of 25 /25
Entanglement of formation for some special two-mode Gaussian states Paulina Marian & Tudor A. Marian Centre for Advanced Quantum Physics University of Bucharest, Romania QMath10 – p.1/25

wtyru1989
• Category

## Technology

• view

136

2

### Transcript of Entanglement of formation

Entanglement of formationfor some special two-mode Gaussian states

Paulina Marian & Tudor A. Marian

University of Bucharest, Romania

QMath10 – p.1/25

Outline

Undisplaced two-mode Gaussian states (TMGS’s)

Uncertainty relations

Non-classicality & inseparability

Entanglement of Formation (EoF)

Continuous-variable pure-state decompositions

Gaussian Entanglement of Formation (GEoF)

Factorization of the characteristic functions (CF’s)

Properties of the added classical state

Manipulating the GEoF equations

Explicit evaluations

Conclusions: is GEoF=EoF?QMath10 – p.2/25

Two-mode Gaussian states (TMGS’s)

• Density operatorρG.

• Characteristic function (CF):

χG(x) = exp

(

−1

2xTVx

)

,

with xT denoting a real row vector(x1 x2 x3 x4)andV the4× 4 covariance matrix (CM).

• A TMGS is fully described by its CM:

ρG ←→ χG(x)←→ V.

QMath10 – p.3/25

Scaled standard forms

• Equivalence class of locally similar TMGS’s:

S = S1 ⊕ S2, S ∈ Sp(2, R)× Sp(2, R)

→ U(S) = U1(S1)⊗ U2(S2).

• Consider two independent one-mode squeeze factors

u1 = exp (2r1), u2 = exp (2r2).

• CM of a scaled standard stateρ(u1, u2):

V(u1, u2) =

b1u1 0 c√

u1u2 0

0 b1/u1 0 d/√

u1u2

c√

u1u2 0 b2u2 0

0 d/√

u1u2 0 b2/u2

.

QMath10 – p.4/25

Uncertainty relations

• Standard form I (unscaled):VI := V(1, 1).• Robertson-Schrödinger uncertainty relations:

V +i

2Ω ≥ 0, Ω := i

(

2⊕

j=1

σ2

)

equivalent to :

b1 ≥ 1/2, b2(b1b2 − c2)− b1

4≥ 0,

b2 ≥ 1/2, b1(b1b2 − c2)− b2

4≥ 0,

(κ2− − 1/4)(κ2

+ − 1/4) ≥ 0.

(κ−, κ+ are the symplectic eigenvalues).QMath10 – p.5/25

Non-classicality

• Classicality of a scaled standard state:

V(u1, u2) ≥1

2I4 equivalent to

u1 ≤ 2b1, u2 ≤ 2b2,

(b1u1 −1

2)(b2u2 −

1

2) ≥ c2u1u2,

(b1/u1 −1

2)(b2/u2 −

1

2) ≥ d2/(u1u2).

•Non-classical state←→Matrix condition not fulfilled.QMath10 – p.6/25

Inseparability

R. Simon’s separability criterion (2000):

• TMGS’s withd ≥ 0 are separable.

• for d < 0, one has to check the sign of the invariant

S(ρG) = (b1b2 − c2)(b1b2 − d2)− 1

4(b2

1 + b22 + 2c|d|) +

1

16that can be written as

S(ρG) = (κ2− − 1/4)(κ2

+ − 1/4).

Entangled TMGS’s fulfil the condition

S(ρG) < 0.

QMath10 – p.7/25

EPR approach

Duanet al.(2000)introduced a scaled standard state forwhich the separability and classicality conditionscoincide.Standard form II of the CM (separability=classicality):

VII := V(v1, v2)

with v1, v2 satisfying the algebraic system

b1(v21 − 1)

2b1 − v1=

b2(v22 − 1)

2b2 − v2,

b1b2(v21 − 1)(v2

2 − 1) = (cv1v2 − |d|)2.

QMath10 – p.8/25

Squeezed vacuum states (SVS’s)

The standard-form CMVI of an entangled pure TMGShas the property

det(VI +i

2Ω) = 0

as a product of two vanishing factors−→b1 = b2 = b, d = −c < 0, b2 − c2 = 1/4.

This state is a SVS and has minimal symplecticeigenvalues:

κ− = κ+ = 1/2.

The smallest symplectic eigenvalue ofV ←→ ρPT2G is

κ− = b− c <1

2.

QMath10 – p.9/25

Entanglement of formation (EoF)

Pure-state decompositions of a mixed stateρ:

ρ =∑

k

pk|Ψk〉〈Ψk|,∑

k

pk = 1.

EoF of a mixed bipartite state(Bennettet al., 1996):

EoF (ρ) := infpk

k

pkE0(|Ψk〉〈Ψk|),

whereE0(|Ψk〉〈Ψk|) is any acceptable measure of pure-state entanglement.

QMath10 – p.10/25

Two-field superpositions

• Glauber (1963):superpositionρS of two fields

ρS =

d2βP2(β)D(β)ρ1D†(β)

whereD(α) := exp (αa† − α∗a) is a Weyl displacementoperator,a is a photon annihilation operator;ρ1 is a one-mode field state andP2(β) denotes thePrepresentation of a classical one-mode field stateρ2.• Equivalent formulation(Marian & Marian, 1996):

χ(N)S (λ) = χ

(N)1 (λ)χ

(N)2 (λ);

χ(N) denotes the normally-ordered CF.QMath10 – p.11/25

Gaussian EoF

• A pure-state decomposition of a mixed TMGS is

ρG =

d2β1d2β2P (β1, β2)D1(β1)D2(β2)ρ0D

†2(β2)D

†1(β1),

whereρ0 is a pure TMGS.The most generalρ0, which is a scaled SVS, wasemployed byWolf et al. (2003)−→Gaussian EoF(GEoF):

GEoF (ρG) = E(ρoptimal0 ).

