Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1!...

47
Engineering a Ni(II)independent NikR to determine the role of the α3helix in the mechanism of Ni(II)activated DNA binding by Mauli Thakkar A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Chemistry University of Toronto © Copyright by Mauli Thakkar 2015

Transcript of Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1!...

Page 1: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

       i  

 

Engineering  a  Ni(II)-­‐independent  NikR  to  determine  the  role  of  the  α3-­‐helix  in  the  mechanism  of  Ni(II)-­‐activated  DNA  binding  

by  

Mauli  Thakkar  

A  thesis  submitted  in  conformity  with  the  requirements  for  the  degree  of  Master  of  Science  Graduate  Department  of  Chemistry    

University  of  Toronto  

©  Copyright  by  Mauli  Thakkar  2015  

 

Page 2: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

ii  

ii  

Engineering  a  Ni(II)-­‐independent  NikR  to  determine  the  role  of  the  α3-­‐

helix  in  the  mechanism  of  Ni(II)-­‐activated  DNA  binding    

Mauli  Thakkar    

Master  of  Science    

Graduate  Department  of  Chemistry  University  of  Toronto  

 2015  

Abstract    

Intracellular  nickel  concentration  in  Escherichia  coli  is  controlled  by  a  transcription  

factor   called   NikR,   which   represses   the   nikABCDE   operon,   encoding   a   nickel   specific  

transporter.  The  crystal  structure  of  NikR-­‐DNA  complex  reveals  that  nickel  binding  in  the  

metal-­‐binding   domain   (MBD)   stabilize   α3-­‐helix   that   could   promote   DNA   binding.   To  

provide   biochemical   evidence   for   the   role   of   the   stabilized   α3-­‐helix   in   the   proposed  

mechanism,  the  goal  of  this  study  was  to  engineer  a  NikR  mutant  that  is  able  to  bind  to  the  

nik  promoter   in   the   absence   of   nickel.   To   achieve   this   goal,   two   cysteine   residues  were  

introduced  at  positions  70  and  77  in  the  MBD  of  NikR,  and  several  crosslinkers  were  used  

to   organize   the   α3-­‐helical   region.   The   presented   data   demonstrate   that   the   crosslinked  

variants   were   incapable   of   binding   DNA,   suggesting   that   either   the   α3-­‐helix   was   not  

sufficiently  stabilized  or  that  the  stabilized  α3-­‐helix  alone  is  not  sufficient  to  activate  DNA  

binding.  

 

 

 

Page 3: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

iii  

iii  

Acknowledgements    No  thesis  is  solely  the  work  of  one  person,  and  it  is  a  pleasure  to  thank  the  many  people  who  

made  this  thesis  possible.  

 

First   and   foremost,   I   acknowledge  with   immense  gratitude,  my   sincere  obligation   to  my  

supervisor,   Prof.   Deborah   Zamble,   for   her   kind   help,   excellent   guidance,   stimulating  

motivation,   infinite  patience,  and  for  her  confidence   in  me  throughout  this  study.   I  could  

not  have  imagined  having  a  better  advisor  and  mentor  for  my  graduate  studies.  Thank  you  

for  providing  me  an  opportunity  to  study  under  your  supervision.  It  was  truly  an  honor.    

 

I   am   very   much   grateful   to   Prof.   Jumi   Shin,   for   her   insightful   comments   and   advice   in  

writing  of  this  thesis.  Thank  you  kindly.  

 

I  sincerely  thank  Dr.  Matthew  Forbes,  for  the  genuine  interest  in  the  progress  of  my  work  

and  for  the  delightful  encouragement  and  generous  assistance  provided  by  him.    

 

My   appreciation   also   extends   to   my   seniors   and   fellow   laboratory   colleagues.   Your  

mentoring,  stimulating  debates,  wholehearted  co-­‐operation  and  help  during  the  course  of  

my  work  have  been  especially  valuable.  Thank  you  so  much.  

 

Above   ground,   I   am   indebted   to   my   mommy   and   daddy   for   their   profound   love   and  

boundless  support   in  whatever   I  pursue.  You  always  allowed  me   to  be  as  ambitious  as   I  

wanted  and  never  let  me  stray  from  my  goals.    Your  value  to  me  only  grows  with  age  and  I  

do  not  think  words  are  powerful  enough  to  express  my  gratitude  to  you.    

 

Lastly,  I  register  my  heartfelt  tribute  to  my  bestie,  Chintan.  Thank  you  for  always  standing  

by   my   side   and   supporting   me.   But   even   more   than   that,   thank   you   for   trusting   and  

believing  in  me,  even  when  I  couldn’t.  I  could  not  have  done  this  without  you!  

 

Mom,  Dad,  and  Chintan    

I  love  you  three  immensely,  and  with  my  warmest  affection,  I  dedicate  this  thesis  to  you.  

 

Page 4: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

iv  

iv  

Table  of  Contents    

Abstract                                              ii  

Acknowledgements                                    iii  

Table  of  Contents                                      iv  

List  of  Abbreviations                                      v  

List  of  Tables                                      vi  

List  of  Figures                                                              vii  

1.  Introduction                          1  

1.1  Role  and  Regulation  of  Nickel  in  Biological  Systems                                                                                                                        1  

1.2  Metal  Regulatory  Protein,  NikR     1  

1.3  Escherichia  coli  NikR     1  

1.4    Nickel  Induced  DNA  binding  by  NikR     4  

1.5  Purpose  of  Study     4  

1.6  Selection  of  Residues  to  be  Introduced     6  

1.7  Selection  of  Mutation  Site     6  

1.8  Selection  of  Crosslinkers     7  

2.  Experimental                          9  

2.1  Materials     9  

2.2  Methods     9  

3.  Results                  17  

3.1  Characterization  of  the  Nickel-­‐Binding  Abilities  of  the  NikR  Mutants     17  

3.2  Characterization  of  the  Secondary  Structure  of  the  NikR  Mutants     22  

3.3  Trypsin  and  Glu-­‐C  Protease  Digestion     25  

3.4  The  DNA-­‐Binding  Activities  of  the  NikR  Mutants  in  vitro     25  

4.  Discussion                  27  

5.  Conclusion  and  Future  Work                    32  

6.  References                    33  

7.  Appendix                  37  

 

Page 5: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

v  

v  

List  of  Abbreviations    

BSBCA:  3,3‘-­‐bis(sulfo)-­‐4,4‘-­‐bis(chloroacetamido)azobenzene  

BMH:  bis(maleimido)-­‐hexane  

BMOE:  bis(maleimido)-­‐ethane  

CD:  circular  dichroism  

DBD:  DNA-­‐binding  domain  

DTNB:  5,5'-­‐dithiobis-­‐(2-­‐nitrobenzoic  acid)  

DTT:  dithiothreitol  

E.  coli:  Escherichia  coli  

EDTA:  ethylenediaminetetraacetic  acid  

EMSA:  electrophoretic  mobility  shift  assay  

FPLC:  fast  protein  liquid  chromatography  

IGEPAL:  octylphenoxypolyethoxyethanol  

IPTG:  isopropyl-­‐β-­‐D-­‐thiogalactopyranoside  

LB:  lysogeny  broth  

MutNikR:  Mutant  (R70C/  H77C)  NikR  

MBD:  metal-­‐binding  domain  

MRE:  mean  residue  ellipticity  

NTA:  nitrilotriacetic  acid  

PAR:  4-­‐(2-­‐pyridylazo)resorcinol  

PDB:  protein  data  bank  

PCR:  polymerase  chain  reaction  

RHH:  ribbon-­‐helix-­‐helix    

SDS  PAGE:  sodium  dodecyl  sulfate  polyacrylamide  gel  electrophoresis    

TB:  tris-­‐borate    

TCEP:  tris(2-­‐carboxyethyl)phosphine  

Tris:  tris(hydroxymethyl)aminomethane  

 

 

 

 

 

Page 6: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

vi  

vi  

List  of  Tables    

Table  2-­‐1.  PCR  primers                     11  

Table  2-­‐2.  Calculated  and  observed  molecular  weights  of  WT  NikR  and  MutNikR  

Proteins                         12                                          

Table  2-­‐3.  Relevant  crosslinker  physical  data               15  

Table  3-­‐1.  Comparing  mean  residue  ellipticity  (MRE)  ratio  (between  208  nm  and  220  nm)  

of  NikR  proteins                       23  

                                                                     

 

Page 7: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

vii  

vii  

List  of  Figures    

Figure  1-­‐1.  Function  of  E.  coli  NikR                    2  

Figure  1-­‐2.  Ribbon  diagram  of  the  apo-­‐NikR  tetramer  colored  by  polypeptide  chain        3  

Figure  1-­‐3.  Structure  of  E.  coli  NikR  in  complex  with  DNA              3  

Figure  1-­‐4.  Proposed  mechanism  of  the  nickel-­‐selective  activation  of  E.  coli  NikR        5  

Figure  1-­‐5.  Structure  of  E.  coli  NikR  showing  positions  of  residues  selected  for    

mutation  in  the  α3  sequence                      6  

Figure  1-­‐6.  Chemical  structure  of  the  azobenzene  crosslinker,  3,3‘-­‐bis(sulfo)-­‐4,4‘-­‐

bis(chloroacetamido)azobenzene  (BSBCA)                  8  

Figure  1-­‐7.  Model  of  a  crosslinked  R70C/H77C  MutNikR              8  

Figure  3-­‐1.  Nickel  titration  and  difference  spectrum  of  WT  NikR         18  

Figure  3-­‐2.  Nickel  titration  and  difference  spectrum  of  MutNikR         20  

Figure  3-­‐3.  Nickel  titration  of  BMOE-­‐crosslinked  and  BMH-­‐crosslinked  MutNikR     21    

Figure  3-­‐4.  Circular  dichroism  spectra  of  WT  NikR  and  MutNikR  proteins       23  

Figure  3-­‐5.  Thermal  denaturation  of  apo-­‐MutNikR  monitored  by  circular  dichroism  

spectroscopy                         24  

Figure  3-­‐6.  in  vitro  DNA-­‐binding  activities  of  WT  NikR  and  MutNikR  in  excess  nickel  26  

Figure  3-­‐7.  in  vitro  DNA-­‐binding  activities  of  WT  NikR  and  MutNikR  in  the    

absence  of  nickel                       26  

Figure  4-­‐1.    A  model  showing  orientation  of  α3-­‐helix  and  α4-­‐helix  in  the  presence  of  

nickel                           30  

Figure  7-­‐1.  Mass  spectrum  of  WT  NikR  and  MutNikR             37  

Figure  7-­‐2.  Mass  spectrum  of  MutNikR  protein  crosslinked  with  the  azobenzene  

crosslinker  (BSBCA)                     38  

Figure  7-­‐3.  Mass  spectrum  of  MutNikR  protein  crosslinked  with  the  sulfhydryl    

crosslinkers                         39

 

Page 8: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

i  

i  

 

 

Page 9: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

       1  

1.  Introduction  

1.1 Role  and  Regulation  of  Nickel  in  Biological  Systems  

 

Nickel  is  an  essential  trace  element  required  by  many  bacteria,  fungi,  and  plants  for  a  

variety  of  biological  processes.1-­‐4  The  chemical  properties  of  nickel  provide  activities   for  

important  bacterial  enzymes,  making  it  indispensible  for  their  survival.5-­‐7  Despite  being  a  

vital   nutritional   requirement,   excess   nickel   can   replace   cognate  metals   in   iron   and   zinc  

enzymes,  induce  allosteric  inhibition  of  enzymes  or  can  activate  indirect  oxidative  stress,  

making   it   toxic.8,9   To   avoid   deleterious   buildup   of   nickel,   organisms   have   developed  

intricate  mechanisms  that  tightly  regulate  nickel  concentrations  in  the  cell.7,10,11  One  of  the  

mechanisms  involves  metal-­‐responsive  transcription  factors  that  regulate  genes  encoding  

the  metal  importing  proteins  in  response  to  direct  metal  binding.12  A  well-­‐studied  example  

of  such  a  nickel-­‐responsive  metalloregulator  is  NikR.13-­‐15  

1.2 Metal  Regulatory  Protein,  NikR  

 

A   nickel-­‐responsive   repressor   protein,   NikR   regulates   metal   homeostasis   at   the  

transcriptional   level.16,17   In   E.   coli,   higher   intracellular   nickel   concentrations   deactivate  

nickel  import  through  Ni2+-­‐NikR  mediated  repression  of  the  nikABCDE  operon,  encoding  a  

nickel-­‐specific   ATP-­‐binding   cassette   membrane   transporter   (Figure   1-­‐1).15-­‐17   NikR   is   a  

member  of  the  ribbon-­‐helix-­‐helix  (RHH)  family  of  DNA-­‐binding  proteins,  which  has  an  N-­‐

terminal  DNA-­‐binding  domain  (DBD)  and  a  C-­‐terminal  metal-­‐binding  domain  (MBD).18  The  

protein   is   a   functional   tetramer,   consisting   of   four   central   C-­‐terminal   MBD   in   the   core  

connected  to  two  flanking  RHH  DBDs  through  a  flexible  linker  (Figure  1-­‐2).19-­‐21    

