EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

download EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

of 65

Transcript of EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    1/65

    Unit

    Unit

    Unit

    Unit1111

    1

    M

    aterials

    M

    aterials

    M

    aterials

    M

    aterials

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    2/65

    2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    3/65

    Band

    Structures

    Plentyoffreee-s

    Veryfew(or)no

    freee-s

    Fewfree

    e-s

    OverlappingVB&CB

    La

    rgeE

    g(7eV)

    NarrowEg(1eV)

    Verysmallelectricfield

    forconduction.

    Verylargeelectric

    field

    forconduction.

    Smallelectricfieldfor

    conduction.

    +TCR(Temp

    Co-effiof

    Resistan

    ce)

    -TCR

    -TCR

    3

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    4/65

    Classicalfreeelectronth

    eory(or)Mac

    roscopicTheory

    1900-DrudeandLorentz-

    freeelectronsob

    eyingthelawsofclassical

    mechanics-freeelectronsassumedtomoveina

    constantpotentia

    l.

    Quantumfreeelectrontheory(or)MicroscopicTheory

    1928-Somm

    erfeld-freeelectronsobeythequantumlaws-freeelectrons

    ElectronTheoryofSolids

    ElectronTheoryofSolids

    ElectronTheoryofSolids

    ElectronTheoryofSolids

    areassumed

    tomoveina

    constantpotentialandthefermilevel

    electronsareresponsiblefor

    thepropertiesofmetals.

    Zonetheory(or)Bandth

    eory(or)Brillouintheory

    1928-Bloch-electronsmoveinaperiodicfield

    providedbythelattice.

    Conceptofh

    oles,originof

    Bandgapandef

    fectivemassof

    electrons,

    mechanismof

    semiconductivity

    basedonband.

    4

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    5/65

    ClassicalFree

    e-

    Theory

    Qu

    antumFree

    e-Theory

    Macroscopictheory

    Mic

    roscopictheory

    Alle-sin

    cludingcoreand

    -

    5

    valencee

    -sareresponsible

    forconduction.

    responsibleforconduction.

    Alle-splayamajorrolein

    co

    nduction.

    Ferm

    ilevele-splaya

    majorroleinconduction.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    6/65

    Mobility&Conduct

    ivityinMetalConductors

    Mobility&Conduct

    ivityinMetalConductors

    Mobility&Conduct

    ivityinMetalConductors

    Mobility&Conduct

    ivityinMetalConductors

    Inmetalstheelectricalconductivitydepends

    onthenum

    berofchargecarriers(free

    electrons)presentinthatma

    terial.

    Letusconsiderasolidmaterial(S)(metal)

    oflengthlandareaofcros

    s-sectionA.

    6

    Letnnum

    berofchargecarriers(freeelectrons)bepresentinit.

    Totalnumb

    erofelectronsin

    thesolid(metal)

    N=nAl.......(1)

    TotalchargeQ=Totalnumberofelectronsx

    Chargeofoneelectron

    Q=N(e)

    .......(2)

    Negative

    signindicatestha

    tthechargeofth

    eelectronisnegative.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    7/65

    Substitutingeqn.(1)i

    n(2)weget

    Totalchargepresentinthe

    solid

    Q=nA

    l(e)

    .......(3)

    Whenvoltage(V)isappliedtothemetal,

    theelectr

    onsstartsmovingwithan

    averagev

    elocitycalleddriftvelocity(vd)

    fromone

    endtotheotheri

    .e.,alonga

    lengthl

    (or)throughadistancel,giving

    7

    .

    Therefore

    currentI

    =

    To

    ta

    lch

    eintheso

    lid

    Time

    ta

    ken

    for

    themovemen

    to

    fch

    es

    arg

    arg

    I

    =

    .......(4)

    Substitutingeqn.(3)in(4)weget

    Current

    I

    =

    .......(5)

    Q tn

    Al

    e

    t

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    8/65

    Currentd

    ensity(J)i.e.,the

    current,flowing

    throughthesolid

    per

    unitareaisgivenbyJ

    =

    .......(6)

    Substitutin

    geqn.(5)ineqn.

