Entanglement and secret-key-agreement capacities of...

52
Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices Siddhartha Das 1* Stefan B¨ auml 2 Mark M. Wilde 1 1 Louisiana State University, USA 2 Delft University of Technology, Netherlands & NTT Japan * [email protected] arXiv:1712.00827 8 th International Conference on Quantum Cryptography, Shanghai, China Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 1 / 16

Transcript of Entanglement and secret-key-agreement capacities of...

Page 1: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement and secret-key-agreement capacities ofbipartite quantum interactions and read-only memory devices

Siddhartha Das 1* Stefan Bauml 2 Mark M. Wilde 1

1Louisiana State University, USA

2Delft University of Technology, Netherlands & NTT Japan

[email protected]

arXiv:1712.00827

8th International Conference on Quantum Cryptography, Shanghai, China

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 1 / 16

Page 2: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due tounavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

E'A'

B'

EA

B

Figure: Systems of interest A′ and B′ interacting inpresence of the bath E ′.

U is unitary transformationcorresponding to underlyinginteraction Hamiltonian H amongA′,B′,E ′.Before action of interactionHamiltonian H: ωA′B′ ⊗ τE ′ , wherebath E ′ is in some fixed state anduncorrelated to A′B′.After action of H:

ρABE := UA′B′E ′→ABE (ωA′B′ ⊗ τE ′).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 2 / 16

Page 3: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due tounavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

E'A'

B'

EA

B

Figure: Systems of interest A′ and B′ interacting inpresence of the bath E ′.

U is unitary transformationcorresponding to underlyinginteraction Hamiltonian H amongA′,B′,E ′.Before action of interactionHamiltonian H: ωA′B′ ⊗ τE ′ , wherebath E ′ is in some fixed state anduncorrelated to A′B′.After action of H:

ρABE := UA′B′E ′→ABE (ωA′B′ ⊗ τE ′).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 2 / 16

Page 4: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due tounavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

E'A'

B'

EA

B

Figure: Systems of interest A′ and B′ interacting inpresence of the bath E ′.

U is unitary transformationcorresponding to underlyinginteraction Hamiltonian H amongA′,B′,E ′.Before action of interactionHamiltonian H: ωA′B′ ⊗ τE ′ , wherebath E ′ is in some fixed state anduncorrelated to A′B′.After action of H:

ρABE := UA′B′E ′→ABE (ωA′B′ ⊗ τE ′).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 2 / 16

Page 5: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due tounavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

E'A'

B'

EA

B

Figure: Systems of interest A′ and B′ interacting inpresence of the bath E ′.

U is unitary transformationcorresponding to underlyinginteraction Hamiltonian H amongA′,B′,E ′.Before action of interactionHamiltonian H: ωA′B′ ⊗ τE ′ , wherebath E ′ is in some fixed state anduncorrelated to A′B′.After action of H:

ρABE := UA′B′E ′→ABE (ωA′B′ ⊗ τE ′).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 2 / 16

Page 6: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bidirectional quantum channelA bipartite quantum channel NA′B′→AB is a completely positive, trace-preserving map thattransforms composite system A′B′ to AB.

A'

B'

A

BFigure: Two parties of interest: Alice holds A′,Aand Bob holds B′,B.

When A′,A are held by Alice andB′,B are held by Bob, bipartitechannel N is called bidirectionalchannel.It corresponds to noisy bipartiteinteraction, when bath is inaccessible.For all input state ωA′B′ :

N (ωA′B′) = ρAB, whereρAB := TrE{UA′B′E ′→ABE (ωA′B′ ⊗ τE ′)},

when initial state τE ′ of bath is fixed.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 3 / 16

Page 7: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bidirectional quantum channelA bipartite quantum channel NA′B′→AB is a completely positive, trace-preserving map thattransforms composite system A′B′ to AB.

A'

B'

A

BFigure: Two parties of interest: Alice holds A′,Aand Bob holds B′,B.