1.3 Escherichia  coli  NikR  

 

E.   coli   NikR   can   bind   one   Ni(II)   per   monomer   with   KD   =   0.9   pM19,22   in   its   high-­‐

affinity  site  and  additional  Ni(II)  with  a  KD  ≈  30  nM  in  its  low-­‐affinity  site.23  The  two  sites  

allow  EcNikR  to  bind  to  the  palindromic  operator  sequence  (GTATGA-­‐N16-­‐TCATAC)  in  the  

nikABCDE   promoter   (Pnik)   with   two   different   affinities.   When   the   high-­‐affinity   site   is  

Page 10: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

2  

occupied   by   Ni(II),   EcNikR   can   bind   the   nik   promoter   with   KD   ~   5   nM19,23,24   and   this  

complex  tightens  to  KD  ~  20  pM  upon  binding  of  additional  Ni(II)  in  its  low-­‐affinity  site.23,24  

In   the  high-­‐affinity  site  of  EcNikR,   the  nickel   is  coordinated   in  a  square  planar  geometry  

with  His87,  His89  and  Cys95  from  one  monomer,  and  His76’   from  an  adjacent  monomer  

(Figure  1-­‐3).7,20,21,25  The   low-­‐affinity  site   is   less  well  defined,  but   it   is  believed  to   include  

His48  and  His110  and  nearby  carboxylate   ligands,   located  between   the  MBD  and  DBD.26  

The  importance  of  low-­‐affinity  site  is  not  clear,  and  this  study  will  focus  on  the  activity  of  

the  high-­‐affinity  site.  

                                   Figure   1-­‐1.   Function   of  E.   coli  NikR.   The  nickel-­‐binding  protein  NikA  binds  Ni2+  in   the  periplasm   and   transfers   it   to   the   permease   components,   NikB  &  NikC.   The  ATP-­‐binding  components  NikD  &  NikE  hydrolyze  ATP   to  provide   energy   for   the   transport   process   of  Ni(II)  across   the   inner  membrane.  When  nickel   is  available   in  excess,  nickel-­‐bound  NikR  represses  the  transcription  of  the  nikABCDE  and  of  its  own  gene,  which  is  downstream  of  the  nik  operon.  The  periplasmic  nickel-­‐binding  protein  (NikA)  and  the  gene  are  in  blue,  the  transmembrane  domains  of  the  ABC  transporter  and  genes  encoding  them  are  in  red,  the  cytoplasmic  ATP-­‐binding  proteins  and  genes  are  in  green,  the  NikR  regulatory  protein  and  gene  are   in  yellow  and  nickel   ions  are   in  orange.27  This   figure   is  adapted   from  reference  #27.  

Transcription  

Page 11: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

3  

 

 

Figure  1-­‐2.  Ribbon  diagram  of  the  apo-­‐NikR  tetramer  colored  by  polypeptide  chain  (PDB   1Q5V).   Domains   are   labeled   as   either   ribbon-­‐helix-­‐helix   (RHH)   domain   (DNA-­‐binding   domain)   or   Ni(II)-­‐regulatory   domain   (metal-­‐binding   domain).20   The   region  encoding   α3-­‐helix   is   not   resolved   in   three   out   of   four   monomers   (dashed   circles).   The  image  was  generated  using  Chimera.  

 

                             Figure  1-­‐3.  Structure  of  E.  coli  NikR  in  complex  with  DNA  (PDB  2HZV).  The  tetrameric  NikR  binds  four  Ni(II)  ions  in  a  square  planar  geometry  with  Cys95,  His87,  His89  from  one  monomer  and  His76’  from  an  adjacent  monomer.  Upon  Ni(II)  binding,  organization  of  the  α3-­‐helix  allows  for  non-­‐specific  DNA  contacts  to  be  made,  thereby  localizing  the  protein  to  the   DNA.7   Nickel   and   potassium   are   shown   in   yellow   and   orange   spheres,   respectively.    The  images  were  generated  using  Chimera.  

 α3  

Ribbon-­‐helix-­‐helix  domain  

Ribbon-­‐helix-­‐helix  domain  

N-­‐terminal  DNA-­‐binding  domain  

 

N-­‐terminal  DNA-­‐binding  domain  

 C-­‐terminal  metal-­‐binding  domain  

 

α3  

Ni(II)-­‐regulatory  domain    

Page 12: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

4  

1.4  Nickel  Induced  DNA  binding  by  NikR  

 

The  specific  details  of  the  mechanism  of  nickel-­‐activated  DNA  binding  by  NikR  are  

not   clear.   However,   the   crystal   structure   of   EcNikR   in   the   apo-­‐   and   holo-­‐forms   (high-­‐

affinity   site   occupied)   demonstrate   that   nickel   binding   induces   organization   of   the  

previously  unstructured  α3-­‐helix,  increasing  the  α-­‐helical  content.19-­‐21  Ordering  of  the  α3  

helices  upon  nickel  binding  is  also  supported  by  circular  dichroism  (CD)  experiments  that  

show  an  increase  in  the  α-­‐helical  content  of  NikR  upon  binding  of  stoichiometric  amounts  

of   nickel.19,22,28   The   formation   of   this   helix   is   proposed   to   allow   several   non-­‐specific  

protein   contacts   between   K64/R65   residues   in   the  metal-­‐binding   domain   and   the   DNA,  

thereby   localizing   the  protein   to  DNA  where   the  protein  can  undergo  a  one-­‐dimensional  

search  for  the  nik  promoter.21,29,30  The  binding  of  potassium  ions  at  the  site  between  the  

MBDs  and  DBDs  helps   to   stabilize   the   “down-­‐cis”   conformation  and   is   critical   for  Ni(II)-­‐

responsive   DNA   binding.31,32   Once   the   “down-­‐cis”   conformation   is   achieved,   NikR   then  

makes  specific  DNA  contacts  that  induce  tighter  DNA  binding,  repressing  transcription  of  

the  nikABCDE  operon.  

 

1.5  Purpose  of  Study    

Although   the   crystal   structures   of   NikR   support   a   role   for   the   α3-­‐helix   in   the  

mechanism  of  nickel-­‐activated  DNA  binding,  no  direct  biochemical   evidence   is   available.  

Residues  in  the  MBD  are  protected  from  protease  digestion  in  the  presence  of  nickel  and  

the   α-­‐helicity   of   NikR   increases   upon   nickel   binding   (revealed   by   CD),   but   these  

experiments  do  not  necessarily  prove  the   importance  of   the  stabilized  α3-­‐helix   in  metal-­‐

mediated  DNA  binding.19,22,33  The  aim  of  this  study  was  to  understand  the  role  of  the  α3-­‐

helix  in  nickel-­‐responsive  DNA  binding  by  engineering  a  variant  of  EcNikR  that  is  capable  

of   Ni(II)-­‐independent   DNA   binding.   To   achieve   this,   a   stable   helix   was   synthesized   via  

chemical  crosslinking  where  two  amino  acids  in  the  helix  were  linked  by  a  molecule  with  

appropriate  end-­‐to  end  distances  to  trap  the  protein  in  the  ‘active  conformation’.  Once  the  

helix  was  stabilized  through  the  crosslinker,  the  properties  of  holo-­‐WT  NikR  and  the  apo-­‐

crosslinked   mutant   were   compared,   with   a   focus   on   DNA-­‐binding   properties.   If   the  

Page 13: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

5  

assumption   that   stabilization   of   the   α3-­‐helix   induces   NikR   to   bind   the   nik  promoter   is  

correct,   then   the   DNA-­‐binding   properties   of   WT   NikR   in   the   presence   of   nickel   and  

crosslinked  mutant   NikR   in   the   absence   of   nickel  were   expected   to   be   nearly   the   same  

(Figure  1-­‐4).  

 

 

     

 

 

 

 

 

 

 

 

 Figure   1-­‐4.   Proposed  mechanism   of   the   nickel-­‐selective   activation   of   E.   coli   NikR.  Apo-­‐NikR   (PDB  1Q5V)  binds   stoichiometric   amount  of  nickel   (green   spheres  with  white  border),   which   stabilizes   the   α3-­‐helix.   This   allows   Ni(II)-­‐NikR   to   localize   onto   the   DNA  through   non-­‐specific   electrostatic   interactions   (PDB   2HZV).   Upon   binding   of   potassium  ions   (purple   spheres),   the   “down-­‐cis”   conformation   of  DNA-­‐binding  domains   locks  NikR  onto   DNA,   making   specific   contacts,   allowing   NikR   to   then   repress   transcription   of  nikABCDE   operon.   14   The   circled   regions   show   the   α3-­‐helix   that   is   disordered   in   the  absence   of   nickel,   but   completely   ordered   in   the   presence   of   nickel.   The   image   was  generated  using  Chimera.  

α3  

4  Ni2+  DNA  

K+  ions  

Apo-­‐NikR  

Ni2+-­‐NikR  

Ni2+-­‐NikR  +  DNA  +  K+  

Page 14: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

6  

 

1.6  Selection  of  Residues  to  be  Introduced    

The  thiol  group  of  cysteine  is  amenable  for  site-­‐directed  crosslinking  because  it   is  

nucleophilic  and  can  readily   react  with  a  variety  of  electrophiles.  WT  NikR  contains   two  

cysteines  at  positions  95  and  128;  however,  neither  is  located  in  the  α3  sequence  (residues  

63-­‐79).  To  stabilize  the  α3-­‐helical  region  by  crosslinking,  a  mutant  NikR  was  developed  by  

introducing   two  cysteine  residues   in   the  MBD  by  mutagenesis   (performed  previously  by  

Johanna    Helmstadter).  

 

1.7  Selection  of  Mutation  Site    

In   mutant   NikR   protein,   two   cysteines   were   introduced   at   positions   70   and   77  

(R70C/  H77C)  in  the  α3-­‐helix  (Figure  1-­‐5).  These  residues  were  chosen  because  they  are  

solvent  exposed  and  should  easily  react  with  the  crosslinker,  even  when  the  protein  is  fully  

folded.  Also,   these  mutated   residues  have  no  known   functional   or   structural   role,   so  we  

predicted   that   the   characteristics   and   overall   folding   of   the   mutant   protein   would   be  

unaffected.  Moreover,  these  residues  represent  positions  i  and  i+7,  which  are  amenable  to  

crosslinking  for  the  stabilization  of  the  α3-­‐helix.34  

                       Figure   1-­‐5.   Structure   of   E.   coli   NikR   showing   positions   of   residues   selected   for  mutation   in   the  α3  sequence  (PDB  1Q5V).    The  residues  R70  and  H77  in  the  MBD  are  present  on  the  surface  and  introduced  cysteines  in  these  positions  would  easily  react  with  the  crosslinker.  In  this  figure,  only  a  part  of  the  NikR  protein  is  shown  for  clarity.  

Page 15: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

7  

1.8  Selection  of  Crosslinkers    

  Azobenzene  based  crosslinkers  have  been  previously  used  to  control  the  structure  

and  function  of  α-­‐helical  containing  proteins.34  Azobenzene  and  its  derivatives  exist  in  two  

conformations  (cis  and  trans)  and  can  reversibly  convert  between  forms  upon  absorption  

of  light  of  ~340  nm  (exact  wavelength  depending  on  side  groups  of  the  linker).34  The  trans  

conformation  of  azobenzene  is  more  stable  and  dominates  in  the  dark  at  equilibrium,  and  

the  cis  isomer  can  be  produced  by  irradiation  with  light.34  This  enables  azobenzenes  to  be  

used   as   a   ‘photoswitch’   that   can   undergo   reversible   photochemistry,   such   that   many  

rounds  of  switching  between  active/inactive  states  in  biological  systems  can  be  achieved.34    

 

The  first  crosslinker  selected  for  crosslinking  mutant  NikR  in  this  study  is  3,3‘-­‐bis(sulfo)-­‐

4,4‘-­‐bis(chloroacetamido)azobenzene   (BSBCA),   as   shown   in   Figure   1-­‐6.   The   cis  

conformation   of   this   crosslinker   (obtained   upon   irradiation   of   370   nm   light)   is  

hypothesized   to   stabilize   the   α3-­‐helix  when   attached   to   two   cysteine   residues  with   an   i  

and   i+7   spacing.34   Modelling   with   the   holo-­‐NikR   crystal   structure   suggested   that   an  

azobenzene  crosslinker  introduced  at  R70C/H77C  would  be  small  enough  not  to  interfere  

with  DNA  binding  (Figure  1-­‐7).  The  expectation  was  to  observe  light-­‐dependent  reversible  

DNA  binding  in  the  crosslinked  mutant  NikR  without  nickel.  DNA  binding  would  therefore  

be  much  more  effective   in   the   light   state  versus   the  dark  state,  which  should  show  very  

weak  or  unobservable  binding.  