    (6)weget

    J

    =

    .......(7)

    I A nAl

    e)

    tA((((

    Sincedriftvelocity

    vd=

    averagedis

    cetravelledbytheel

    ectron

    tan

    8

    vd=

    Equation(7

    )canbewrittena

    s

    J

    =

    nvd(e)

    .......(8)

    l t

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    9/65

    Currentdensit

    yfromOhmsLaw

    Currentdensit

    yfromOhmsLaw

    Currentdensit

    yfromOhmsLaw

    Currentdensit

    yfromOhmsLaw

    FromOhmsl

    aw,

    I

    =

    .......(9)

    Electricalres

    istance(R)-oppositionofferedbythesolid(metal)forthe

    movementof

    electrons,given

    by

    R

    =

    .......(10)

    V R

    lA

    9

    whereistheresistivityofthesolid(metal).

    Substitutinge

    qn.(10)in(9)we

    get

    Current

    I

    =

    .......(11)

    Fromeqn(6)

    J

    =

    =

    =

    VA l

    I A

    VA l

    A

    Vl

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    10/65

    J

    =

    .......(12)

    Conductivity()istherecipro

    calofresistivity

    ()

    =

    (a)

    Electricfield

    (E)=

    (b)

    Subabovetwovaluesineqn.(12),weget

    V l1 V l

    10

    J

    =

    E

    .......(13)

    Comparingeqn.(

    8)&(13),we

    get

    E

    =nvd(e)

    =

    nv

    e

    Ed

    =

    n

    (e)

    .......(

    14)

    dv E

    =

    Mobility

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    11/65

    Thedriftvelocity(vd)acquiredb

    ytheelectronperunitelectricfield(E)

    appliedtoit.

    dv E

    =

    (i.e.,)

    Mobility

    mV1S1

    Mobility()

    Theave

    ragevelocityac

    quiredbythefr

    eeelectronina

    particular

    direction,duetotheapplication

    ofelectricfieldiscalleddriftvelocity.

    11

    -

    Average

    distan

    ce

    trave

    lle

    db

    yan

    e

    Time

    tak

    en

    d

    l

    v

    t

    =

    =

    ms1

    d

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    12/65

    Itisthetimetakenby

    thefreeelectronto

    reachitsequilibriumpositionfromitsdisturbed

    position,in

    thepresenceofa

    ppliedfield.

    Itistheaveragetimetaken

    byafree

    electronbetweentwosuccessivec

    ollision.

    c

    dv

    =

    1 dv

    =

    Relaxatio

    ntime()

    Collisiontime(c)

    Foraisotropicsolidlikemetals

    =c

    ismeanfree

    path.

    Theaveragedistancetravelledbetweentwo

    successivecollisioniscalledm

    eanfreepath.

    where

    istherootmean

    squarethevelocityoftheelectron.

    c

    c

    =

    12

    Meanfreepath()

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    13/65

    (Classical

    FreeElectronTheory)

    1sttheorytoex

    plaintheelectricalconduction

    inconductingm

    aterials.

    DrudeandLo

    rentzin1900.

    Freeelectron

    sarefullyresponsibleforelectricalconduction.

    Dr

    ude-Lore

    ntzTheory

    13

    om-centra

    nuceuswt+

    vecarge

    surroundedby

    electronsofvecharges.

    Drudeassumedthattheelectro

    nsin

    ametalarefre

    etomoveinall

    directionsand

    formanelectrongas.

    Thesefreeelectronsmoverandomlyinallpos

    sibledirections

    justlikethe

    gasmolecules

    inacontainer.

    Nucleus

    aen

    ceeecrons

    Coreelectrons

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    14/65

    Postulates-Classicalfreeelec

    trontheory

    1.

    Inanatomelectronrevolvearoundthenucleus.

    2.Thevalenc

    eelectronsofato

    msarefreetomoveaboutthewho

    levolume

    ofmetalsli

    kethemolecules

    ofaperfectgasin

    acontainer.

    3.Intheabsenceofelectricfie

    ld,t

    hesefreeelec

    trons

    moveinrandomdirections

    andcollidewitheach

    otherandallthecollisionsareperfectlyelastic.

    4.Sincetheelectronsareassumedtobeerfect

    astheo

    beth

    elawsof

    14

    ClassicalK

    ineticTheoryofGases.

    5.AlsotheelectronvelocitiesinametalobeytheClassicalMaxw

    ell

    Boltzmann

    DistributionofV

    elocities.

    6.Whenanelectricfield(E)is

    appliedto

    themetal,thefreeelectronsare

    acceleratedinthedirectionopposite

    tothedirec

    tionofappliedelectricfield.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    15/65

    the

    quantityofelectricchargeflow

    sinunittimeper

    unitarea

    ofcrosssectionoftheconductorperunitpoten

    tialgradient.