When A′,A are held by Alice andB′,B are held by Bob, bipartitechannel N is called bidirectionalchannel.It corresponds to noisy bipartiteinteraction, when bath is inaccessible.For all input state ωA′B′ :

N (ωA′B′) = ρAB, whereρAB := TrE{UA′B′E ′→ABE (ωA′B′ ⊗ τE ′)},

when initial state τE ′ of bath is fixed.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 3 / 16

Page 8: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Bidirectional quantum channelA bipartite quantum channel NA′B′→AB is a completely positive, trace-preserving map thattransforms composite system A′B′ to AB.

A'

B'

A

BFigure: Two parties of interest: Alice holds A′,Aand Bob holds B′,B.

When A′,A are held by Alice andB′,B are held by Bob, bipartitechannel N is called bidirectionalchannel.It corresponds to noisy bipartiteinteraction, when bath is inaccessible.For all input state ωA′B′ :

N (ωA′B′) = ρAB, whereρAB := TrE{UA′B′E ′→ABE (ωA′B′ ⊗ τE ′)},

when initial state τE ′ of bath is fixed.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 3 / 16

Page 9: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Motivation

Bidirectional channels:Simple model of quantum network with 2 clients, Alice and Bob.Model for quantum gates – CNOT, SWAP, etc.– in noisy intermediate-scale quantum(NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.

Entanglement distillation: Maximally entangled states are useful resource for severalinformation processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties overnetwork – private reading.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 4 / 16

Page 10: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Motivation

Bidirectional channels:Simple model of quantum network with 2 clients, Alice and Bob.Model for quantum gates – CNOT, SWAP, etc.– in noisy intermediate-scale quantum(NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.

Entanglement distillation: Maximally entangled states are useful resource for severalinformation processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties overnetwork – private reading.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 4 / 16

Page 11: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Motivation

Bidirectional channels:Simple model of quantum network with 2 clients, Alice and Bob.Model for quantum gates – CNOT, SWAP, etc.– in noisy intermediate-scale quantum(NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.

Entanglement distillation: Maximally entangled states are useful resource for severalinformation processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties overnetwork – private reading.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 4 / 16

Page 12: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Motivation

Bidirectional channels:Simple model of quantum network with 2 clients, Alice and Bob.Model for quantum gates – CNOT, SWAP, etc.– in noisy intermediate-scale quantum(NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.

Entanglement distillation: Maximally entangled states are useful resource for severalinformation processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties overnetwork – private reading.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 4 / 16

Page 13: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Motivation

Bidirectional channels:Simple model of quantum network with 2 clients, Alice and Bob.Model for quantum gates – CNOT, SWAP, etc.– in noisy intermediate-scale quantum(NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.

Entanglement distillation: Maximally entangled states are useful resource for severalinformation processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties overnetwork – private reading.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 4 / 16

Page 14: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Goal

Two different information-processing tasks relevant for bipartite quantum interactions:

1 Entanglement distillation: generation of singlet state from two separated systems.

2 Secret key agreement: generation of maximal classical correlation between two separatedsystems, such that there’s no correlation with the bath.

New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel N for a task: Maximum rate at which a given task canbe accomplished by allowing the use of N a finite number of times.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 5 / 16

Page 15: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Goal

Two different information-processing tasks relevant for bipartite quantum interactions:

1 Entanglement distillation: generation of singlet state from two separated systems.

2 Secret key agreement: generation of maximal classical correlation between two separatedsystems, such that there’s no correlation with the bath.

New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel N for a task: Maximum rate at which a given task canbe accomplished by allowing the use of N a finite number of times.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 5 / 16

Page 16: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Goal

Two different information-processing tasks relevant for bipartite quantum interactions:

1 Entanglement distillation: generation of singlet state from two separated systems.

2 Secret key agreement: generation of maximal classical correlation between two separatedsystems, such that there’s no correlation with the bath.

New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel N for a task: Maximum rate at which a given task canbe accomplished by allowing the use of N a finite number of times.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 5 / 16

Page 17: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Goal

Two different information-processing tasks relevant for bipartite quantum interactions:

1 Entanglement distillation: generation of singlet state from two separated systems.

2 Secret key agreement: generation of maximal classical correlation between two separatedsystems, such that there’s no correlation with the bath.