 

Other  sulfhydryl-­‐to-­‐sulfhydryl  crosslinkers  with  different  arm  lengths  were  also  selected  

to  see  whether  irreversible  stabilization  of  the  α3  sequence  attained  the  same  desired  DNA  

binding  in  the  absence  of  nickel.  

 

 

 

 

 

 

Page 16: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

8  

 

 

 

 

 

 

 

 

       

Figure   1-­‐6.   Chemical   structure   of   the   azobenzene   crosslinker,   3,3‘-­‐bis(sulfo)-­‐4,4‘-­‐bis(chloroacetamido)azobenzene   (BSBCA).   Upon   irradiating   the   trans   isomer   (dark  state)  with  370  nm  UV  light,  the  conformation  of  the  linker  is  reversibly  changed  to  the  cis  state.   Once   the   light   is   removed,   the   cis   isomer   switches   back   to   its   relaxed   form,   trans    state.34      

 

 

 

 

 

 

 

 

     Figure  1-­‐7.  Model  of  a  crosslinked  R70C/H77C  MutNikR.  Only  one  attached  crosslinker  is  modeled  here,  but  in  practice  all  four  monomer  of  the  functional  tetramer  are  expected  to  possess  a  crosslinker.  The  model  is  prepared  by  M.  D.  Jones.    

Page 17: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

9  

2.  Experimental  

2.1  Materials  

 

  All  chemicals  were  analytical  or  molecular  biology  grade  and  purchased  from  Sigma  

Aldrich,  except  where  noted.  All  enzymes,  primers,  and  sequencing  grade  proteases  were  

purchased  from  New  England  Biolabs,  Integrated  DNA  Technologies  and  Roche  Chemicals,  

respectively.  Dr.  P.  Chivers  (Department  of  Chemistry  and  Biochemistry,  Durham,  UK)  and  

Dr.  G.  A.  Woolley  (Department  of  Organic  and  Biological  Chemistry,  University  of  Toronto,  

ON.)   generously   donated   the   plasmids   (pNIK103   and   pPC163)24   and   an   azobenzene  

crosslinker   (3,3‘-­‐bis(sulfo)-­‐4,4‘-­‐bis(chloroacetamido)azobenzene   (BSBCA)   respectively.34  

Sulfhydryl  crosslinkers  were  purchased  from  VWR  International.  All  samples  and  solutions  

were  prepared  using  18.2  ΜΩ-­‐cm  resistance   (Millipore)  water,   and   the  pH  of   all   buffers  

was   adjusted   using   either   HCl   or   NaOH   at   room   temperature.   Electronic   absorption  

measurements   were   conducted   on   an   Agilent   8453   spectrophotometer   with   a   1-­‐cm-­‐

pathlength  cuvette.  

 

2.2  Methods  

Vector  Construction    

 

The   R70C/H77C   NikR   (mutant)   plasmid   was   previously   constructed   by   Johanna    

Helmstadter  using  the  primers  listed  in  Table  2-­‐1  from  the  pNIK103  plasmid  by  Phusion  

PCR   (Thermo   Fisher   Scientific).   DNA   sequencing   (ACGT,   Toronto,   Ontario)   was   used   to  

confirm  the  accuracy  of  the  mutagenesis  using  T7  promoter  and  terminator  primers.  

 

Protein  expression  and  purification    

 

For  expression  of  wild  type  (WT)  and  mutant  NikR,  the  plasmids  were  transformed  

into  BL21  (DE3)*  E.  coli  cells  (Invitrogen)  by  heat  shock.  Overnight  cultures  were  grown  

and  25  mL  was  used  to  inoculate  1.5  L  of  lysogeny  broth  (LB)  medium  supplemented  with  

Page 18: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

10  

100  μg/mL  ampicillin.  The  cells  were  grown  aerobically  at  37  °C  until   the  OD600  reached  

0.6   -­‐   0.8,   at   which   point   they   were   induced   with   330   μM   isopropyl   β-­‐D-­‐1-­‐

thiogalactopyranoside  (IPTG).  After  shaking  at  37  °C  for  an  additional  3  h,  the  cells  were  

harvested   by   centrifugation   and   resuspended   in   30   mL   of   20   mM  

Tris(hydroxymethyl)aminomethane  (Tris),  pH  7.5,  and  100  mM  KCl.  For  a  single  protein  

purification  preparation,  a  total  of  3  L  of  cell  culture  was  used.  All  subsequent  steps  were  

performed  at  4   °C  or  on   ice.  The   resuspended  cells  were   lysed  by   sonication.  The   lysate  

was  centrifuged  at  18  000  x  g  for  45  min  and  the  supernatant  was  retained.  NiSO4  (10  mM  

stock   solution   in   H2O)  was   added   to   the   supernatant   to   a   final   concentration   of   50   μM  

followed   by   the   addition   of   imidazole   (pH   7.5)   to   a   final   concentration   of   10   mM.   The  

supernantant  was   loaded  onto  a  Ni(II)  –  nitrilotriacetic  acid  (NTA)  column  (Qiagen)  that  

had   been   pre-­‐equilibrated  with   10   volumes   of   Equilibration   buffer   (100  mM   potassium  

phosphate,  500  mM  NaCl  and  10  mM  imidazole,  pH  8).  Two  milliliters  of  Ni(II)  –  NTA  resin  

was   used   per   liter   of   initial   cell   culture.   After   loading,   the   column   was   washed   with   5  

volumes  of  equilibration  buffer,  and  bound  protein  was  eluted  with  2  column  volumes  of  

Elution  buffer  (100  mM  potassium  phosphate,  10  mM  Tris  and  250  mM  imidazole,  pH  7.6).  

Ethylenediaminetetraacetic  acid  (EDTA)  (0.5  M  stock,  pH  8)  was  added  to  the  eluate  to  a  

final  concentration  of  2  mM  for  the  preparation  of  apo-­‐protein.  The  solution  was  dialyzed  

against  20  mM  Tris,  pH  7.6,  1  mM  dithiothreitol   (DTT)  and  2  mM  EDTA  (in  case  of  apo-­‐  

preparation)  for  at  least  5  h.  The  dialyzed  protein  solution  was  loaded  onto  a  fast  protein  

liquid   chromatography   (FPLC)   UnoQ   (BioRad)   anion   exchange   column,   initially  

equilibrated   in   20  mM  Tris,   pH  7.6   and   eluted  with   a   linear  NaCl   gradient   (NikR   eluted  

near   350  mM  NaCl).  While   purifying  MutNikR,   10  mM   TCEP,   pH   7.5,   was   added   to   the  

lysate  before  sonication,  5  mM  DTT  to  the  dialysis  buffer,  and  10  mM  TCEP,  pH  7.5,  to  the  

FPLC  buffers  to  prevent  cysteine  residues  from  being  oxidized.  

 

The   fractions   from   the   NaCl   gradient   were   analyzed   by   12.5   %   SDS-­‐PAGE,   and   those  

containing   the   protein   of   interest   were   pooled.   Following   concentration   of   the   pooled  

fractions  to  2  mL  using  Amicon  Ultra  3K  MWCO  centrifuge  concentrators  (Millipore),  the  

protein   concentrations   were   calculated   by   using   the   calculated   extinction   coefficient   of  

4470  M-­‐1  cm-­‐1  for  both  WT  and  mutant  NikR  at  280  nm  in  protein  buffer  (20  mM  Tris,  100  

Page 19: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

11  

mM  KCl,  pH  7.6).35,36  A  sample  of  each  protein  was  sent   for  electrospray   ionization  mass  

spectrometry   (AIMS;   Department   of   Chemistry,   University   of   Toronto)   to   confirm   the  

molecular   mass   of   the   protein.   The   determined   molecular   weights   of   the   WT   and   the  

mutant   were   15093.0   and   15006.5   Da,   which   correspond   to   their   calculated  molecular  

masses  of  15093.7  and  15006.7  Da  respectively  (Table  2-­‐2;  Figure  7-­‐1).    All  proteins  were  

>90%  pure  as  estimated  by  Coomassie-­‐stained  SDS-­‐PAGE.    

 

Table  2-­‐1.  PCR  primers.  

   

Primers  

 

R70C/H77C  NikR  

 Forward:  5'-­‐/5Phosa/GAGACAATGCAGCTGGCTAAGTCGCG  -­‐3'  Reverse:  5'-­‐/5Phosa/CACCCAGCATTGTCACCACGACCTCTCCG  -­‐3’  

 

100-­‐bp  DNA  Probe  

 Forward:  5'-­‐CGACTGCCCATCTATTGATCCAGAACAGG-­‐3'  Reverse:  5'-­‐GGTAACCCCAATGGATTAAAATAGATGGCG-­‐3'  

 

171-­‐bp  DNA  Probe  

 Forward:  5'  -­‐CGACAGTGTGCAATCGGCCGATTCAGTTAAC-­‐3'  Reverse:  5'  -­‐GAATCCGTAATCATTGTCGACAGCATGGTAACCC-­‐3'  

a5Phos  indicates  that  the  primer  was  phosphorylated  at  the  5'  end.  

 

The   absence   of   any   bound   metal   in   apo-­‐NikR   was   confirmed   by   a   4-­‐(2-­‐

pyridylazo)resorcinol   (PAR)   assay   in   which   the   protein   was   denatured   with   4   M  

guanidinium   hydrochloride   (GuHCl)   and   50   μM   PAR   was   added   to   the   sample.37   The  

absorbance  at  500  nm,  corresponding  to  the  formation  of  a  2:1  PAR-­‐Me(II)  complex,  was  

monitored  and  compared  to  a  standard  curve  prepared  with  50  μM  PAR  in  4  M  GuHCl  and  

known   metal   concentrations.   The   free   thiol   content   of   the   proteins   was   quantified   via  

reaction  of   the  proteins  with  5,5'-­‐dithio-­‐bis(2-­‐nitrobenzoic  acid)  (DTNB)   in   the  presence  

of   6   M   GuHCl,   and   1   mM   EDTA.   β-­‐mercaptoethanol   was   used   as   a   standard,   and   the  

absorbance   of   the   5-­‐mercapto-­‐2-­‐nitrobenzoic   acid   product  was  measured   at   412   nm   to  

confirm  the  existence  >90  %  of  the  reduced  form  of  the  protein.  The  oxidation  state  of  the  

proteins   was   also   monitored   with   N-­‐ethyl-­‐maleimide   (NEM)   assay   where   the   cysteines  

present   in   NikR   were   observed   to   be   reduced   (data   not   shown).38   If   a   higher   level   of  

oxidation  was  measured,  the  protein  was  treated  with  1  mM  DTT  for  24  h  at  4  °C.  The  DTT  

Page 20: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

12  

was   removed   by   passing   the   protein   over   a   PD-­‐10   desalting   column   equilibrated   with  

protein  buffer  (20  mM  Tris,  100  mM  KCl,  pH  7.6).  

 

Table  2-­‐2.  Calculated  and  observed  molecular  weights  of  WT  NikR  and  MutNikR  proteins.      

Calculated  Mass  (Da)    

 Observed  Mass  (Da)  

   

WT  NikR    

15093.7    

15093.0    

R70C/H77C  (Mutant)  NikR    

15006.7    

15006.5    

Mutant  NikR-­‐CR-­‐BSBCAa    

15459.7    

15458.5    

Mutant  NikR-­‐CR-­‐BMOE    

15226.7    

15226.5    

Mutant  NikR-­‐CR-­‐BMH    

15282.8    

15283  a-­‐CR-­‐  indicates  crosslinking  of  mutant  NikR  with  the  specified  crosslinker.  Information  about  the  crosslinkers  is  presented  in  Table  2-­‐3.    

Nickel  Titrations  

 

  A  sample  of  10  μM  apo  WT  or  mutant  NikR  was  prepared  in  protein  buffer  (20  mM  

Tris,  100  mM  KCl,  pH  7.6)  supplemented  with  10  mM  glycine,  pH  7.6.  Separate  aliquots  of  

apo-­‐NikR  were   incubated  with   increasing  amounts  of  NiSO4.  After   the  addition  of  nickel,  

the  samples  were  allowed  to  equilibrate  for  at  least  3  h  at  room  temperature  or  overnight  

at  4  °C.  Nickel  binding  was  monitored  at  302  nm,  with  a  background  correction  at  600  nm.  