    QAtE

    =

    ohm1m1

    ElectricalCondu

    ctivity()

    ThermalConductivity(K)

    15

    theamountofheatflowingthroughan

    unitareaofamaterialper

    unittemperatu

    regradient.

    K=

    ()

    W/

    m/K.

    Thenegativesignindic

    atesthatheatflowsfromhotendtocoldend.

    Q dT

    dx

    F HG

    I KJ

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    16/65

    Quantity

    ofelectricchargeflowinunittimeperunitareaof

    cross

    sectionoftheconductorperu

    nitpotentialgrad

    ient.

    QA

    tE

    =

    ohm1m1

    Expression

    forElectricalConductivity

    ElectricalCo

    nductivity()

    16

    enaneecrc

    e

    sappe

    oaconucor,

    ereee

    ecronsare

    accelerate

    dandgiveriseto

    current(I)whichflowsinthedirectionof

    electricfield.

    2)

    Theflowofchargesisgivenintermsofcurrentdensity(J).

    3)

    Theelectr

    onsmovewithavelocitycalleddr

    iftvelocity(vd)andthedrift

    velocitydirectionisoppositetothefielddirection.

    4)

    Inanordinaryconductor,th

    ecurrentdensity

    isproportionalto

    theapplied

    electricfield.

    J

    E

    J=E

    ...(1)

    (-proportionalityconstant-electricalcondu

    ctivityofaconduc

    tor).

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    17/65

    Duetoth

    eappliedelectricfield(E),theele

    ctronsacquirean

    acceleration

    acanbeg

    ivenby

    Acceleration(a)=

    ...(2)

    Letusconsiderthat

    Ebetheelectricfieldintensityappliedtoaconductor,

    Dr

    iftveloc

    ity

    v

    laxationtime

    d

    b

    gb

    g

    Re

    accelerationisthechangeinvelocityovertime

    17

    ,

    mbe

    themassoftheelectron,

    vbet

    hevelocityofelectronand

    Abe

    theareaofcrosssection.

    Whenanelectricfieldofstrength(E)isappliedtotheconducto

    r,theforce

    experienced

    bythefreeelectronsisgivenby

    F=eE

    ...(3)

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    18/65

    Dueto

    thisforce,thefreeelectronswillacquireanaccelerationa.

    FromN

    ewtons2ndlawo

    fmotion,t

    heforceacquiredbyth

    eelectrons

    canbewrittenas

    F=ma

    ...(4)

    Equating(3)and(4)

    e

    E

    =

    ma

    a

    =

    ...(5)

    eE

    18

    F HG

    I KJ

    e m

    E

    Now,substitutingthevalueofafromeqn(2)in

    eqn.(

    5),weget

    =

    vd

    =

    ...(6)

    eE

    mm

    vd

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    19/65

    Substitutingeq

    n.(6)ineqn.(7),weget

    J=

    n(e)

    J=

    ...(8)

    Curren

    tdensity(currentp

    erunitareaperuni

    ttime)isdetermine

    dbythe

    numberofcharge

    carriersanditsdriftvelocity

    J

    =

    n(e)vd

    ...(7)

    FFFF HHHHGGGG

    IIII KKKKJJJJ

    e m

    E

    ne

    E

    2

    19

    Comparingeqn.(8)andeqn.(1),weget

    E=

    =

    .....(9)

    Thisistheexpressionforelectricalconductivity.

    ne m

    E

    2

    ne m

    2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    20/65

    i.

    Thustheelectricalconductivityisdirectlypro

    portionaltoelec

    tron

    density

    andrelaxationtim

    eoftheelectrons.

    ne m

    2

    =

    Conclusion

    20

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    21/65

    ThermalConductivity(K)

    Amou

    ntofheatflowin

    gthroughanunitareaofamaterialperunit

    temperaturegradient.

    K=

    ()

    W/m/K.

    Thenegativesignindicatesthat

    heatflowsfromh

    otendtocoldend

    Q dT

    dx

    F HG

    I KJ

    21

    wereK-Coefficientofthermalcon

    ductivityofmateria

    l,

    Q-Amoun

    tofheatflowingpe

    runittimethrough

    anunitcross-sectio

    nalarea

    dT/dx-Temperaturegradient.

    Ingen

    eral,t

    hethermalconductivityofamaterialisduetothe

    presence

    oflatticevibrations(i.e.,phonons)andelectrons.Hencethetotaltherma

    l

    conductioncanbewrittenas,

    Ktotal

    =K

    electron

    +

    Kphon

    ons

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    22/65

    A

    phono

    n

    isaquasiparticlecha

    racterized

    by

    the

    quantizationofthemodesoflatticevibrationsofperio

    dic,

    elasticcry

    stalstructureso

    fsolids.