New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel N for a task: Maximum rate at which a given task canbe accomplished by allowing the use of N a finite number of times.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 5 / 16

Page 18: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Goal

Two different information-processing tasks relevant for bipartite quantum interactions:

1 Entanglement distillation: generation of singlet state from two separated systems.

2 Secret key agreement: generation of maximal classical correlation between two separatedsystems, such that there’s no correlation with the bath.

New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel N for a task: Maximum rate at which a given task canbe accomplished by allowing the use of N a finite number of times.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 5 / 16

Page 19: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

LOCC-assisted bidirectional secret-key-agreement capacity [P2→2LOCC (NA′B′→AB).]

Bidirectional max-relative entropy of entanglement:

E 2→2max (NA′B′→AB) = sup

ψSAA′⊗ϕB′SB

Emax(SAA; BSB)N (ψ⊗ϕ),

where ψSAA′ , ϕB′SB are pure states, SA ' A′,SB ' B′,Emax(A : B)ρ = minσAB∈SEP Dmax(ρ‖σ), such that Dmax(ρ‖σ) = inf{λ : ρ ≤ 2λσ}.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 6 / 16

Page 20: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

LOCC-assisted bidirectional secret-key-agreement capacity [P2→2LOCC (NA′B′→AB).]

Bidirectional max-relative entropy of entanglement:

E 2→2max (NA′B′→AB) = sup

ψSAA′⊗ϕB′SB

Emax(SAA; BSB)N (ψ⊗ϕ),

where ψSAA′ , ϕB′SB are pure states, SA ' A′,SB ' B′,Emax(A : B)ρ = minσAB∈SEP Dmax(ρ‖σ), such that Dmax(ρ‖σ) = inf{λ : ρ ≤ 2λσ}.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 6 / 16

Page 21: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

LOCC-assisted bidirectional secret-key-agreement capacity [P2→2LOCC (NA′B′→AB).]

Bidirectional max-relative entropy of entanglement:

E 2→2max (NA′B′→AB) = sup

ψSAA′⊗ϕB′SB

Emax(SAA; BSB)N (ψ⊗ϕ),

where ψSAA′ , ϕB′SB are pure states, SA ' A′,SB ' B′,Emax(A : B)ρ = minσAB∈SEP Dmax(ρ‖σ), such that Dmax(ρ‖σ) = inf{λ : ρ ≤ 2λσ}.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 6 / 16

Page 22: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

Theorem (LOCC-assisted secret key agreement)1n log2 M ≤ E 2→2

max (N ) + 1n log2

( 11− ε

).

P2→2LOCC (NA′B′→AB) ≤ E 2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 7 / 16

Page 23: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

Theorem (LOCC-assisted secret key agreement)1n log2 M ≤ E 2→2

max (N ) + 1n log2

( 11− ε

).

P2→2LOCC (NA′B′→AB) ≤ E 2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 7 / 16

Page 24: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Secret key generation over bidirectional channel

LOCC LOCC LOCC LOCC LOCC

Theorem (LOCC-assisted secret key agreement)1n log2 M ≤ E 2→2

max (N ) + 1n log2

( 11− ε

).

P2→2LOCC (NA′B′→AB) ≤ E 2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 7 / 16

Page 25: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Proof outline: Secret key generation

LOCC LOCC LOCC LOCC LOCC

Private states [HHHO05,HHHO09]: State γSAKA:KBSB containing log2 K private bits.

Success probability in privacy test: Tr {Πγω} ≥ 1− ε. By [HHHO05,HHHO09],Tr {Πγσ} ≤ 1

K for σ ∈ SEP.

Main observation: E 2→2max is not enhanced by amortization.