The   extinction   coefficients   of   the   protein-­‐nickel   complexes  were   determined  by  plotting  

the  absorbance  versus  nickel  concentrations,  fitting  the  data  into  a  straight  line  assuming  

quantitative  nickel  binding.19,22  

Circular  Dichroism  Spectroscopy  

 

  WT   and   mutant   NikR   samples   were   prepared   for   CD   spectroscopy   by   buffer  

exchanging  the  protein  into  100  mM  phosphate  buffer,  pH  7.6,  using  a  PD-­‐10  column.  The  

samples   were   then   diluted   to   a   final   concentration   of   approximately   20-­‐50   μM.   For  

samples  containing  nickel,  0.7  equivalents  of  NiSO4  was  added  to  the  diluted  samples  and  

Page 21: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

13  

they  were  allowed  to  equilibrate  overnight  at  4  °C.  All  samples  were  analyzed  on  an  Olis  

RSM   1000   spectropolarimeter   with   a   capped   1   mm   pathlength   cuvette   in   order   to  

minimize   exposure   to   the   air.   Spectra   were   collected   at   1   nm   intervals   over   a   spectral  

range   of   190-­‐260   nm  with   an   integration   time   of   2   sec.   The   final   spectra   obtained   are  

averages   of   three   scans.   The   observed   ellipticity   was   converted   into   mean   residue  

ellipticity  ([θ]mre)  (deg  cm2  dmol-­‐1)  using  the  equation39  [θ]mre  =  [(MM/N-­‐1)  X  θ]/  (c  X  l  X  

10)39,  where  MM  is  the  molecular  mass  of  the  protein  in  Da,  N  is  the  number  of  amino  acid  

residues,   θ   is   the   measured   ellipticity   (degrees),   c   is   the   total   protein   concentration   in  

g/mL,  and  l  is  the  cell  path  length.    

 

Thermal   denaturation   samples   were   also   prepared   as   described   above.   Spectra   were  

collected  at  1  nm  intervals  over  a  spectral  range  of  190-­‐260  nm  with  an  integration  time  of  

2  sec  as  the  temperature  was  increased  from  5  °C  to  85  °C  in  5  °C  increments,  with  1  min  

equilibration   time   between   temperature   increases.   The   signal   at   220   nm   was   used   to  

analyze  the  data  and  the  observed  ellipticity  was  converted  into  mean  residue  ellipticity  as  

described  above  and  plotted  versus  temperature  in  °C.  

 Crosslinking  Mutant  NikR  with  an  Azobenzene  Crosslinker  

 

  A   200   –   350   μM   solution   of   apo   mutant   NikR   was   incubated   with   0   -­‐   0.75  

equivalents  of  NiSO4  in  20  mM  Tris,  10  mM  glycine,  pH  7.6,  and  four  equivalents  of  tris(2-­‐

carboxyethyl)phosphine   (TCEP)   for   30   min   at   room   temperature.   After   the   incubation  

period,   four   equivalents   of   the   3,3‘-­‐bis(sulfo)-­‐4,4‘-­‐bis(chloroacetamido)azobenzene  

(BSBCA,  Table  2-­‐3)  crosslinker  (calculated  as  four  times  the  concentration  of  the  protein)  

was  added  to  the  reaction  mixture,  and  the  sample  was  incubated  at  42-­‐47  °C  for  18  h  in  

the   presence   or   absence   of   370   nm   blue   LED   light.   A   sample   of   protein   was   sent   for  

electrospray  ionization  mass  spectrometry  (AIMS;  Department  of  Chemistry,  University  of  

Toronto)  to  confirm  the  molecular  mass  of  the  crosslinked  protein.  With  60%  yield  in  this  

reaction,  the  determined  molecular  weight  of  the  crosslinked  mutant  protein  was  15458.5  

Da,   which   correspond   to   its   calculated   molecular   mass   of   15459   Da   (for   a   single  

modification)  (Table  2-­‐2;  Figure  7-­‐2).  

Page 22: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

14  

Crosslinking  Mutant  NikR  with  Sulfhydryl  Crosslinkers  

 

  A  100  μM  solution  of  apo  mutant  NikR  in  20  mM  Tris,  pH  7.6  was  incubated  with  

7.5  mM  EDTA,  pH  7.6,   and  3.25  equivalents  of   sulfhydryl   crosslinker  dissolved   in  DMSO  

(Table  2-­‐3)   for  1  h   at   room   temperature.  A   sample  of   protein  was   sent   for   electrospray  

ionization  mass  spectrometry  (AIMS;  Department  of  Chemistry,  University  of  Toronto)  to  

confirm  the  molecular  masses  of  the  crosslinked  proteins.  With  >95%  yield  of  the  reaction,  

the   determined   molecular   weight   of   the   crosslinked   mutant   proteins   corresponded   to  

their   calculated  molecular  masses,  which   correlated   to   a   single  modification   (Table   2-­‐2;  

Figure  7-­‐3).  

Protease  Digestion  Experiments  

 

  A  30  -­‐  70  μM  solution  of  apo-­‐WT  NikR  was  incubated  with  0.8  equivalents  of  NiSO4  

in  10  mM  (4-­‐(2-­‐hydroxyethyl)-­‐1-­‐piperazineethanesulfonic  acid)  (HEPES),  100  mM  KCl,  pH  

7.6  (treated  with  Chelex-­‐100),  for  1  h  at  room  temperature.  After  an  aliquot  was  removed  

from  the  mixture  to  obtain  a  time-­‐point  for  analysis  at  0  h,  trypsin  (0.3  μM)  or  Glu-­‐C  (10  

μM)  was  added  and  the  reaction  was  left  to  proceed  for  24  h  at  37  °C.  At  6  h  and  24  h,  15  

μL  aliquots  were  removed,  added  to  4X  SDS-­‐PAGE  loading  buffer  and  stored  at  -­‐20  °C.  For  

digestions  with  apo-­‐  and  crosslinked  NikR,  the  same  protocols  were  followed  as  described  

above,   except   that   instead   of   metal,   5   mM   EDTA,   pH   7.6   was   added.   Aliquots   were  

subjected  to  SDS-­‐PAGE  on  15%,  1.5  mm  polyacrylamide  Tris-­‐Tricine  (0.1%  w/v  SDS,  0.1  M  

Tris,   0.1  M  Tricine)   gels   and   then   stained  with  Coomassie  Blue.  Peptide   fragments  were  

analyzed  by  electrospray  ionization  mass  spectrometry  (AIMS;  Department  of  Chemistry,  

University  of  Toronto)  and  fragments  were  identified  by  using  the  program  MS-­‐Digest.40  

Electrophoretic  Mobility  Shift  Assays  (EMSAs)  

 

The  100-­‐bp  DNA  probe   containing   the  nik   promoter  was  PCR   amplified   from   the  

pPC163  plasmid  using  the  primers  listed  in  Table  2.1.  The  DNA  probe  was  5'  end  labeled  at  

both  ends  with  γ-­‐32P-­‐ATP  (Perkin  Elmer)  using  T4  polynucleotide  kinase  and   incubation  

for   1   h   20  min   at   37   °C   followed   by   30  min   at   65   °C.   Unincorporated   nucleotides  were  

removed  with  a  G-­‐25  microspin  column  (GE  Healthcare).  The  amount  of  label  incorporated  

Page 23: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

15  

was  determined  using  a  Packard  Tri-­‐Carb  2900TR  Liquid  Scintillation  Counter  (LSC).  The  

radiolabeled   DNA   (10,000   counts   per   minute   (cpm))   was   incubated   with   increasing  

concentrations  of  apo-­‐  and  holo-­‐NikR  (the  latter  being  protein  loaded  with  stoichiometric  

nickel)  at  room  temperature   for  1  h   in   the  presence  of  binding  buffer  containing  20  mM  

Tris,   pH   7.5,   100   mM   KCl,   3   mM   MgCl2,   0.1%   (v/v)   octylphenoxypolyethoxyethanol  

(IGEPAL),  5%  glycerol,  0.1  mg/mL  bovine  serum  albumin,  and  0.1  mg/mL  herring  sperm  

DNA  (Promega).  The  reactions  were  resolved  on  a  6%  native  Tris-­‐Borate   (TB)   (300  mM  

borate  and  75  mM  Tris-­‐HCl,  pH  7.5)  polyacrylamide  gel  containing  either  35  μM  NiSO4  or  1  

mM  EDTA  for  3  hours  at  350  V  and  4°C  after  pre-­‐running  the  gel  for  25  min  in  TB  running  

buffer   (300  mM  borate   and   75  mM  Tris-­‐HCl,   pH  7.5,  with   either   35   μM  NiSO4   or   1  mM  

EDTA).   The   gel  was   vacuum-­‐dried   for   1   h   and   exposed  overnight   to   a   phosphor   screen,  

scanned  with   Pharos   FXTM   Plus  Molecular   Imager   (BioRad)   and   analyzed  with   Quantity  

One  software.30  

 

Table  2-­‐3.  Relevant  crosslinker  physical  data.  

 Name  of  

Crosslinker  

 Type  of  

Crosslinker  

 Structure  of  Crosslinker  

 Molecular  Weight  (Da)  

 Mass  added  to  mutant  

(R70C/H77C)  NikR  (Da)  

         

BSBCA  3,3‘-­‐bis(sulfo)-­‐

4,4‘-­‐bis(chloroaceta-­‐mido)azobenzene  

       

   Azobenzene  

 

       

     523.33  

 

           

452.3a  trans  (dark)  

cis  (light)  

λ  =  370  nm  Δ  

31  Å  

18  Å  

Page 24: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

16  

aUpon  reaction  with  the  thiol  groups  of  the  cysteine  side  chains,  the  two  chloride  ions  of  BSBCA  crosslinker  are  displaced  giving  the  mass  difference  of  71  Da.                                          

 BMOE,  

bis(maleimido)-­‐ethane  

   

Sulfhydryl    

   

   

220.18  

   

220.05  

 BMB  1,4-­‐

bis(maleimido)-­‐butane  

 

   Sulfhydryl  

     

248.23  

   

248.08  

 BMH  

bis(maleimido)-­‐hexane  

   

Sulfhydryl    

     

276.29  

   

276.11    

8  Å  

10.9    Å  

13  Å  

Page 25: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

17  

3.  Results    

3.1  Characterization  of  the  Nickel-­‐Binding  Abilities  of  the  NikR  Mutants  

 Due   to   the   proposed   role   of   NikR   in   the  metal-­‐regulatory   pathway,   whether   the  

protein  could  bind  nickel  was  of  utmost  importance.  After  purification  of  apo-­‐WT  NikR  and  

apo-­‐mutant   NikR,   their   nickel-­‐binding   abilities   were   compared   to   learn   if   the   mutant  

protein   (MutNikR)   behaved   similar   to   the   WT   NikR.   Previous   experiments   have  

demonstrated  that  upon  incubation  of  WT  NikR  with  stoichiometric  amounts  of  nickel,  an  

intense   electronic   absorption   band   is   observed   at   302   nm.19,22   This   absorption   is  

attributed   to   a   Cys−S-­‐  à   Ni(II)   ligand-­‐to-­‐metal   charge   transfer   (LMCT).19,22,41   A   plot   of  

absorbance  at  302  nm  versus  nickel  concentration  yields  a  straight  line  with  an  extinction  

coefficient  of  7.2  x  103  M-­‐1  cm-­‐1.19,22,41  If  the  nickel-­‐binding  abilities  of  the  MutNikR  are  not  

compromised,  then  its  nickel-­‐binding  plot  would  yield  a  similar  extinction  coefficient.  

 

Upon  titration  of  10  μM  apo-­‐WT  NikR  with  increasing  amounts  of  nickel,  a  linear  increase  

in  the  302  nm  signal  was  observed  with  up  to  0.8  equivalents  of  Ni(II),  as  seen  in  Figure  3-­‐

1  (A).  The  linear  portion  of  the  titration  yielded  an  extinction  coefficient  of  (7  ±  2)  x  103  M-­‐

1   cm-­‐1   after   three   independent   replicates,   in   agreement  with   the   literature   values.22   The  

difference  spectrum  obtained  by  subtracting   the  signal  of  apo-­‐WT  NikR   from  that  of  WT  

NikR  loaded  with  increasing  amounts  of  Ni(II),  shows  this  increase  in  charge-­‐transfer  band  

is  centered  at  302  nm  (Figure  3-­‐1  (B)).    