    Thestudy

    ofphononsis

    animportantp

    artofsolidstate

    physics,becausephononsplayamajor

    roleinmany

    of

    thephysicalproperties

    ofsolids,includingamaterial's

    22

    termaaneectrcaconuctvtes.

    Aphonon

    isaquantumm

    echanicaldesc

    riptionofaspecial

    typeofvibrationalmotion,

    known

    asnormalmodes

    in

    classic

    almechanics,

    in

    whicha

    latticeuniform

    ly

    oscillatesatthesamefrequency.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    23/65

    Letuscon

    siderauniformrodABwithtemperaturesT

    1(hot)atendA

    andT

    2(cold)atendB.

    HeatflowsfromhotendA

    tothecoldend

    B.Letuscons

    ideracross

    sectionalareaCwhichisatadistanceequa

    ltothemeanfreepath()of

    theelectronbetweentheend

    sAandBoftherodasshowninfigure.

    Derivation

    23

    Theamoun

    tofheat(Q)conductedbytherod

    fromtheendAto

    Bof

    length2

    isgivenby

    Q

    Q

    =

    ...(1)

    T1T2=

    Temperaturedifferencebetweentheen

    dsAandB(Kelvin)

    AT

    T

    t

    (

    )

    1

    2

    2

    K=C

    oefficientofthermal

    conductivity.

    A=

    Areaofcrosssection

    oftherod.

    2=

    Lengthofrod.

    t=Timeforconduction.

    KA

    T

    T

    t

    (

    )

    1

    2

    2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    24/65

    Co-efficientoftherm

    alconductivityperunitareaperunittime

    K

    =

    ...(

    2)

    Letus

    assumethatthereisequalproba

    bilityfortheele

    ctronsto

    move

    inallthesixdirections.

    Since

    eachelectrontravelswiththermal

    velocityvandifnisthefreeelectrondensity,

    thenonanave

    rage1/6nvelectronswilltravelin

    Q

    T

    T

    (

    )

    1

    2

    2

    24

    Sixprobable

    directionsof

    electron

    movement

    anyonedirection.

    Thenumberelectrons

    crossingunitarea

    per

    unittimeatC

    =

    ...(3)

    1 6nv

    AccordingtoKineticTh

    eoryofGas,free

    electronsareassumedtobe

    gasmoleculeswhicharefreelymoving.

    Theaveragekineticen

    ergyofanelectron

    =

    athotendAoftem

    perature(T

    1)

    3 2

    1

    K

    TB

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    25/65

    Avera

    gekineticenergyofanelectron

    atcoldendBoftemperature(T

    2)

    =

    3 2

    2

    K

    TB

    Numberofelectrons

    AverageK

    E

    of

    electron

    movingfrom

    AtoB

    x

    .

    .

    =

    1 6

    3 2

    1

    nv

    K

    TB

    .

    =

    1

    Heatenergytransferre

    dperunit

    area

    perunittimefromend

    A

    toBacrossC

    25

    =

    4

    1

    B

    ...

    Similarly,t

    heheatenergytransferred

    perunitareaperunit

    timefrom

    endBtoAacrossC

    1 6

    3 2

    2

    nv

    K

    TB

    .

    =

    1 4

    2

    nv

    K

    TB

    =

    ...(

    5)

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    26/65

    Thenetheatenergy

    transferredfrom

    endAtoBperunitareaper

    unittimeacrossCcan

    begotbysubtrac

    tingeqn.(

    5)from

    eqn.(

    4)

    Q

    =

    Q

    =

    ...(

    6)

    1 4

    1 4

    1

    2

    nvK

    T

    nvK

    T

    B

    B

    1 4

    1

    2

    nvK

    T

    T

    B(

    )

    Substi

    tutine

    n.6in

    en.2weet

    K

    =

    K

    =

    ...(7)

    1 4

    2

    1

    2

    1

    2

    nv

    K

    T

    T

    T

    T

    B(

    ).

    (

    )

    nv

    KB

    2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    27/65

    Substitutingeqn.(8)ineq

    n.(7)weget

    K

    =

    nvK

    v

    B

    Relaxationtime()=

    Collisiontim

    e(c)

    v=

    ...(8)

    Wekn

    owformetals,

    v

    (

    c=

    )

    K=

    nvK

    B

    2

    27

    K

    =

    ...(9)

    nv

    KB

    22

    Equatio

    n(9)istheclassicalexpressionfo

    rthermalcondu

    ctivity.

