Engineering - RF Power Amplifier Design - eBook

download Engineering - RF Power Amplifier Design - eBook

of 27

Transcript of Engineering - RF Power Amplifier Design - eBook

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    1/27

    RF Pow er Am pl i f ier Design

    Markus Mayer & Ho lger A r thaber

    Department of Electrical Measurements and Circuit Design

    Vienna University of Technology

    June 11, 2001

    2

    Contents

    Basic Amplifier Concepts

    lClass A, B, C, F, hHCA

    l Linearity Aspects

    lAmplifier Example

    Enhanced Amplifier Concepts

    l Feedback, Feedforward, ...

    lPredistortion

    l LINC, Doherty, EER, ...

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    2/27

    3

    Ef f ic ienc y Def in i t ions

    Drain Efficiency:

    Power Added Efficiency:

    DC

    OUT

    DP

    P=

    =

    =

    GP

    PPD

    DC

    INOUTPA

    11

    4

    Idea l FET Input and Output Charact er is t i c s

    DD

    KDD

    V

    VV =

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    V =VGS P

    V =0GS

    Ohmic Saturation Breakdown

    gm

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    3/27

    5

    Max imum Outpu t Pow er Matc h

    m

    KDS

    OPT I

    VV

    R

    =max

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    V =VGS P

    V =0GS

    Ohmic Saturation Breakdown

    gm

    6

    Class A

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    4/27

    7

    Class A Ci rcu i t

    VDD

    RLDG

    S

    48%

    dB)14(e.g.

    50%

    PA =

    =

    =

    A

    D

    GG

    8

    Class B

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    5/27

    9

    Class C

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

    10

    Class B and C Ci rc u i t

    %65

    dB)(86dB-

    %78

    PA =

    =

    =

    A

    D

    GG

    %0

    1

    %100

    PA

    G

    D

    VDD

    RL

    DG

    S

    f0

    Class B Class C

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    6/27

    11

    In f luence of Conduc t ion Angle

    12

    Class F (HCA . .. harmonic con tro l led am pl i f ier )

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    7/27

    13

    hHCA (ha lf s inuso ida ll y d r i ven HCA)

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

    14

    Cl ass F and hHCA Ci rcu i t

    VDD

    RLVDS

    ID Ze(n)

    0, n=eveninf, n=even

    Zo(n)

    0, n=1inf, n=odd

    %87

    dB)(95dB-

    0%10

    PA =

    =

    =

    A

    D

    GG

    Class F hHCA

    %96

    dB)(151dB

    0%10

    PA =

    +=

    =

    A

    D

    GG

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    8/27

    15

    hHCA Thi rd Harmoni c Peak ing

    0VGS

    IDS

    Im

    2VP VP VDSmaxVDDVKVDS

    0

    VGS VDS

    2p

    p

    Q

    IDS

    Im

    0 2ppQ

    16

    Thi rd Harmonic Peak ing Ci rcu i t

    VDD

    RLD

    GS

    f03f0

    %87

    dB)(14.60.6dB

    91%

    PA =

    +=

    =

    A

    D

    GG

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    9/27

    17

    L inear i t y Aspec t s

    18

    L inear i t y Aspec t s

    Class A

    Class B

    Class AB

    Class C

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    10/27

    19

    L inear i t y Aspec t s

    Ideal strongly nonlinear model Strong-weak nonlinear model

    20

    Ampl i f ier Des ign An Ex ample

    Balanced Amplifier Configuration

    Port 1Z=50 Ohm Port 2

    Z=50 Ohm

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    11/27

    21

    Ampl i f ier Des ign Simula t ion

    Gate & Drain Waveforms

    0 500 1000 1300

    Time (ps)

    Drain waveforms

    -5

    0

    5

    10

    15

    20

    25

    -1000

    0

    1000

    2000

    3000

    4000

    5000Inner Drain Voltage (L, V)

    Amp

    Inner Drain Current (R, mA)

    Amp

    0 500 1000 1300

    Time (ps)

    Gate waveforms

    -3

    -2

    -1

    0

    1

    -1000

    -500

    0

    500

    1000

    Inner Gate Voltage (L, V)

    Amp

    Inner Gate Current (R, mA)

    Amp

    22

    Ampl i f ier Des ign Simula t ion

    Dynamic Load Line & Power Sweep

    0 3 6 9 12 15

    Voltage (V)

    Dynamic load line

    -2000

    0

    2000

    4000

    6000

    8000IVCurve (mA)

    IV_Curve

    Dynamic Load Line (mA)

    Amp

    0 5 10 15 20 24

    Power (dBm)

    Power Sweep 1 Tone

    0

    10

    20

    30

    40

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Output Power (L, dBm)

    Amp

    PAE (R)