 

In   previous   experiments,   the   yield   of   the   crosslinking   reaction   of   purified   apo-­‐MutNikR  

upon   incubation  with   BSBCA  was   low   (~50%)   (data   not   shown;   performed   by   Johanna  

Helmstadter).  Hence,  holo-­‐MutNikR  was  purified  to  check  whether  the  presence  of  nickel  

during   the   purification   increases   the   subsequent   yield   of   crosslinked   protein.   It   was  

hypothesized   that   the  presence  of  nickel  would   rearrange   the  nickel-­‐binding   residues   in  

the  MBD  of  MutNikR  in  square  planar  geometry,  causing  the  protein  to  fold  similarly  to  WT  

NikR.  This  in  turn  would  allow  residues  70  and  77  to  be  on  the  surface  in  a  pre-­‐organized  

Page 26: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

18  

α-­‐helix,  and  with  greater  accessibility  of  the  nucleophilic  cysteine  thiol  groups,  producing  a  

higher  yield  of  crosslinked  MutNikR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure  3-­‐1.  Nickel   titration  and  difference  spectra  of  WT  NikR.  (A)  Upon  addition  of  increasing   concentrations   of   NiSO4   to   10   μM   apo-­‐WT   NikR,   an   overall   increase   in  absorbance   is   observed   at   302   nm.   After   0.8   equivalents   of   nickel,   the   signal   begins   to  saturate.  The  linear  region  of  the  titration  curve  yields  an  extinction  coefficient  of  (7  ±  2)  x  103  M-­‐1  cm-­‐1,  an  average  from  three  separate  experiments.  (B)  The  difference  spectra  were  generated   by   subtracting   the   signal   of   apo-­‐WT  NikR   from   that   of  WT  NikR   loaded  with  increasing  concentrations  of  Ni(II).  An  intense  band  centered  at  302  nm  is  attributed  to  a  Cys−S-­‐  à  Ni(II)  ligand-­‐to-­‐metal  charge  transfer  (LMCT).42  

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

0.07  

0.08  

0   0.2   0.4   0.6   0.8   1   1.2  

Absorbance  at  302  nm  

Nickel  Equivalents  A  

-­‐0.01  

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

250   260   270   280   290   300   310   320   330   340   350  

Absorbance  at  302  nm  

Wavelength  (nm)  

APO  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  B  

[Ni2+]  

Page 27: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

19  

After   purification,   holo-­‐MutNikR   was   calculated   to   contain   0.35   equivalents   of   metal  

(analyzed  using  PAR  assay;  data  not  shown).  The  nickel-­‐binding  ability  of  this  initial  holo-­‐

MutNikR   (containing   0.35   equivalent   of  metal)  was   analyzed  by   titrating   10   μM  protein  

with  increasing  amounts  of  Ni(II).  A  linear  increase  in  the  302  nm  signal  was  observed  up  

to   0.4   equivalent   of   added   Ni(II),   as   seen   in   Figure   3-­‐2   (A).   The   linear   portion   of   the  

titration  yielded   an   extinction   coefficient   of   (6  ±  2)   x  103  M-­‐1   cm-­‐1   (Figure  3-­‐2   (B)).  The  

difference   spectra,   obtained  by   subtracting   the   signal   of   initial   holo-­‐MutNikR   containing  

0.35   equivalent   of   metal   from   that   of   the   MutNikR   loaded   with   increasing   amounts   of  

Ni(II),  also  showed  an  increase  in  the  charge-­‐transfer  band  centered  at  302  nm  (Figure  3-­‐2  

(B)).    

 

PAR   assays   demonstrated   that   holo-­‐purified   MutNikR   could   bind   ~0.65   equivalent   of  

Ni(II)  (data  not  shown),  suggesting  that  the  nickel-­‐binding  ability  of  the  MutNikR  was  not  

compromised  by   introduced  mutations.  Upon  crosslinking  holo-­‐MutNikR  containing  0.35  

equivalent  of  metal  with  BSBCA,   the  yield  was   increased  from  50%  to  65%  compared  to  

apo-­‐MutNikR,  but  ceased  to  increase  greater  than  that  (as  measured  by  ESI-­‐MS  analysis).  

 

Nickel  titrations  of  10  μM  BMOE-­‐  and  BMH-­‐crosslinked  apo-­‐MutNikR  were  also  performed  

with   increasing   amounts   of   nickel   to   validate   whether   the   attachment   of   crosslinkers  

resulted   in   re-­‐stabilized   or   slightly   improved   nickel-­‐binding   ability   of   apo-­‐MutNikR.  

However,   no   change   was   evident   in   the   electronic   absorption   spectrum   (Figure   3-­‐3)  

suggesting   that   the   Ni(II)-­‐coordination   sphere   was   not   restored   and/or   was   further  

perturbed  by  the  chemical  crosslinking.  This  lack  of  nickel  binding  was  not  due  to  cysteine  

oxidation,   which   was   confirmed   by   analysis   with   DTNB   (data   not   shown).   No   nickel  

titration  was  performed  with  BSBCA-­‐crosslinked  MutNikR.  

 

 

 

 

 

 

Page 28: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

20  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3-­‐2.  Nickel   titration  and  difference   spectra  of  MutNikR.   (A)  Upon  addition  of  increasing  concentrations  of  NiSO4  to  10  μM  holo-­‐MutNikR  containing  0.35  equivalent  of  metal,  an  overall  increase  in  absorbance  is  noted  at  302  nm  up  to  0.4  equivalents  of  added  nickel.  The  linear  region  of  the  titration  curve  yields  an  extinction  coefficient  of  (6  ±  2)  x  103  M-­‐1  cm-­‐1.  (B)  The  difference  spectra  were  generated  by  subtracting  the  signal  of  initial  holo-­‐MutNikR   (containing   0.35   equivalent   of   metal)   from   that   of   MutNikR   loaded   with  increasing  concentrations  of  Ni(II).  An  intense  band  centered  at  302  nm  is  attributed  to  a  Cys−S-­‐  à  Ni(II)  ligand-­‐to-­‐metal  charge  transfer  (LMCT).42  

0  

0.005  

0.01  

0.015  

0.02  

0.025  

0.03  

0.035  

0.04  

0.045  

0   0.2   0.4   0.6   0.8   1   1.2  

Absorbance  at  302  nm  

Nickel  Equivalents  

A  

-­‐0.005  

0  

0.005  

0.01  

0.015  

0.02  

0.025  

0.03  

250   260   270   280   290   300   310   320   330   340   350  

Absorbance  at  302  nm  

Wavelength  (nm)  

Apo  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

1  

0.1  B    

[Ni2+]  

Page 29: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

21  

                                                                   Figure   3-­‐3.   Nickel   titration   of   BMOE-­‐crosslinked   and   BMH-­‐crosslinked   MutNikR.  Upon   addition   of   increasing   concentrations   of   NiSO4   to   10   μM   apo-­‐BMOE   crosslinked  MutNikR  (A)  and  10  μM  apo-­‐BMH  crosslinked  MutNikR  (B),  no  increase  in  absorbance  is  noted  at  302  nm.    

 

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

0.07  

0   0.2   0.4   0.6   0.8   1   1.2  

Absorbance  at  302  nm  

Nickel  Equivalents  A  

0  

0.005  

0.01  

0.015  

0.02  

0.025  

0.03  

0.035  

0.04  

0.045  

0   0.2   0.4   0.6   0.8   1   1.2  

Absorbance  at  302  nm  

Nickel  Equivalents  

B  

Page 30: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

22  

3.2  Characterization  of  the  Secondary  Structure  of  the  NikR  Mutants  

 

  To   relate   the   compromised   nickel-­‐binding   ability   of   non-­‐crosslinked   and  

crosslinked  MutNikR  with  any  differences  present  in  the  secondary  structure,  the  α-­‐helical  

content  of  NikR  proteins  was  compared  using  circular  dichroism  spectroscopy.  

 

It  was  previously  reported  that  a  decrease   in  the  mean  residue  ellipticity  (MRE)  of  holo-­‐

WT  NikR  suggested  an  increase  in  α-­‐helical  content  compared  to  apo-­‐WT  NikR  (Figure  3-­‐

4).19   Similarly,   if   the   presence   of   nickel   or   the   crosslinkers   stabilized   the   α3-­‐helix,   an  

increase   in   α-­‐helical   content   of   MutNikR   should   be   observed.   Compared   to   the   CD  

spectrum  of  apo-­‐WT  NikR,  apo-­‐MutNikR  showed  an  increased  MRE,  suggesting  a  decrease  

in   the  α-­‐helical   content  of   the  protein   (Figure  3-­‐4).  Also,  neither  of  holo-­‐MutNikR,  BMH-­‐

MutNikR  or  BMOE-­‐MutNikR  showed  a  decreased  MRE  (corresponding  to  an  increase  in  the  

α-­‐helical   content   of   the   protein)   compared   to   apo-­‐MutNikR,   suggesting   similar   α-­‐helix  

contents   of   those   proteins.   Since   it   was   unclear  what   the  MRE   readings   of   crosslinked-­‐

MutNikR  proteins  represented   in  Figure  3-­‐4,  and  the   fact   that  MRE   is  highly  sensitive   to  

protein  concentration,  MRE  at  208  nm  and  220  nm  were  compared  (Table  3-­‐1).  The  ratio  

of   208  nm  and  220  nm   should   help   identify   α-­‐helicity   independent   of   the  magnitude   of  

MRE.  

 

The  MRE  ratio  of  208  nm  and  220  nm  shows  a  small  change  between  apo-­‐WT  and  holo-­‐WT  

NikR,  suggesting  very  minute  change  in  the  α-­‐helical  content  of  the  two  proteins  (Table  3-­‐

1).   The  MRE   ratio   between   208   nm   and   220   nm   of  WT   NikR   revealed   that   addition   of  

nickel  lead  to  an  increased  signal  at  220  nm  compared  to  208  nm,  and  a  similar  trend  was  

seen  between  apo-­‐/  holo-­‐MutNikR  and  apo-­‐/  crosslinked-­‐MutNikR  proteins.  The  smaller  

ratios  of  holo-­‐MutNikR  and  crosslinked-­‐MutNikR  proteins  may  suggest  a  slight  increase  in  

the  α-­‐helicity  upon  addition  of  nickel  and  chemical  treatment,  respectively  (Table  3-­‐1).  

 

BSBCA-­‐MutNikR  in  the  dark  state  showed  decreased  MRE  in  the  CD  spectrum  (Figure  3-­‐4)  

and   an   increased  MRE   ratio   between  208  nm  and  220  nm   (Table   3-­‐1)   compared   to   the  

apo-­‐MutNikR.   Furthermore,   the   reading   did   not   appear   to   change   substantially   upon  

Page 31: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

23  

irradiation   with   370   nm   UV-­‐light.   This   suggested   similar   α-­‐helix   content   of   BSBCA-­‐

MutNikR  in  the  dark  and  light  state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   3-­‐4.   Circular   dichroism   spectra   of  WT   NikR   and  MutNikR   proteins.   The  CD  spectrum   of   apo-­‐WT   NikR   displays   an   overall   shape   indicative   of   a   mixed   α/β   protein.  Upon  addition  of  Ni(II),   the   intensity  of   the  spectrum   increases,   sugesting  an   increase   in  the   α-­‐helical   content.   Compared   to   apo-­‐MutNik,   holo-­‐MutNikR   and   BMH-­‐MutNikR   show  decreased   α-­‐helical   content   and   BMOE-­‐MutNikR   shows   a   similar   overall   secondary  structure  compared  to  that  of  MutNikR.  In  contrast,  BSBCA-­‐MutNik  in  the  dark  state  shows  an  increased  α-­‐helical  content  compared  to  MutNikR.  However,  the  light  induced  state  of  this  protein  shows  no  change  in  the  overall  secondary  structure.    

 

Table  3-­‐1.  Comparing  mean  residue  ellipticity  (MRE)  ratio  (between  208  nm  and  220  nm)  of  NikR  proteins.  