    Conclusion

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    28/65

    theratiobetweenthethermalconductivityandtheelectrical

    conductivityofametalisdirectlyproportiona

    ltotheabsolute

    temperatureofthemetal.

    K

    T

    W

    iedemann

    -FranzL

    aw

    28

    where

    Lisaconstantc

    alledLorentznum

    berwhosevalueis

    equalto2.4

    4x108W

    k2at293K(Quantu

    mmechanicalvalue).

    K

    =

    LT

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    29/65

    (a)

    ByC

    lassicaltheor

    y

    Theexpressionforelectricalc

    onductivity()=

    Theexpressionforthermalco

    nductivity(K)=

    ne m2

    nvK

    B

    22

    Thermalconductivit

    y

    nv

    KB

    2

    29

    Electricalconductivity

    ne m

    2

    =

    Weknowthat,

    Kineticenergyofanele

    ctron

    mv2=

    KBT

    3 2

    K

    =1 2

    2 2

    mv

    Ke

    B

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    30/65

    =

    K

    3 2

    2

    K

    T

    K

    eB

    B

    .

    =

    32

    2

    KeB

    F HG

    I KJ

    T

    K T

    =

    3 2

    2

    KeB

    F HG

    I KJ

    K T

    =

    L

    =

    L

    3 2

    2

    KeB

    F HG

    I KJ

    K

    =LT

    3 2

    138

    10

    1602

    10

    23 1

    9

    2

    . .

    L M M

    O P P

    e

    j

    30

    a.

    Itisfoun

    dthattheclassicalvalueofLorentznumber,isonlyhalf

    oftheexperimental(i.e.,)

    2.44x108W

    k

    2.

    b.

    ThisdiscrepancyofLv

    alueisOneofthefailureofclassical

    theo

    ry(experimenta

    landtheoretical).T

    hisdrawbackcanbe

    rectifiedbyQuant

    umTheory.

    L

    =1.112x108W

    k2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    31/65

    Theexpressionforelectricalc

    onductivity()=

    (b)

    ByQuantumtheory

    Massofthe

    electron(m)is

    replacedbyth

    eeffectivema

    ss-m

    *

    ne m

    2

    *

    L NM M

    O QP P

    Rearrangingtheexpressionfor

    thermalconductivityandsubstitutingthe

    electronicspe

    cificheat,thethermalconductivity

    canbewrittenas

    31

    Theexpressionforthermalcon

    ductivity(K)=

    Therm

    alconductivity

    Electricalconductivity

    =

    2

    2

    3

    nK m

    T

    B *

    L NM

    O QP

    K

    =

    2

    22

    3

    nK m

    T

    ne m

    B * *

    L NM

    O QP

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    32/65

    K T

    =

    L

    K

    =

    2

    2

    3

    K

    e

    T

    B

    F HG

    I KJ

    K T

    =2

    2

    3

    K

    eB

    FFFF HHHHGGGG

    IIII KKKKJJJJ

    =

    L

    2

    2

    3

    KeB

    F HG

    I KJ

    (3.

    )

    ..

    14 3

    1

    38

    10

    1602

    10

    2

    23 1

    9

    2

    L M

    O P

    L M M

    O P P

    d

    i

    32

    ThusquantumtheoryverifiesWiedem

    ann-Franzlawan

    dithas

    goodagreem

    entwiththeexperimentalvalueof

    Lorentznumber.

    L

    =2.44x10

    8W

    k2

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    33/65

    SuccessofClassica

    lFreeElect

    ronTheory

    1.

    ItverifiesOhmslaw

    .

    2.

    Itis

    usedtoderiveW

    iedemann-Franzlaw.

    3.

    Itex

    plainstheelectricalandthermalconductivitiesofm

    etals.

    4.

    Itex

    plainsopticalpropertiesofmetals

    .

    33

    DrawbacksofClassicalFreeElectronTheory

    1.

    Itisamacroscopic

    theory.

    2.

    Th

    istheorycannotexplaintheelectro

    nconductivityof

    semiconductorsandinsulators.

    3.

    Fe

    rromagnetismca

    nnotbeexplaine

    dbythistheory.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    34/65

    4.

    Thisth

    eorycannotexpla

    inthePhotoelectriceffect,Compton

    effectandBlackbodyradiation.

    5.

    Thecalculatedvalueofspecificheatofm

    etalsisnotmatching

    wi

    ththeexperimentalvalue.