Emax(SAA; BSB)σ ≤ Emax(SAA′; B′SB)ρ + E 2→2max (NA′B′→AB),

where σSAABSB = NA′B′→AB(ρSAA′B′SB ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 8 / 16

Page 26: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Proof outline: Secret key generation

LOCC LOCC LOCC LOCC LOCC

Private states [HHHO05,HHHO09]: State γSAKA:KBSB containing log2 K private bits.

Success probability in privacy test: Tr {Πγω} ≥ 1− ε. By [HHHO05,HHHO09],Tr {Πγσ} ≤ 1

K for σ ∈ SEP.

Main observation: E 2→2max is not enhanced by amortization.

Emax(SAA; BSB)σ ≤ Emax(SAA′; B′SB)ρ + E 2→2max (NA′B′→AB),

where σSAABSB = NA′B′→AB(ρSAA′B′SB ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 8 / 16

Page 27: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Proof outline: Secret key generation

LOCC LOCC LOCC LOCC LOCC

Private states [HHHO05,HHHO09]: State γSAKA:KBSB containing log2 K private bits.

Success probability in privacy test: Tr {Πγω} ≥ 1− ε. By [HHHO05,HHHO09],Tr {Πγσ} ≤ 1

K for σ ∈ SEP.

Main observation: E 2→2max is not enhanced by amortization.

Emax(SAA; BSB)σ ≤ Emax(SAA′; B′SB)ρ + E 2→2max (NA′B′→AB),

where σSAABSB = NA′B′→AB(ρSAA′B′SB ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 8 / 16

Page 28: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Proof outline: Secret key generation

LOCC LOCC LOCC LOCC LOCC

Private states [HHHO05,HHHO09]: State γSAKA:KBSB containing log2 K private bits.

Success probability in privacy test: Tr {Πγω} ≥ 1− ε. By [HHHO05,HHHO09],Tr {Πγσ} ≤ 1

K for σ ∈ SEP.

Main observation: E 2→2max is not enhanced by amortization.

Emax(SAA; BSB)σ ≤ Emax(SAA′; B′SB)ρ + E 2→2max (NA′B′→AB),

where σSAABSB = NA′B′→AB(ρSAA′B′SB ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 8 / 16

Page 29: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

PPT-assisted bidirectional quantum capacity[Q2→2

PPT (NA′B′→AB).]

Bidirectional max-Rains Information[R2→2

max (NA′B′→AB) = log Γ2→2(NA′B′→AB)], where

Γ2→2(NA′B′→AB) = minimize ‖TrAB{VSAABSB + YSAABSB}‖∞subject to VSAABSB ,YSAABSB ≥ 0,

TBSB{VSAABSB − YSAABSB} ≥ JNSAABSB ,

such that SA ' A′, SB ' B′.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 9 / 16

Page 30: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

PPT-assisted bidirectional quantum capacity[Q2→2

PPT (NA′B′→AB).]

Bidirectional max-Rains Information[R2→2

max (NA′B′→AB) = log Γ2→2(NA′B′→AB)], where

Γ2→2(NA′B′→AB) = minimize ‖TrAB{VSAABSB + YSAABSB}‖∞subject to VSAABSB ,YSAABSB ≥ 0,

TBSB{VSAABSB − YSAABSB} ≥ JNSAABSB ,

such that SA ' A′, SB ' B′.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 9 / 16

Page 31: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

PPT-assisted bidirectional quantum capacity[Q2→2

PPT (NA′B′→AB).]

Bidirectional max-Rains Information[R2→2

max (NA′B′→AB) = log Γ2→2(NA′B′→AB)], where

Γ2→2(NA′B′→AB) = minimize ‖TrAB{VSAABSB + YSAABSB}‖∞subject to VSAABSB ,YSAABSB ≥ 0,

TBSB{VSAABSB − YSAABSB} ≥ JNSAABSB ,

such that SA ' A′, SB ' B′.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 9 / 16

Page 32: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

PPT-assisted bidirectional quantum capacity[Q2→2

PPT (NA′B′→AB).]