  MRE  at  208  nm  

MRE  at  220  nm  

MRE  (208  nm/  220  nm)  

Apo-­‐WT  NikR   -­‐10249   -­‐10046   1.02  Holo-­‐WT  NikR   -­‐10345   -­‐11595   0.89  Apo-­‐MutNikR   -­‐5507   -­‐8137   0.68  Holo-­‐MutNikR   -­‐3512   -­‐7537   0.47  BMH-­‐MutNikR   -­‐3798   -­‐6961   0.55  BMOE-­‐MutNikR   -­‐4768   -­‐8146   0.59  

BSBCA-­‐MutNikR  (dark)   -­‐9179   -­‐9906   0.93  BSBCA-­‐MutNikR  (light)   -­‐8948   -­‐9540   0.94  

-­‐14000  

-­‐12000  

-­‐10000  

-­‐8000  

-­‐6000  

-­‐4000  

-­‐2000  

0  

2000  

4000  

6000  

190   200   210   220   230   240   250   260  

 [θ] m

re  (d

eg  cm

2  dmol-­‐1)  

 

Wavelength  (nm)  

WT  Apo  

WT  Holo  

Mut  Apo  

Mut  Holo  

Mut  BMH  

Mut  BMOE  

Mut  BSBCA  Dark  

Mut  BSBCA  Light  

Page 32: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

24  

To   further   elucidate   the   impact   of   the   introduced   mutations   at   positions   70   and   77,  

thermal  melting   of  MutNikR   protein  was  monitored   by   circular   dichroism   spectroscopy  

(Figure   3-­‐5).   Compared   to   the   apo-­‐WT   NikR   that   melts   at   50   °C22,   apo-­‐MutNikR   was  

observed  to  be  stable  up  to  80  °C  (Figure  3-­‐5  (B)),  hinting  a  much  different  conformation  

of  the  protein,  which  sustains  its  stability  at  higher  temperatures  (Figure  3-­‐4;  Table  3-­‐1).  

 

 

                                                       Figure  3-­‐5.  Thermal  denaturation  of  apo-­‐MutNikR  monitored  by  circular  dichroism  spectroscopy.  The  denaturation  of  88  μM  apo-­‐MutNikR  was  monitored  from  10  °C  to  85  °C.   (A)   represents   the   raw   data,   and   (B)   shows   MRE   at   220   nm   with   respect   to  temperature.    

-­‐8000  

-­‐3000  

2000  

7000  

200   210   220   230   240   250   260  

Mean  Residue  Ellipticity  

Wavelength  (nm)  

10°C  15°C  20°C  25°C  30°C  35°C  40°C  45°C  50°C  55°C  60°C  65°C  70°C  75°C  80°C  85°C  

0  

1000  

2000  

3000  

4000  

5000  

6000  

7000  

10   20   30   40   50   60   70   80   90  Mean  Residue  Ellipticity  at  220  nm  

Temperature  (°C)  B

A

Page 33: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

25  

3.3  Trypsin  and  Glu-­‐C  Protease  Digestion  

 

In   order   to   establish   the   position   of   the   crosslinked   regions  within   the  MutNikR,  

protease  digestion  of  NikR  followed  by  ESI  mass  spectrometry  was  utilized  in  an  attempt  

to   identify   the   linked   peptide   fragments   of   NikR.   The   endopeptidases   Trypsin   and   GluC  

were  selected  as   they  were  previously   shown   to  produce   reasonably   sized  NikR  peptide  

fragments,  which  should  be  readily  detectable  in  the  MS.33  However,  self-­‐digestion  of  these  

serine  proteases  in  the  reaction  mixture  did  not  allow  the  detection  of  the  linked  peptide  

fragments  in  the  ESI  spectra  due  to  incomplete  digestion  of  the  proteins  (data  not  shown).    

 

3.4  The  DNA-­‐Binding  Activities  of  the  NikR  Mutants  in  vitro  

 

  Despite   the   lack   of   evidence   from   protease   digestion   that   the   crosslinkers   were  

linked  at   two  cysteines   introduced   in  the  metal-­‐binding  region,   the  MS  results  suggested  

that   a   significant   portion   of   the   protein   was   crosslinked,   so   they   could   yield   some  

information   about   our   hypothesis.   In   that   respect,   electrophoretic   mobility   shift   assays  

(EMSAs)  were  used  to  probe  the  interaction  between  MutNikR  proteins  and  the  promoter  

sequence.    

 

In  the  presence  of  excess  amounts  of  nickel,  WT  NikR  was  able  to  bind  to  the  100-­‐bp  DNA  

probe;   however,   non-­‐crosslinked   MutNikR,   BMH-­‐MutNikR,   BMOE-­‐MutNikR   and   BSBCA-­‐

MutNikR  (dark/light)  were  unable  to  bind  to  the  DNA  probe  (Figure  3-­‐6).  The  observation  

that  MutNikR  did  not  shift  the  DNA  in  the  presence  of  nickel  suggests  that  the  mutations  

have  altered  the  structure  and  thus  activity  of  the  protein.  

 

In   the   absence   of   nickel,   neither   WT   NikR   (as   expected)   nor   any   of   the   mutant   NikR  

proteins  (crosslinked  and  non  crosslinked)  produced  an  observable  shift  (Figure  3-­‐7).  This  

suggested   that   the  α-­‐helical   region  of   the  MutNikR  was  not   stabilized  by   crosslinkers   as  

expected.  

Page 34: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

26  

 

 

 

 

 

 

 

 

 

 

Figure  3-­‐6.  in  vitro  DNA-­‐binding  activities  of  WT  NikR  and  MutNikR  in  excess  nickel.  In   the   presence   of   excess   nickel   (35   μM),   WT   NikR   binds   to   the   100-­‐bp   nik   promoter  sequence   and   the   NikR-­‐DNA   complex   shifts   upwards   (A   (WT)).   However,   no   shift   is  observed  for  mutant  and  crosslinked  MutNikR  in  presence  of  nickel  (A  (BSBCA-­‐Mut  (dark),  Mut,  BSBCA-­‐Mut  (light)  and  B   (BMH-­‐Mut  and  BMOE-­‐Mut)).   (-­‐)   indicates   free  DNA  probe  and  Mut  refers  to  non-­‐crosslinked  MutNikR  protein.                

 

 

 

 

 

 Figure  3-­‐7.  in  vitro  DNA-­‐binding  activities  of  WT  NikR  and  MutNikR  in  the  absence  of  nickel.   In  the  absence  of  nickel    (1  mM  EDTA,  pH  7.5,  3  mM  MgSO4)41,  WT  NikR  does  not  bind  to  the  100-­‐bp  nik  promoter  sequence  (as  expected),  and  the  NikR-­‐DNA  complex  does  not   shift   upwards   (A   (WT)).   No   shift   is   observed   for   non-­‐crosslinked   and   crosslinked  MutNikR  in  absence  of  nickel  (A  (BSBCA-­‐Mut  (light),  Mut,  BSBCA-­‐Mut  (dark)  and  B  (BMH-­‐Mut   and   BMOE-­‐Mut)).   (-­‐)   indicates   free   DNA   probe   and   Mut   refers   to   non-­‐crosslinked  MutNikR.  

A  

B  

[NikR]  

[NikR]  

A  

B  

Page 35: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

27  

4.  Discussion    

A  role  of  the  α3-­‐helix  in  Ni(II)-­‐responsive  DNA  binding  by  NikR  has  been  suggested  

by  multiple  experiments,   including   crystallography,20,21  protease  digestion   studies,33   and  

observed   changes   in   the   circular   dichroism   spectrum,19,22   but   no   study   has   investigated  

the  role  of  this  α-­‐helix  directly.  In  this  work,  an  attempt  was  made  to  create  a  NikR-­‐variant  

capable  of  Ni(II)-­‐independent  DNA  binding  by  introducing  cysteine  residues  in  the  metal-­‐

binding   domain   at   positions   70   and   77   (positions   i   and   i+7)43   and   chemically   crosslink  

them  to  stabilize  the  α3-­‐helix.44,45  The  goal  was  to  stabilize  the  helix  independent  of  metal  

binding  and  study  the  impact  of  stabilized  α3-­‐helix  in  the  regulatory  process  of  NikR.    

 

R70C/H77C  MutNikR  was   found   to   be   air-­‐sensitive   and   highly   susceptible   to   oxidation,  

mainly   due   to   the   presence   of   two   extra   cysteines   relative   to   the   WT   NikR.   To   avoid  

unwanted  oxidation,  10  mM  TCEP  was  added  to  the  cells  before  sonication,  5  mM  DTT  in  

the  dialysis  buffer,  and  10  mM  TCEP  in  the  FPLC  buffers.    

 

WT  NikR  nickel  titrations  demonstrated  that  the  nickel-­‐binding  ability  of  MutNikR  was  not  

compromised  (Figure  3-­‐2).  However,  CD  spectroscopy  revealed  a  decreased  MRE  ratio  of  

208   nm   and   220   nm   (corresponding   to   an   increased   signal   at   220   nm   than   at   208   nm;  

Table   3-­‐1)   suggesting   an   increased   α3-­‐helicity   of   apo-­‐MutNikR   (compared   to   apo-­‐WT-­‐

NikR).  Circular  dichroism  showed  that  apo-­‐MutNikR  was  more  thermally  stable  than  apo-­‐

WT  NikR  (Figure  3-­‐5).  Furthermore,  MutNikR  did  not  exhibit  DNA  binding  to  the  100-­‐bp  

nik  promoter  sequence  in  the  presence  of  nickel.  These  results  suggest  that  MutNikR  has  a  

conformational   state   different   from  WT   NikR   that   also   makes   it   more   thermally   stable  

(Figure  3-­‐5).22    

 

Cysteine  residues  were  introduced  at  position  70  and  77.  These  residues  were  thought  to  

be  accessible   to   react  with   crosslinkers   in   the   fully   folded   state,   since   they  appear   to  be  

solvent  exposed  in  the  crystal  structure.  No  functional  or  structural  roles  of  these  residues  

were  previously  identified,  so  the  characteristics  and  overall  folding  of  the  mutant  protein  

was  expected  to  be  similar  to  the  wild  type,  allowing  the  mutant  protein  to  behave  similar  

Page 36: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

28  

to  WT  NikR.  However,  unlike  the  to  holo-­‐WT  NikR  properties,  holo-­‐MutNikR  did  not  bind  

to   the  100-­‐bp  nik  promoter  sequence   in   the  presence  of  nickel.  This  could  be  due   to   the  

mutation  at  position  77,  as  the  side  chain  of  H77  in  the  α3-­‐helix  is  in  close  proximity  (6  Å)  

to  D114  of  the  α4-­‐helix  in  the  crystal  structure  (Figure  4-­‐1).  It  is  possible  that  the  lone  pair  

of  electrons  present  on  the  nitrogen  of  the  H77  side  chain  forms  a  hydrogen  bond  with  the  

carboxyl   of   D114,   stabilizing   the   structure.   The   introduction   of   cysteine   at   position   77  

would  disrupt  this  hydrogen  bond,  disturbing  the  stability  of  the  quaternary  structure  and  

preventing  holo-­‐MutNikR  from  binding  to  the  nik  promoter  sequence.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-­‐1.    A  model  showing  orientation  of  α3-­‐helix  and  α4-­‐helix  in  the  presence  of  nickel  (PDB  2HZV).  It  is  likely  for  residue  H77  of  the  α3-­‐helix  (pink)  of  the  NikR  protein  (originally  at  6  Å)  to  move  closer  due  to  rotation  of  the  β-­‐carbon  of  the  side  chains  in  the  3-­‐dimensional  space  to  D114  of  α4-­‐helix  (blue)  to  form  hydrogen  bond  with  each  other  upon  nickel  binding.  This  may  be  required  to  stabilize  the  overall  structure  of  NikR  allowing  it  to  bind  to  the  nik  promoter  sequence.  The  bond  distance  between  H77  and  D114  is  shown  in  yellow.  The  image  was  generated  using  Chimera.    

The  role  of  Cys70  is  thought  to  be  minimal,  since  there  is  no  possibility  of  hydrogen-­‐bond  

formation  in  that  part  of  the  α3-­‐helix.  Previously,  engineered  NikR  variants,  S69C  (where  

two   NikR   monomers   were   linked   by   disulfide   bonds),   S73A   and   S73A/T74A   NikR  

exhibited  DNA-­‐binding  activity  in  the  presence  of  nickel  (performed  by  Dr.  Andrew  Sydor  

and  Robin  Liu,  respectively),  suggesting  that  the  stability  of  this  portion  of  the  α3-­‐helix  is  

D114  H77  

Page 37: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

29  

not   disrupted   with   the   introduced   cysteine/alanine   mutations.   Also,   the   above   three  

variants   were   also   observed   to   be   incapable   of   Ni(II)-­‐independent   DNA   binding,  

suggesting   that   this   starting   region  of   the  α3-­‐helix  may  not  play  a   significant   role   in   the  

regulatory  function  of  NikR.  

 Although   MutNikR   did   not   show   similar   MRE   and   DNA   binding   to   the   nik   promoter  

sequence   (relative   to  WT  NikR),   crosslinking   experiments  were   continued,   because   it   is  

possible  that  activity  could  become  restored  through  conformational  changes  induced  by  

crosslinking  and  stabilization  of  the  α3-­‐helix.    