    6.

    Atlow

    temperature,Lorentznumberisnotaconstant.Butby

    classicaltheoryitisaco

    nstant.

    34

    7.

    Dualnaturecannotbeexplained.

    8.

    Atom

    icfinespectraca

    nnotbeexplained.

    9.

    Classic

    altheorystatesth

    atallthefreeelectronswillabsor

    benergy,

    butqua

    ntumtheorystate

    sthatonlyfewelectronswillabso

    rbenergy.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    35/65

    1928-Somm

    erfeld-freeelectronsobeythequantumlaws-freeelectrons

    areassumed

    tomoveina

    constantpotentialandthefermilevel

    electronsareresponsiblefor

    thepropertiesofmetals.

    Quantum

    Theory

    Quantum

    Theory

    Quantum

    Theory

    Quantum

    Theory

    35

    ommere

    -reane

    va

    eauresote

    assca

    reee-teory

    included(i)Pa

    ulisExclusio

    nPrinciple.

    (ii)FermiDiracStatistics.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    36/65

    QuantumTheory

    Inclassicaltheorythepropertiesofmetalssuch

    aselectricaland

    thermal

    conductivitiesarewellexplained

    ontheassumptionthattheelectronsinthe

    metalfreelym

    oveslikethep

    articlesofagasandhencecalledfree-

    electrongas.

    Accordingto

    classicaltheory,

    theparticles(electrons)ofagas

    atzero

    kelvinwillha

    vezerokineticenergy(3/2K

    BT)andhenc

    eallthe

    36

    .

    Butaccordingtoclassicaltheorywhenalltheparticlesareatrest,a

    llofthem

    shouldbefille

    donlyinthegroundstateenergylevel,whichisi

    mpossible

    andiscontroversialtothePaulisexclusionprin

    ciple.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    37/65

    "Inanatom

    notwoelectr

    onscanhavethesameseto

    ffour

    quantumnu

    mbers."

    PaulisEx

    clusionPrinciple

    electron

    n

    l

    m

    s

    e1

    1

    0

    0

    +1/2

    e2

    1

    0

    0

    -1/2

    37

    Inaclo

    sedsystem,NO

    twoelectrons

    canOCCUPYtheSAME

    STATE.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    38/65

    Thusinorderto

    filltheelectronsinagivenenergylevel,weshouldknowthe

    following. (

    i)E

    nergydistributionofelectrons

    (ii)N

    umberofavailableenergystates

    (iii)N

    umberoffilledenergystates

    38

    (iv)P

    robabilityoffillinganelectronin

    agivenenergystate,etc.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    39/65

    TheprobabilityF(E)ofanelectronoccupyingagiven

    energylevelisgivenbyFe

    rmi-Diracdistrib

    utionfunction

    F(E)

    =

    .......(1)

    whereEis

    calledFermiene

    rgy

    Fermidistributionfunction

    1

    1+

    F HG

    I KJ

    exp

    E

    E

    K

    TF

    B

    39

    a.

    Inmetals,thee-saredistribute

    damongthedifferentpossibleenergystates.

    b.

    EnergyofthehighestfilledstateatOKiscalled

    theFermiEnerg

    y(EF).

    c.

    ThemagnitudeofE

    Fdependsonhowmanyfr

    eeelectronsthere.

    d.

    AtOKallstatesuptoE

    Fareo

    ccupiedandstatesaboveE

    Fareempty.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    40/65

    AtT=0K

    and

    EEF

    F(E)

    =

    =

    =

    =0

    %

    Itmeansthat0%

    chancetofindtheparticle[electron]

    At0Kalle

    nergystatesabov

    eEFareempty.

    Case-2

    1

    1+

    exp

    (

    )

    11+

    1

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    41/65

    AtT>

    0K

    and

    E=E

    F

    F(E)=

    =

    =

    =

    50%

    #Itmeansth

    at50%

    chanceto

    findtheparticle

    [electron].

    #At0KenergystatesaboveE

    Fareemptyandb

    elowE

    Farefilled

    .

    1

    1

    0

    +ex

    p(

    )

    11

    1+

    1

    Case-3

    41

    Fermidistributionfunctionatdifferenttemperatures

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    42/65

    DensityofEnergyStates

    Aparameterofinterestinthestudyofconduc

    tivityofmetalsand

    semicond

    uctorsisthedensityofstates.

    TheFerm

    ifunctionF(E)givesonlytheprobabilityoffillingup

    ofelectrons

    inagiven

    energystate,itdo

    esnotgivesthe

    informationabout

    thenumber

    ofelectronsthatcanbefille

    dinagivenenergystate.