Bidirectional max-Rains Information[R2→2

max (NA′B′→AB) = log Γ2→2(NA′B′→AB)], where

Γ2→2(NA′B′→AB) = minimize ‖TrAB{VSAABSB + YSAABSB}‖∞subject to VSAABSB ,YSAABSB ≥ 0,

TBSB{VSAABSB − YSAABSB} ≥ JNSAABSB ,

such that SA ' A′, SB ' B′.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 9 / 16

Page 33: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

Theorem (PPT-assisted distillable entanglement generation)1n log2 M ≤ R2→2

max (N ) + 1n log2

( 11− ε

).

Q2→2PPT (NA′B′→AB) ≤ R2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 10 / 16

Page 34: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

Theorem (PPT-assisted distillable entanglement generation)1n log2 M ≤ R2→2

max (N ) + 1n log2

( 11− ε

).

Q2→2PPT (NA′B′→AB) ≤ R2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 10 / 16

Page 35: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Entanglement generation over bidirectional channel

N

LA

LB

B’2 B2A’2

N

LA2

A2

LB2

PPT-PB’1 B1A’1

PPT-PPPT-P N B’ B

APPT-PPPT-P

n

n n

AM

BM

LA1

A1

LB1

A’nn

n

Theorem (PPT-assisted distillable entanglement generation)1n log2 M ≤ R2→2

max (N ) + 1n log2

( 11− ε

).

Q2→2PPT (NA′B′→AB) ≤ R2→2

max (NA′B′→AB), and this upper bound is in fact a strong conversebound.

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 10 / 16

Page 36: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private ReadingFirst recall: (Quantum) Reading [BRV00,Pir11] of memory devices.Memory device: message encoded into a sequence of channels from a memory cellSX = {N x

B′→B}x∈X .Alice encodes m ∈M into codewords (x1(m), ..., xn(m)), and sets the device to(N x1(m)

B′→B, ...,Nxn(m)B′→B

).

Bob can enter quantum states and do channel discrimination to learn m. Natural toemploy adaptive strategy [DW17].

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 11 / 16

Page 37: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private ReadingFirst recall: (Quantum) Reading [BRV00,Pir11] of memory devices.Memory device: message encoded into a sequence of channels from a memory cellSX = {N x

B′→B}x∈X .Alice encodes m ∈M into codewords (x1(m), ..., xn(m)), and sets the device to(N x1(m)

B′→B, ...,Nxn(m)B′→B

).

Bob can enter quantum states and do channel discrimination to learn m. Natural toemploy adaptive strategy [DW17].

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 11 / 16

Page 38: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private ReadingFirst recall: (Quantum) Reading [BRV00,Pir11] of memory devices.Memory device: message encoded into a sequence of channels from a memory cellSX = {N x

B′→B}x∈X .Alice encodes m ∈M into codewords (x1(m), ..., xn(m)), and sets the device to(N x1(m)

B′→B, ...,Nxn(m)B′→B

).

Bob can enter quantum states and do channel discrimination to learn m. Natural toemploy adaptive strategy [DW17].

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 11 / 16

Page 39: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private ReadingFirst recall: (Quantum) Reading [BRV00,Pir11] of memory devices.Memory device: message encoded into a sequence of channels from a memory cellSX = {N x

B′→B}x∈X .Alice encodes m ∈M into codewords (x1(m), ..., xn(m)), and sets the device to(N x1(m)

B′→B, ...,Nxn(m)B′→B

).

Bob can enter quantum states and do channel discrimination to learn m. Natural toemploy adaptive strategy [DW17].

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 11 / 16

Page 40: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(MX

)= sup

nmax

pXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 12 / 16

Page 41: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(MX

)= sup

nmax

pXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 12 / 16

Page 42: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(SX)

= supn

maxpXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 13 / 16

Page 43: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(SX)

= supn

maxpXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 13 / 16

Page 44: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(SX)

= supn

maxpXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 13 / 16

Page 45: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Application: Private Reading

E3E2 êk

B3B’3B’2B1x1(k)MB’1 B2

A1

x2(k)M

A2

x3(k)M

L L L

E1

B1 B2 B3

Private reading: Eve present when Bob performs the readout: Wiretap memory cellSX = {Mx

B′→BE}x∈X . Special case: Isometric wiretap memory cell S isoX .