 

Challenges   were   faced   while   crosslinking   holo-­‐MutNikR   with   BSBCA.   In   the   first   three  

attempts,  the  yield  of  the  reaction  did  not  exceed  50%.  Since  it  was  necessary  for  at  least  

three  of  the  four  monomers  in  the  functional  NikR  tetramer  to  have  a  crosslinker  in  the  α3-­‐

helix  in  order  to  elucidate  the  role  of  attached  crosslinker,  the  concentration  of  BSBCA  was  

increased  from  four  equivalents  to  six-­‐eight  equivalents  (relative  to  MutNiKR)  to  obtain  a  

yield  of  at  least  80%.  With  6X  concentration  of  BSBCA,  no  difference  in  yield  was  observed  

compared   previous   attempts   with   4X   BSBCA   concentration   (Figure   7-­‐2   (B)).   Upon  

increasing   the   concentration   of   BSBCA   to   8X,   the   majority   of   the   protein   (~80%)   was  

crosslinked   (Figure   7-­‐2   (C)).   However,   the   protein   sample   also   contained   components  

other   than   the   non-­‐crosslinked   MutNikR   and   BSBCA-­‐MutNikR,   which   could   not   be  

identified   because   the   differences   in   the   masses   did   not   correspond   to   the   molecular  

weight  of  the  crosslinker  (Figure  7-­‐2  (C)).    

 

In   order   to   limit   the   linking   of   BSBCA   to   one   unit   per   MutNikR   monomer,   another  

crosslinking  reaction  was  attempted  with  4X  BSBCA  relative  to  MutNikR,  but  this  time  in  

the   presence   of   UV   light.   These   conditions   allowed   us   to   test   the   possibility   that  

positioning  of  BSBCA  in  the  cis  state  could  enhance  the  rate  of  the  reaction  of  the  second  

cysteine,   due   to   proximity   of   the   electrophilic   group   of   BSBCA,   giving   a   better   yield.  

However,  no  difference  in  the  yield  was  observed  by  crosslinking  MutNikR  in  the  presence  

of  UV  light.  The  reaction  was  carried  out  in  20  mM  Tris  at  pH  7.5,  and  in  0.1  M  potassium  

phosphate   at   pH   7.5   to   test   the   effects   of   buffer,   but   no   change   in   yield   was   observed.  

Despite   fresh   batches   of  MutNikR   and  BSBCA  being   used,   the   highest   yield   obtained   for  

Page 38: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

30  

this   reaction  was  60%.  Also,   to   compare  whether  nickel-­‐binding  affected   crosslinking  of  

MutNikR,  a   reaction  was  set  up  with  apo-­‐MutNikR  and  4X  BSBCA.    The   final  yield  of   the  

reaction  was  50%,  revealing  no  difference  between  crosslinking  of  apo-­‐  and  holo-­‐MutNikR.  

In   contrast,   the   control   crosslinking   reactions   attempted  with  non-­‐switchable   sulfhydryl  

crosslinkers  (BMH  and  BMOE)  gave  the  yield  greater  than  95%  (Figure  7-­‐3).  

 

Nickel   titrations   showed   that   neither   BMH-­‐crosslinked   MutNikR   nor   BMOE-­‐crosslinked  

MutNikR   bound   nickel.   It   may   be   possible   that   these   crosslinking   reagents   of   shorter  

length  (BMOE  and  BMH)  pucker  a  region  of  metal-­‐binding  domain,  altering  the  structure  

in   a  way   that  would   prevent   the  metal-­‐binding   residues   from   binding  metal.   The   small  

differences  in  the  MRE  ratios  between  208  nm  and  220  nm  for  apo-­‐MutNikR  versus  BMH-­‐

MutNikR  and  BMOE-­‐MutNikR  may  be  due  to  this  structural  perturbation.  This  distortion,  

caused   by   introduction   of   the   crosslinkers,   could   also   explain   the   inability   of   BMH-­‐

MutNikR  and  BMOE-­‐MutNikR  to  bind  to  the  nik  promoter  sequence.  

 

Although  the  CD  spectra  showed  an  increase  in  the  α3-­‐helicity  in  BSBCA-­‐MutNikR  (in  the  

dark  state)  compared  to  apo-­‐MutNikR  (Figure  3-­‐4),  it  did  not  produce  DNA  binding  to  the  

nik  promoter.    This  suggests  that  despite  the  gain  of  α-­‐helicity  due  to  a  flexible/long  linker,  

it   is   likely   that   this   flexibility  of  BSBCA  would  not  have   allowed   the  protein   to  hold  one  

state  for  a  longer  period  of  time  in  the  aqueous  solution,  hindering  its  DNA  binding  to  the  

nik  sequence.  Based  on  the  circular  dichroism  spectrum,  an  increase  (for  BSBCA-­‐MutNikR)  

or  almost  similar  (for  holo-­‐,  BMH-­‐  and  BMOE-­‐MutNikR)  in  α-­‐helical  content  was  observed  

for  MutNikR  proteins  (Figure  3-­‐4);  however,   it   is  unclear   if   this   is  due   to  stabilization  of  

the  α3-­‐helix  in  particular.  Overall,  the  collected  data  show  that  the  DNA-­‐binding  activity  of  

NikR   is  very  sensitive   to   structural   changes,  and  even  small   changes  alter   the  activity  of  

the  protein.  

 

Despite  the  model  showing  no  interference  between  crosslinked  mutant  protein  and  DNA  

as  shown  in  Figure  1-­‐7,  it  may  be  possible  that  the  hydrophobic  crosslinkers  are  hindering  

the  protein  to  move  in  close  proximity  to  the  DNA,  preventing  formation  of  necessary  non-­‐

Page 39: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

31  

specific   contacts30.  The  space  containing  water  molecules  may  also  be  pushing  away   the  

hydrophobic  crosslinkers,  further  spacing  out  the  barely  formed  protein-­‐DNA  complex.    

 

It  is  also  possible  that  folding  of  the  α3-­‐helix  is  not  sufficient  to  activate  DNA  binding.  This  

suggests  that  there  are  additional  interactions  within  the  protein  induced  by  Ni(II)  binding  

that  extend  beyond  those  of  the  α3-­‐helix  and  without  nickel,  these  interactions  would  be  

absent.  So,  even  in  the  presence  of  a  crosslinker,  if  this  region  of  the  protein  were  unable  to  

make   those   specific   needed   contacts,   it   would   not   show   expected   binding   to   the   nik  

promoter  sequence,  and  requires  further  research  to  determine  the  role  of  the  α3-­‐helix  in  

NikR  Ni(II)-­‐induced  DNA  binding.  

 

 

 

                                 

Page 40: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

32  

5.  Conclusion  and  Future  Work    

  In   this   study,   a   double   cysteine  mutation   (R70C/  H77C)   of  NikR  was   crosslinked  

with   various   crosslinkers   and   studied.   The   crosslinked   MutNikR   did   not   exhibit   nickel  

binding,   CD   spectra   or   DNA-­‐binding   to   the   nik   promoter   similar   to  WT   NikR.   The   data  

presented   here   demonstrate   that   this   engineered   MutNikR   variant   in   crosslinked/non-­‐

crosslinked  form  is  incapable  of  Ni(II)-­‐independent  DNA  binding.  The  reasons  for  this  lack  

of   function  are  unclear,  and  a  clear   link  between  stabilization  of   the  α3-­‐helix  upon  Ni(II)  

binding  and  DNA  binding  cannot  be  established.   It  could  be  that  the  secondary  structure  

required  for  the  activity  of  NikR  was  not  maintained  in  the  mutant,  or  that  other  needed  

specific   contacts   (yet   unknown)   were   not   made.   Hence,   to   elucidate   the   details   of   the  

proposed  NikR  –  DNA  binding  event,  alternative  avenues  are  required.    

 

This  may   include  working  with   only   the  MBD   (residues   49-­‐133),   incorporating   cysteine  

residues   at   positions   70   and   77   followed   by   crosslinking   and   analysis   using   protease  

digestion/ESI-­‐MS.33   Since   the   region   of   the   attached   crosslinkers   was   not   assigned,  

protease  digests  should  be  repeated  with  other  proteases  to  collect  the  peptide  fragment  

of  interest.  It  is  possible  that  H77  and  D114  form  a  hydrogen  bond  that  stabilizes  the  NikR  

structure,   such   that   it   can   perform   regulatory   function.   This   hypothesis   could   also   be  

tested  by  mutating  D114   to  alanine,   and  comparing   this  mutant  protein’s  nickel-­‐binding  

and  DNA-­‐binding  activity  with  WT  NikR.      

 

 

 

 

 

 

 

 

Page 41: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

33  

6.  References       (1)   Eitinger,   T.;   Mandrand-­‐Berthelot,   M.   A.   Nickel   transport   systems   in  

microorganisms.  Arch  Microbiol  2000,  173,  1-­‐9.  

  (2)   Mulrooney,   S.   B.;   Hausinger,   R.   P.   Nickel   uptake   and   utilization   by  

microorganisms.  Fems  Microbiol  Rev  2003,  27,  239-­‐261.  

  (3)   Küpper,  H.;  Kroneck,  P.  M.  H.  Nickel   in  the  Environment  and  Its  Role  in  the  

Metabolism  of  Plants  and  Cyanobacteria.  Met  Ions  Life  Sci  2007,  2,  31-­‐62.  

  (4)   Ragsdale,  S.  W.  Nickel-­‐based  Enzyme  Systems.  J  Biol  Chem  2009,  284,  18571-­‐

18575.  

  (5)   Maroney,   M.   J.   Structure/function   relationships   in   nickel  

metallobiochemistry.  Curr  Opin  Chem  Biol  1999,  3,  188-­‐199.  

  (6)   Bleackley,  M.   R.;  MacGillivray,   R.   T.   A.   Transition  metal   homeostasis:   from  

yeast  to  human  disease.  Biometals  2011,  24,  785-­‐809.  

  (7)   Sydor,  A.  M.;  Zamble,  D.  B.  Nickel  metallomics:  general  themes  guiding  nickel  

homeostasis.  Met  Ions  Life  Sci  2013,  12,  375-­‐416.  

  (8)   Chen,  H.  B.;  Giri,  N.  C.;  Zhang,  R.  H.;  Yamane,  K.;  Zhang,  Y.;  Maroney,  M.;  Costa,  

M.   Nickel   Ions   Inhibit   Histone   Demethylase   JMJD1A   and   DNA   Repair   Enzyme   ABH2   by  

Replacing  the  Ferrous  Iron  in  the  Catalytic  Centers.  J  Biol  Chem  2010,  285,  7374-­‐7383.  

  (9)   Macomber,   L.;   Hausinger,   R.   P.   Mechanisms   of   nickel   toxicity   in  

microorganisms.  Metallomics  2011,  3,  1153-­‐1162.  

  (10)   Maier,  R.   J.;  Benoit,  S.  L.;  Seshadri,  S.  Nickel-­‐binding  and  accessory  proteins  

facilitating  Ni-­‐enzyme  maturation  in  Helicobacter  pylori.  Biometals  2007,  20,  655-­‐664.  

  (11)   Li,   Y.   J.;   Zamble,   D.   B.   Nickel   Homeostasis   and   Nickel   Regulation:   An  

Overview.  Chem  Rev  2009,  109,  4617-­‐4643.  

  (12)   Giedroc,   D.   P.;   Arunkumar,   A.   I.   Metal   sensor   proteins:   nature's  

metalloregulated  allosteric  switches.  Dalton  Trans  2007,  3107-­‐3120.  

  (13)   Dosanjh,   N.   S.;   Michel,   S.   L.   Microbial   nickel   metalloregulation:   NikRs   for  

nickel  ions.  Curr  Opin  Chem  Biol  2006,  10,  123-­‐130.  

  (14)   Wang,   S.   C.;   Dias,   A.   V.;   Zamble,   D.   B.   The   "metallo-­‐specific"   response   of  

proteins:  a  perspective  based  on  the  Escherichia  coli  transcriptional  regulator  NikR.  Dalton  

Trans  2009,  2459-­‐2466.  

Page 42: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

34  

  (15)   Iwig,   J.   S.;   Chivers,   P.   T.   Coordinating   intracellular   nickel-­‐metal-­‐site  

structure-­‐function   relationships   and   the  NikR   and  RcnR   repressors.  Nat  Prod  Rep  2010,  

27,  658-­‐667.  

  (16)   De  Pina,  K.;  Desjardin,  V.;  Mandrand-­‐Berthelot,  M.  A.;  Giordano,  G.;  Wu,  L.  F.  

Isolation  and  characterization  of  the  nikR  gene  encoding  a  nickel-­‐responsive  regulator  in  

Escherichia  coli.  J  Bacteriol  1999,  181,  670-­‐674.  