    Amp

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    12/27

    23

    Ampl i f ier Des ign Measurements

    Single Tone & Two Tone

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35Pin[dBm]

    Pout[dBm],Gain[dB]

    0

    10

    20

    30

    40

    50

    60

    70

    80PAE[%]

    Pout

    Gain

    GammaIn

    PAE

    1dBCP

    0

    10

    20

    30

    40

    50

    60

    0 5 10 15 20 25 30 35Pin [dBm]

    Pout[dBm],IMDD[dBc],Gain[dB]

    0

    10

    20

    30

    40

    50

    60PAE[%]

    Pout

    IMDD

    Gain

    PAE

    24

    Am pl i f ier Nonl inear it y

    Gain and Phase depends on Input Signal

    3rd Order Gain-Nonlinearities:

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    13/27

    25

    Am pl i f ier Nonl inear it y

    Higher Output Level (close to Saturation) resultsin more Distortion/Nonlinearity

    26

    Nonl inear it y leads t o?

    Generation of Harmonics

    Intermodulation Distortion / Spectral Regrowth

    SNR (NPR) Degradation

    Constellation Deformation

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    14/27

    27

    I nt e rmodu la t i on and Harmon ics

    28

    Spec t ral Regrow t h

    Energy in adjacent Channels

    ACPR (Adjacent Channel Leakage Power Ratio) increases

    -15 -10 -5 0 5 10 15-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    relativepower/dB

    relative frequency / MHz

    ACPR1>60dB

    ACPR2>60dB

    ACPR1=16dB

    ACPR2=43dB

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    15/27

    29

    Reduc ed NPR (Noise Pow er Rat io)

    Input Signal

    Degradation of Inband SNR

    Noisy Constellation

    Output Signal ofNonlinear Amplifier

    30

    Conste l la t ion Deformat ion

    Input Signal Output Signal ofNonlinear Amplifier(with Gain- and Phase-Distortion)

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    16/27

    31

    Mode l ing o f Nonl ineari t i es

    with Memory-Effects

    lVolterra Series (=Taylor Series with Memory)

    without Memory-Effects

    lSaleh Model

    l Taylor Series

    lBlum and Jeruchim Model

    lAM/AM- and AM/PM-conversion

    2

    2

    2 1)(

    1)(

    r

    rrg

    r

    rrf

    a

    a

    +=

    +=

    better

    performance

    32

    AM/AM- and AM/PM-Conve rsion

    GaAs-PA

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    17/27

    33

    AM/AM- and AM/PM-Conve rsion

    LDMOS-PA

    34

    How t o preserve Linear i t y?

    Backed-Off Operation of PA

    lSimplest Way to achieve Linearity

    Linearity improving Concepts

    lPredistortionl Feedforward

    l ...

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    18/27

    35

    How t o preserve Ef f ic iency?

    Efficiency improving Concepts

    lDohertylEnvelope Elimination and Restoration

    l ...

    Linearity improving Concepts

    lHigher Linearity at constant Efficiency Higher Efficiency at constant Linearity

    36

    Direc t (RF) Feedbac k

    Classical Method

    Decrease of Gain Low Efficiency

    Feedback needs more Bandwidth than Signal

    Stability Problems at high Bandwidths

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    19/27

    37

    Dist or t ion Feedbac k

    Feedback of outband Products only

    Higher Gain than RF feedback

    Stability Problems due to Reverse Loop

    38

    Feedforward

    Overcomes Stability Problem by forward-only Loops

    Critical to Gain/Phase-Imbalances0.5dB Gain Error -31dB Cancellation2.5Phase Error -27dB Cancellation

    Well suited for narrowband application

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    20/27

    39

    -30 -20 -10 0 10 20 30-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    relativepower/dB

    relative frequency / MHz

    original signalpredistorted signal

    Cart esian Feedbac k

    AM/AM- andAM/PM-correction

    High Feedback-Bandwidth

    Stability Problems

    I

    Q

    I

    Q

    I

    Q

    modulator

    demodulator

    OPAs

    main amp.

    localoscillator

    RF-output

    baseb

    and

    input

    UMTS example:

    40

    Digi ta l Predis tor t ion

    Digital Implementation of Cartesian Feedback

    Additional ADCs, DSP Power, Oversampling needed

    Loop can be opened no Stability Problems

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    21/27

    41

    Analog Predis tor t ion

    Predistorter has inverse Function of Amplifier

    Leads to infinite Bandwidth (!)

    Hard to realize (accuracy)

    42

    Analog Predis tor t ion

    Possible Realizations:

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    22/27

    43

    LINC (Linear Ampl i f ica t ion by Nonl inear Components)

    AM/AM- andAM/PM-correction

    Digital separation required(accuracy!)