The non-adaptive private reading capacity of a wiretap memory cell SX is given by

P readn-a

(SX)

= supn

maxpXn ,σLBB′n

1n [I(Xn; LBBn)τ − I(Xn; En)τ ] ,

where τXnLBBnEn :=∑

xn pXn (xn)|xn〉〈xn|Xn ⊗MxnB′n→BnEn (σLBB′n ).

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 13 / 16

Page 46: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Private reading capacity

The strong converse private reading capacity P read(S isoX ) of an isometric wiretap memory cell

S isoX = {UMx

B′→BE}x∈X is bounded from above as

P read(S isoX ) ≤ E 2→2

max (N SXB′→XB),

whereN SXB′→XB(·) := TrE

{U SXB′→XBE (·)

(U SXB′→XBE

)†},

such thatU SXB′→XBE :=

∑x∈X|x〉〈x |X ⊗ UMx

B′→BE .

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 14 / 16

Page 47: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Conclusion

We derived upper bounds on entanglement generation and secret-key-agreementcapacities over bidirectional channels. Sizes of reference systems are same as size of inputsystems (Open question in [BHLS03]).

Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].

Introduced secure protocol for reading of memory devices under scrutiny of aneavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

[DBW17] arXiv : 1712.00827

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 15 / 16

Page 48: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Conclusion

We derived upper bounds on entanglement generation and secret-key-agreementcapacities over bidirectional channels. Sizes of reference systems are same as size of inputsystems (Open question in [BHLS03]).

Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].

Introduced secure protocol for reading of memory devices under scrutiny of aneavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

[DBW17] arXiv : 1712.00827

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 15 / 16

Page 49: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Conclusion

We derived upper bounds on entanglement generation and secret-key-agreementcapacities over bidirectional channels. Sizes of reference systems are same as size of inputsystems (Open question in [BHLS03]).

Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].

Introduced secure protocol for reading of memory devices under scrutiny of aneavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

[DBW17] arXiv : 1712.00827

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 15 / 16

Page 50: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

Conclusion

We derived upper bounds on entanglement generation and secret-key-agreementcapacities over bidirectional channels. Sizes of reference systems are same as size of inputsystems (Open question in [BHLS03]).

Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].

Introduced secure protocol for reading of memory devices under scrutiny of aneavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

[DBW17] arXiv : 1712.00827

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 15 / 16

Page 51: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

SWAP and Collective dephasing

0 0.2 0.4 0.6 0.8 1p

1

1.2

1.4

1.6

1.8

2

R2-

2m

ax

Collective Dephasing

2

2 /3/2

2 /5/3

2 /7/4

Collective dephasing: |00〉 → |00〉,|01〉 → eiφ|01〉, |10〉 → eiφ|10〉,|11〉 → e2iφ|11〉.Swap operator S =

∑ij |ij〉〈ji | and

collective dephasing:

NA′B′→AB(ρ)=pSρS† + (1− p)UφSρS†Uφ†

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 16 / 16

Page 52: Entanglement and secret-key-agreement capacities of ...2018.qcrypt.net/wp-content/uploads/2018/slides/Monday/08.Siddhartha Das.pdfSiddhartha Das 1* Stefan B¨auml 2 Mark M. Wilde 1

SWAP and Collective dephasing

0 0.2 0.4 0.6 0.8 1p

1

1.2

1.4

1.6

1.8

2

R2-

2m

ax

Collective Dephasing

2

2 /3/2

2 /5/3

2 /7/4

Collective dephasing: |00〉 → |00〉,|01〉 → eiφ|01〉, |10〉 → eiφ|10〉,|11〉 → e2iφ|11〉.Swap operator S =

∑ij |ij〉〈ji | and

collective dephasing:

NA′B′→AB(ρ)=pSρS† + (1− p)UφSρS†Uφ†

Siddhartha Das (QST@LSU) Bipartite quantum interactions QCrypt ’18 16 / 16