  (17)   Navarro,   C.;   Wu,   L.   F.;   Mandrandberthelot,   M.   A.   The   Nik   Operon   of  

Escherichia-­‐Coli  Encodes  a  Periplasmic  Binding-­‐Protein-­‐Dependent  Transport-­‐System  for  

Nickel.  Mol  Microbiol  1993,  9,  1181-­‐1191.  

  (18)   Chivers,  P.  T.;  Sauer,  R.  T.  NikR  is  a  ribbon-­‐helix-­‐helix  DNA-­‐binding  protein.  

Protein  Sci  1999,  8,  2494-­‐2500.  

  (19)   Chivers,  P.  T.;  Sauer,  R.  T.  NikR  repressor:  High-­‐affinity  nickel  binding  to  the  

C-­‐terminal  domain  regulates  binding  to  operator  DNA.  Chem  Biol  2002,  9,  1141-­‐1148.  

  (20)   Schreiter,  E.  R.;  Sintchak,  M.  D.;  Guo,  Y.;  Chivers,  P.  T.;  Sauer,  R.  T.;  Drennan,  

C.   L.   Crystal   structure   of   the   nickel-­‐responsive   transcription   factor  NikR.  Nat  Struct  Biol  

2003,  10,  794-­‐799.  

  (21)   Schreiter,   E.   R.;   Wang,   S.   C.;   Zamble,   D.   B.;   Drennan,   C.   L.   NikR-­‐operator  

complex   structure   and   the   mechanism   of   repressor   activation   by   metal   ions.   Proc   Natl  

Acad  Sci  2006,  103,  13676-­‐13681.  

  (22)   Wang,  S.  C.;  Dias,  A.  V.;  Bloom,  S.  L.;  Zamble,  D.  B.  Selectivity  of  metal  binding  

and  metal-­‐induced  stability  of  Escherichia  coli  NikR.  Biochemistry  2004,  43,  10018-­‐10028.  

  (23)   Bloom,   S.   L.;   Zamble,   D.   B.   Metal-­‐selective   DNA-­‐binding   response   of  

Escherichia  coli  NikR.  Biochemistry  2004,  43,  10029-­‐10038.  

  (24)   Chivers,   P.   T.;   Sauer,   R.   T.   Regulation   of   high   affinity   nickel   uptake   in  

bacteria.  Ni2+-­‐Dependent  interaction  of  NikR  with  wild-­‐type  and  mutant  operator  sites.  J  

Biol  Chem  2000,  275,  19735-­‐19741.  

  (25)   Carrington,  P.  E.;  Chivers,  P.  T.;  Al-­‐Mjeni,  F.;  Sauer,  R.  T.;  Maroney,  M.  J.  Nickel  

coordination   is   regulated  by   the  DNA-­‐bound  state  of  NikR.  Nature  Struct.  Biol.  2003,  10,  

126-­‐130.  

Page 43: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

35  

  (26)   Wang,  S.  C.;  Li,  Y.;  Ho,  M.;  Bernal,  M.  E.;  Sydor,  A.  M.;  Kagzi,  W.  R.;  Zamble,  D.  

B.   The   response   of   Escherichia   coli   NikR   to   nickel:   a   second   nickel-­‐binding   site.  

Biochemistry  2010,  49,  6635-­‐6645.  

  (27)   Phillips,  C.  M.;  Drennan,  C.  L.  Nickel  Regulatory  Transcription  Factor,  NikR.  

In  Handbook  of  Metalloproteins  (Messerschmidt,  A.,  Ed)  John  Wiley  &  Sons,  Ltd.,  New  York  

2008.  

  (28)   Phillips,  C.  M.;  Schreiter,  E.  R.;  Guo,  Y.;  Wang,  S.  C.;  Zamble,  D.  B.;  Drennan,  C.  

L.  Structural  basis  of  the  metal  specificity  for  nickel  regulatory  protein  NikR.  Biochemistry  

2008,  47,  1938-­‐1946.  

  (29)   Phillips,  C.  M.;  Schreiter,  E.  R.;  Stultz,  C.  M.;  Drennan,  C.  L.  Structural  basis  of  

low-­‐affinity   nickel   binding   to   the   nickel-­‐responsive   transcription   factor   NikR   from  

Escherichia  coli.  Biochemistry  2010,  49,  7830-­‐7838.  

  (30)   Krecisz,   S.;   Jones,   M.   D.;   Zamble,   D.   B.   Nonspecific   interactions   between  

Escherichia  coli  NikR  and  DNA  are  critical  for  nickel-­‐activated  DNA  binding.  Biochemistry  

2012,  51,  7873-­‐7879.  

  (31)   Phillips,  C.  M.;  Nerenberg,  P.  S.;  Drennan,  C.  L.;  Stultz,  C.  M.  Physical  Basis  of  

Metal-­‐Binding  Specificity  in  Escherichia  coli  NikR.  J  Am  Chem  Soc  2009,  131,  10220-­‐10228.  

  (32)   Wang,  S.  C.;  Li,  Y.  J.;  Robinson,  C.  V.;  Zamble,  D.  B.  Potassium  Is  Critical  for  the  

Ni(II)-­‐Responsive  DNA-­‐Binding  Activity  of  Escherichia  coli  NikR.  J  Am  Chem  Soc  2010,  132,  

1506-­‐1507.  

  (33)   Dias,  A.  V.;  Zamble,  D.  B.  Protease  digestion  analysis  of  Escherichia  coli  NikR:  

evidence  for  conformational  stabilization  with  Ni(II).  J  Biol  Inorg  Chem  2005,  10,  605-­‐612.  

  (34)   Beharry,   A.   A.;  Woolley,   G.   A.   Azobenzene  photoswitches   for   biomolecules.  

Chem  Soc  Rev  2011,  40,  4422-­‐4437.  

  (35)   Edelhoch,   H.   Spectroscopic   Determination   of   Tryptophan   and   Tyrosine   in  

Proteins.  Biochemistry  1967,  6,  1948-­‐1954.  

  (36)   Pace,   C.   N.;   Vajdos,   F.;   Fee,   L.;   Grimsley,   G.;   Gray,   T.   How   to   Measure   and  

Predict  the  Molar  Absorption-­‐Coefficient  of  a  Protein.  Protein  Sci  1995,  4,  2411-­‐2423.  

  (37)   Hunt,  J.  B.;  Neece,  S.  H.;  Ginsburg,  A.  The  Use  of  4-­‐(2-­‐Pyridylazo)Resorcinol  in  

Studies  of  Zinc  Release  from  Escherichia-­‐Coli  Aspartate  Transcarbamoylase.  Anal  Biochem  

1985,  146,  150-­‐157.  

Page 44: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

36  

  (38)   Kaluarachchi,  H.;  Sutherland,  D.  E.;  Young,  A.;  Pickering,   I.   J.;  Stillman,  M.   J.;  

Zamble,  D.  B.  The  Ni(II)-­‐binding  properties  of   the  metallochaperone  SlyD.   J  Am  Chem  Soc  

2009,  131,  18489-­‐18500.  

  (39)   Kelly,   S.   M.;   Jess,   T.   J.;   Price,   N.   C.   How   to   study   proteins   by   circular  

dichroism.  Biochim  Biophys  Acta  2005,  1751,  119-­‐139.  

  (40)   http://prospector.ucsf.edu/prospector/cgi-­‐bin/msform.cgi?form=msdigest.  

  (41)   Jones,   M.   D.;   Ademi,   I.;   Yin,   X.;   Gong,   Y.;   Zamble,   D.   B.   Nickel-­‐responsive  

regulation  of  two  novel  Helicobacter  pylori  NikR-­‐targeted  genes.  Metallomics  2014.  

  (42)   Lever,   A.   B.   P.:   Inorganic   electronic   spectroscopy;   2nd   ed.;   Elsevier:  

Amsterdam  ;  New  York,  1984.  

  (43)   Burns,   D.   C.;   Zhang,   F.;  Woolley,   G.   A.   Synthesis   of   3,3'-­‐bis(sulfonato)-­‐4,4'-­‐

bis(chloroacetamido)azobenzene   and   cysteine   cross-­‐linking   for   photo-­‐control   of   protein  

conformation  and  activity.  Nat  Protoc  2007,  2,  251-­‐258.  

  (44)   Jo,   H.;   Meinhardt,   N.;  Wu,   Y.;   Kulkarni,   S.;   Hu,   X.;   Low,   K.   E.;   Davies,   P.   L.;  

DeGrado,   W.   F.;   Greenbaum,   D.   C.   Development   of   alpha-­‐helical   calpain   probes   by  

mimicking  a  natural  protein-­‐protein  interaction.  J  Am  Chem  Soc  2012,  134,  17704-­‐17713.  

  (45)   Zhang,  F.  Z.;  Zarrine-­‐Afsar,  A.;  Al-­‐Abdul-­‐Wahid,  M.  S.;  Prosser,  R.  S.;  Davidson,  

A.  R.;  Woolley,  G.  A.  Structure-­‐Based  Approach  to  the  Photocontrol  of  Protein  Folding.  J  Am  

Chem  Soc  2009,  131,  2283-­‐2289.  

 

 

 

 

 

 

 

 

 

 

 

Page 45: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

37  

7.  Appendix    

 

                                                               Figure  7-­‐1.  Mass  spectrum  of  WT  NikR  and  MutNikR.  The  calculated  mass  of  WT  NikR  (A)  and  MutNikR  (B)  is  15093.7  Da  and  15006.7  Da,  respectively.      

Mass reconstruction of +TOF MS: 1.534 to 1.750 min from 131119_2718.wiff Max. 863.1 cps.

1.47e4 1.48e4 1.49e4 1.50e4 1.51e4 1.52e4 1.53e4 1.54e4Mass, amu

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

Inten

sity,

cps

15093.0

Sample Name: N/A AIMS - U of TESI - QStar XL

Acq. Date: N/AAcq. Time: N/A

Acq. File: Mass reconstruction of +TOF MS: 1.534 to 1.750 min from 131119_2718.wiff Polarity/Scan Type: N/AMass reconstruction of +TOF MS: 1.484 to 1.667 min from 131119_2717.wiff Max. 312.6 cps.

1.44e4 1.45e4 1.46e4 1.47e4 1.48e4 1.49e4 1.50e4 1.51e4 1.52e4 1.53e4 1.54e4 1.55e4 1.56e4Mass, amu

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

313

Inten

sity,

cps

15006.0

Sample Name: N/A AIMS - U of TESI - QStar XL

Acq. Date: N/AAcq. Time: N/A

Acq. File: Mass reconstruction of +TOF MS: 1.484 to 1.667 min from 131119_2717.wiff Polarity/Scan Type: N/A

A  

B  

15093.0  

15006.5  

Mass  (amu)  

Intensity  (cps)  à

 

Page 46: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

38  

                 

                     

                                 Figure   7-­‐2.   Mass   spectrum   of   MutNikR   protein   crosslinked   with   the   azobenzene  crosslinker  (BSBCA).  (A),  (B)  and  (C)  represent  the  reaction  carried  out  at  4X,  6X  and  8X  concentration   of   BSBCA   with   respect   to   MutNikR,   respectively.   The   calculated   mass   of  BSBCA-­‐MutNikR  is  15458.5  Da.  

C  

A  

B  

C  

15459.4  

15005.4  

15708.5  

15006.5  

15458.5  

15458.5  

15005.4   16574.0  

Mass  (amu)  

Intensity  (cps)  à

 

Page 47: Engineering!aNi(II)-independentNikR!to!determine!the!role!of!the! … · 2015-08-31 · ! ! !!1! 1.!Introduction! 1.1 RoleandRegulation!of!Nickel!in!Biological!Systems!! Nickel!is!an!essential!trace!element!required!by!many!bacteria,!fungi,!and!plants

   

 

39  

                     

                     Figure   7-­‐3.   Mass   spectrum   of   MutNikR   protein   crosslinked   with   the   sulfhydryl  crosslinkers.   The   calculated   mass   of   BMOE-­‐MutNikR   (A)   and   BMH-­‐MutNikR   (B)   is  15226.5  Da  and  15283  Da,  respectively.      

ESI Mass Spectrum

Comment ESI+, de-salt, 100x dilutionDA Method AIMS_Protein.m Instrument Agilent 6538 Q-TOF Acq Date, Time 11/7/2014 11:11:52 AMSample Name PBS-3X BMOE Data File 141107_3057.d Acq Method AIMS_Default.m

1 of 1

ESI Mass Spectrum

Comment ESI+ Desalt 100 x dilnDA Method AIMS_Protein.m Instrument Agilent 6538 Q-TOF Acq Date, Time 11/24/2014 10:08:02 AMSample Name 3.25XBMH-in Tris Data File 141124_3348R.d Acq Method AIMS_Default.m

1 of 1

15226.5  

15004.4  

15282.5  

Mass  (amu)  

Intensity  (cps)  à