• Main problem: find the optimal decomposition(=determineρ0 having the minimal entanglement).• Giedkeet al. (2003)evaluated the exact EoFfor symmetric TMGS’s (b1 = b2).

QMath10 – p.12/25

Our work

• exploit the factorization formula of the CF’s

χG(λ1, λ2) = χ0(λ1, λ2)χcl(λ1, λ2) exp

(

−|λ1|22− |λ2|2

2

)

.

• chooseχ0(λ1, λ2) to be a SVS with the CM

V0 =

x 0 y 0

0 x 0 −y

y 0 x 0

0 −y 0 x

, x2 − y2 = 1/4.

QMath10 – p.13/25

Relation between CM’s

Reason forV0: A SVS is the pure state with minimalentanglement at a given EPR correlation(Giedkeet al.,2003).

∆EPR = 2(x− y)

• Gaussianχ0(λ1, λ2)←→ Gaussianχcl(λ1, λ2).

• For any pure-state decomposition of the TMGSρ

V = V0 + Vcl −1

2I4.

QMath10 – p.14/25

Variables

For any entangled TMGSd = −|d| < 0.

V =

b1u1 0 c√

u1u2 0

0 b1/u1 0 −|d|/√u1u2

c√

u1u2 0 b2u2 0

0 −|d|/√u1u2 0 b2/u2

.

• Given parameters:b1, b2, c, |d|, (|d| ≤ c).

• Any measure of pure-state entanglement is amonotonous function ofx −→ we have to find the min-imal value ofx as a function of the variablesu1, u2.

QMath10 – p.15/25

Analytical method

• concentrate on the added classical stateVcl.First step: Towards the optimal pure-statedecomposition,Vcl should reachthe classicalitythreshold

det(Vcl −1

2I4) = 0

as a product of two vanishing factors:

(b1u1 − x)(b2u2 − x) = (c√

u1u2 − y)2,

(b1/u1 − x)(b2/u2 − x) = (|d|/√u1u2 − y)2.

(derived byWolf et al. (2003)on different grounds).

QMath10 – p.16/25

Nature of Vcl

Second step: By minimization of the functionx(u1, u2),we proved that in the optimal pure-state decomposition,Vcl is also atthe separability threshold:

S(ρcl) = 0,

i.e.,Vcl has the standard form II:

b1u1 − x

b1/u1 − x=

b2u2 − x

b2/u2 − x,

b1b2(u21 − 1)(u2

2 − 1) = (cu1u2 − |d|)2.

QMath10 – p.17/25

EoF equations

System of algebraic equations with four unknowns:

(b1w1 − x)(b2w2 − x) = (c√

w1w2 − y)2,

(b1/w1 − x)(b2/w2 − x) = (|d|/√w1w2 − y)2,

b1w1 − x

b1/w1 − x=

b2w2 − x

b2/w2 − x,

b1b2(w21 − 1)(w2

2 − 1) = (cw1w2 − |d|)2,

x2 − y2 = 1/4.

Solution only in some particular cases.QMath10 – p.18/25

Symmetric TMGS’s

b1 = b2 = b −→ κ− =√

(b− c)(b− |d|).

Results

w1 = w2 =

b− |d|b− c

,

x =κ2− + 1/4

2κ−;

x− y = κ−.

x is a function ofκ− only that coincides with its expres-sion for the exact EoF(Giedkeet al., 2003).

QMath10 – p.19/25

STS’s

c = |d| −→ κ− =1

2[b1 + b2 −

(b1 − b2)2 + 4c2].

• important mixed states used as two-mode resource inquantum teleportation of one-mode states.• proved to have the maximal negativity at fixed localpurities:Adessoet al. (2004,2005).

Resultsw1 = w2 = 1,

x =(b1 + b2)(b1b2 − c2 + 1/4)− 2c

det(V + i2Ω)

(b1 + b2)2 − 4c2:

x not depending onκ− only.QMath10 – p.20/25

States with κ− = 1/2

• Mixed TMGS’s with

det(V +i

2Ω) = 0 ←→ κ− = 1/2;

• proved to have minimal negativity at fixed local andglobal purities:Adessoet al. (2004,2005).

Resultsdepending on a parameter inequality,as follows.

QMath10 – p.21/25

States with κ− = 1/2

I. b1 > b2, c > |d|, b2c ≤ b1|d| :

w1 =

[

b2(b1b2 − d2)− b1/4

b2(b1b2 − c2)− b1/4

]1/2

,

w2 =

[

b1(b1b2 − d2)− b2/4

b1(b1b2 − c2)− b2/4

]1/2

,

x =b21 − b2

2

8(det(V)− 1/16).

QMath10 – p.22/25

States with κ− = 1/2

II. b1 > b2, c > |d|, b2c > b1|d| :

w1 = 2

b1

b2(b1b2 − d2),

w2 = 2

b2

b1(b1b2 − d2),

x =1

2

b1b2

b1b2 − d2.

QMath10 – p.23/25

Conclusions I

We have reformulated the problem of GEoF in termsof CF’s and CM’s.

The added classical state is at the classicality andseparability threshold as well: its CM has the standardform II.

We have retrieved in a unitary way previous results forsome important classes of entangled TMGS’s.

General case hard to be exploited analytically.Work in progress.

QMath10 – p.24/25

Conclusions II

The GEoF built with the Bures metric is proved tocoincide with the Bures entanglement forsymmetricTMGS’s, as well as forSTS’s.

Main question: Is GEoF=EoF?