    High Bandwidth,oversampling necessary

    Stability guaranteed

    signal

    separations(t)

    s (t)1K

    Ks (t)2

    K(s (t)+1 s (t))=Ks(t)

    2

    Ks (t)1

    Ks (t)2

    -30 -20 -10 0 10 20 30-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    relativepower/dB

    relative frequency / MHz

    ACPR1>60dB

    ACPR2>60dB

    ACPR1=18dB

    ACPR2=29dB

    s(t)s

    1(t)

    UMTS example:

    44

    Doherty Am pl i f ier

    Auxiliary amplifier supports main amplifier during saturation

    PAE can be kept high over a 6dB range

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    23/27

    45

    Doherty Am pl i f ier

    Gain vs. Input Power

    No improvement of AM/AM- and AM/PM-distortion

    Behavior of auxiliary amplifier very hard (impossible) to realize

    Stability guaranteed

    Efficiency vs. Input Power

    main amp. (A1)

    aux. amp. (A2)

    PIN

    POUT

    dohe

    rtyconfig

    uratio

    n(A

    1+A2)

    46

    EER (Envelope El im inat i on and Restorat ion)

    Separating phase and magnitude information

    Elimination of AM/AM-distortion

    Application of high-efficient amplifiers(independent of amplitude distortion)

    Stability guaranteed

    signalseparation

    amplitude information

    phase information

    RF input

    RF output

    high efficiencypower amplifier

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    24/27

    47

    EER (Envelope El im inat i on and Restorat ion)

    Analog realization

    l Limiter hard to build

    l Accuracy problemsl Feedback necessary

    Digital realization

    l Oversampling + high D/A-conversion rates required

    l High power consumptionof DSP and D/A-converters

    l Possible feedbackelimination

    lCompensation of AM/PM-distortion possible

    D

    A

    D

    A

    D

    A

    amplitude information

    phase information

    modulator

    RF output

    high efficiencypower amplifier

    digitalsignal

    processor

    local oscillator

    supply voltage amplifier

    I

    Q I

    Q

    digitalbasebandinput

    peak detectorsupply voltage

    amplifier

    limiter

    high efficiencypower amplifier

    RF output

    peak detector

    RF input

    48

    EER (Envelope El im inat i on and Restorat ion)

    Bandwidth of Magnitude- andphase-signal have higher thantransmit signal

    Five times (!) oversamplingnecessary to achieve standardrequirements

    -30 -20 -10 0 10 20 30-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    relativepower/dB

    relative frequency / MHz

    MagnitudePhase

    -30 -20 -10 0 10 20 30-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    relativepower/dB

    relative frequency / MHz

    ACPR1>60dB

    ACPR2>60dB

    ACPR1=33dB

    ACPR2=40dB

    ACPR1=51dB

    ACPR2=36dB

    ACPR1=53dB

    ACPR2=49dB

    full bandwidth3 B

    0

    bandwidth

    5 B0 bandwidth7 B

    0bandwidth

    UMTS example:UMTS example:

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    25/27

    49

    Adapt ive Bias

    Varying/Switching of Bias-Voltage depending onInput Power Level

    Selection of Operating Point with high PAE

    Applicably for nearly each type of Amplifier

    RF input

    peak detector

    biascontrol

    RF output

    high efficiencypower amplifier

    50

    32 33 34 35 36 37 38 39 4020

    30

    40

    50

    60

    70

    80

    90

    output power / dBm

    poweraddedefficiency/%

    VD

    =3.5V

    VD

    =4.5V

    VD

    =6.5V

    Adapt ive Bias

    Single tone PAE for switchedVDD with VG kept constant

    Simply to implement Concept

    Stability guaranteed

    Possible problems:

    l DC-DC converter with highefficiency necessary

    l Possible Linearity Change(can increase and decrease)especially for HCAs

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    26/27

    51

    Summary

    Digital Realization required to achieve Accuracy

    Problem of Stability for high Bandwidth Application

    Higher Bandwidths (Oversampling) necessary,depending on Order of IMD cancellation

    Predistortion gives best Results while keepingEfficiency high (valid for high Output Levels > 40dBm)

    52

    Figure Referenc es

    F. Zavosh et al,Digital Predistortion Techniques for RF PowerAmplifiers with CDMA Applications,Microwave Journal, Oct. 1999

    Peter B. Kenington,High-Linearity RF Amplifier Design,Artech House, 2000

    Steve C. Cripps,RF Power Amplifiers for Wireless Communications,Artech House, 1999

  • 8/8/2019 Engineering - RF Power Amplifier Design - eBook

    27/27

    53

    Contac t In format ion

    DI Markus Mayer

    ( +43-1-58801-35425

    - [email protected]

    DI Holger Arthaber

    ( +43-1-58801-35420

    - [email protected]