shown in figure 2 of enclosure 4, a minimum of 5.9 gph of R-134a at 33°C is required for each leg. However, in practice with off-the-shelf orifices, the flows ranged from 6.6 to 7.5 gph, thus, resulting in a maximum vapor quality of 27%. The assembled system integrated into Compaq GS-320 19” cabinet is shown in enclosure 5. Note both air and liquid condensers included. Coefficient-of-Performance (COP) test results range from 17 to 100+

4. Discussion of Results

for air and liquid cooled condenser, respectively. To determine the thermal performance of the heat exchanger a heat balance was performed. Two 2” x2” film heaters simulate the package envelope, dissipating 200 wt each. They were mounted to the cold plate via an indium/gallium amalgam interface material. Thermal insulation was placed over the heaters to eliminates loses. Input power, flow, and critical temperatures were measured. The resulting maximum heat transfer coefficient extrapolated from the data was 0.011°C/wt. Enclosure 6 summarizes the data used to evaluate the analysis.

Test data from twenty-one (21) separate tests were used to statistically determine the heat exchanger’s sink-to-case thermal resistance. Values ranged from of 0.009 °C/wt to 0.011°C/wt. Enclosure 5 shows the proof-of-concept system integrated into a typical Enterprise cabinet. The design requires approximately 5% of the cabinet volume and doesn’t encroach into the sensitive electronics envelope. Not show, is the design strategy that allows for quickly hot swapping a board using quick disconnects (reference c) By operating the system at 33 °C ambient, condensation issues are avoided. Any leakage takes the form of a non-contaminating gas. The 1/20 HP motor-hermetic pump moves 6.4 kW at 33 °C and has a documented minimum MTBS of 50,000 hours (reference d). Control is inherent in the

Page 62: Enterprise High Desity Cooling

62

design. R-134a operating temperatures are managed by the condenser performance, and load variability is managed at the receiver/separator. Coefficient of performance (COP) values range from 17 to 100+ for air and liquid cooled condensers, respectively. The only difference between the two is the fan power needed for the air-cooled condenser.

Page 63: Enterprise High Desity Cooling

63

Page 64: Enterprise High Desity Cooling

64

Page 65: Enterprise High Desity Cooling

65

Page 66: Enterprise High Desity Cooling

66

Page 67: Enterprise High Desity Cooling

67