    Toknowthatweshouldknowthenumberofavailableenergystates,so

    calledden

    sityofstates.

    42

    Definition

    Thenu

    mberofenergystatespresentintheenergyrangefromE

    toE+dEperunitvolumeofthe

    material.

    Z(E)dE= Z

    (E)dE=

    Noo

    fstates

    between

    E

    an

    dE

    dEinameta

    lp

    iece

    Vo

    lumeo

    fthemeta

    lp

    iece

    .

    +

    N

    dE

    V

    olume

    (E)

    .......(

    1)

    N

    dE

    a(E) 3

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    43/65

    Thee

    nergyofthefreeelectronisthesameastheenergy

    ofa

    particleinabox.i.e.,

    n2=n

    x2+ny2+nz2,

    nx,nyandnzarequantumnumbers

    correspondingtothree

    perpendicularaxesx,y

    andz.

    m=M

    assoftheelectro

    n

    a=Sideofcubicallyshapedmetal.

    E

    =h m

    a

    n

    n

    n

    x

    y

    z

    22

    2

    2

    2

    8

    +

    +

    E=

    hn

    ma

    2

    2 2

    8

    ....

    (2)

    ....

    (3)

    43

    NumberofenergystateswithaparticularvalueofEdependson

    thepossiblecombinationsofquantum

    numbershavin

    gthe

    same

    valueofn.

    Tocalculatethenumber

    ofenergystatesw

    ithallpossible

    energie

    s,withnasradius,constructaspherein3Dimspace

    andeve

    rypointwithinthespacerepresen

    tsanenergystate.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    44/65

    Thesphe

    reisfurtherdividedintomany

    shellsandeachofthisshellreresentsa

    Alsoeveryintegerrepresentsoneene

    rgy

    sta

    te,unitvolumeo

    fthisspacecontains

    exactlyonestate.

    Hencethe

    numberofstates

    inanyvolumeis

    equaltothevolumeexpressedinunitsof

    cubesoflatticeparameters.

    44

    particula

    rcombinationo

    fquantum

    number

    s(nx,ny

    andnz)a

    ndtherefore

    represen

    tsaparticularene

    rgyvalue.

    Therefore,thenumberofenergystateswithinasphereofradius

    (n)=

    .

    Sincencan

    haveonlypositiv

    eintegervalues,wehaveto

    consideronlyoneoctantofthesphere.

    4 3

    3

    n

    In3Dview,w

    hatevertheportionstakenintheco-ordinateplanes-Octant

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    45/65

    In3Dview,

    whatevertheportionstakenintheco-ordinateplanes-Octant

    Consideracube-perpendicularcutand

    bisectit-Octant

    AnoctantisoneoftheeightdivisionsofaEuc

    lidean3Dcoordinate

    system

    45

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    46/65

    Hence

    availableenergy

    states=

    .

    Inorderto

    calculatethenum

    berofstateswith

    inasmall

    energyintervalEandE+dE

    ,wehavetocons

    tructtwo

    sphereswithradiinand(n+

    dn)andcalculatethe

    spaceoccu

    piedwithinthese

    twospheres.

    Similarly,t

    henumberofav

    ailableenergysta

    teswithinthesph

    ere

    1 8

    4 3

    3

    n

    F HG

    KJ

    46

    oraus

    n+dn

    =

    Thereforenumberofavailableenergystates

    betweentheshellsof

    radiusn

    andn+dn(or)betweentheenergy

    levelsEandE+

    dEis

    givenby

    N(E)dE=

    1 8

    4 3

    3

    (

    )

    n

    dn

    +

    L NM

    O QP

    1 8

    4 3

    1 8

    4 3

    3

    3

    n

    dn

    n

    +

    F HG

    I KJ

    F HG

    I KJ

    b

    g

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    47/65

    Omittinghighe

    rpowersofdn

    N(E)dE

    =

    .......(

    4)

    From

    equa

    tion

    (3),

    2

    2n

    dn

    n

    h2

    2

    1 8

    4 3

    3

    3

    3

    3

    2

    2

    3

    F HG

    I KJ

    +

    +

    +

    n

    dn

    ndn

    ndn

    n

    =

    47

    E

    =

    ma

    2

    8

    n2

    =

    .......

    (5)

    n

    =

    .......

    (6)

    8

    2

    2

    ma

    h

    E

    8

    22

    1

    2

    1

    2

    ma

    h

    E

    F HG

    I KJ

    /

    /

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    48/65

    n

    dn

    =

    .......

    (7)

    Su

    bs

    tituting

    eqns.

    (6)&(7)in

    eqn.

    (4)

    4

    22

    ma h

    dE

    n

    ndn

    2n

    dn

    =

    8

    22

    ma

    h

    dE

    Also

    differen

    tia

    tingeqn

    .(5)wege

    t,

    n2

    =

    ....

    (5)

    8

    2

    2

    ma

    h

    E8

    22

    1

    2

    1

    2

    ma

    h

    E

    F HG

    KJ

    /

    /

    n

    =

    48

    =

    N(E

    )dE

    =

    .......(

    8)

    28

    4

    22

    1

    2

    1

    2

    22

    ma

    h

    E

    ma

    h

    dE

    F HG

    I KJ

    F HG

    KJ

    /

    /

    4

    8

    22

    3

    2

    12

    ma

    h

    E

    dE

    F HG

    I KJ

    /

    /

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    49/65

    Densityofsta

    tesisgivenasnumberofenergystatesperunitvo

    lume,

    i.e.,Densityo

    fstates,

    Z(E)dE=

    4

    8

    2

    2

    3

    2

    1

    2

    3

    ma

    h

    E

    dE

    a

    F HG

    I KJ

    /

    /

    Z(E)dE=

    .......(9)

    82

    3

    2

    1

    2

    m

    E

    d

    E

    F G

    I J

    /

    /

    49

    AccordingtoPaulisexclusionprinciple,

    eac

    henergystatec

    anaccommodatetwoelectrons(one

    spinupandanotherspindown).

    Hencethenumberofenergystatesavailable

    forelectron

    occupancyisgivenby

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    50/65

    Z(E

    )dE

    =

    Z(E

    )dE

    =

    .......

    (10)

    4

    8

    2

    2

    3

    2

    1

    2

    mh

    E

    dE

    F HG

    I KJ

    /

    /

    2

    82

    3

    2

    1

    2

    mh

    E

    dE

    F HG

    I KJ

    /

    /

    50

    The

    aboveequatio

    nsrepresentsth

    edensityofstat

    es

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    51/65

    CarrierConcen

    trationinmetals

    LetN(E)dErepresentsthe

    numberoffilledenergystatesbetweenthe

    intervalof

    energydE.

    Normally

    alltheenergystateswillnotbefilled.

    Theproba

    bilityoffillingofelectronsinagivenenergystateisgivenby

    Fermifunc

    tionF(E).

    51

    N

    (E)dE

    =

    Z(E)dE.

    F(E)

    .......(

    12)

    Z

    (E)dE=

    2

    82

    3

    2

    12

    mh

    E

    dE

    F HG

    I KJ

    /

    /

    WeknowdensityofstatesZ(E)dEas

    .......(

    11)

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    52/65

    Number

    offilledenergystatesperunitvolu

    me

    N(E

    )dE

    =

    .......(

    13)

    N(E)isknownasCarrierd

    istributionfunction(or)

    Car

    rierconcentratio

    ninmetals.

    2

    82

    32

    12

    mh

    E

    dE

    F

    E

    L NM

    O QP

    /

    /

    .

    (

    )

    Inthecaseofamateri

    alatabsolutezero,thehighestoccupiedlevel

    52

    F

    F,

    [Sinc

    eat0K,themaximumenergylev

    elthatcanbeoccupiedby

    theelectronis

    calledfermien

    ergylevel(EF)]

    Ther

    efore,integrating

    eqn.(

    13)withinthelimits0toEF,

    wecanget

    thedensityofelectronswithin

    thefermienerg

    ylevel.

    dn

    z

    2

    82

    3

    2

    1

    2

    0

    mh

    E

    dE

    EF

    F HG

    I KJ

    z

    /

    /

    =

    (SinceF

    (E)=1)

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    53/65

    = =

    2

    82

    3

    2

    1

    2

    0

    mh

    E

    dE

    EF

    F HG

    I KJ

    z

    /

    /

    2

    8

    2 3

    2

    3

    2

    3

    2

    0

    mh

    E

    EF

    F HG

    I KJ

    /

    /

    n=

    .......(14)

    3

    82

    3

    2

    3

    2

    mh

    EF

    F HG

    I KJ

    /

    /

    b

    g

    53

    Equation(14)g

    ivesthecarrie

    rconcentration(or)

    densityofcharge

    carriersat0K.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    54/65

    Theabov

    eequationcanbe

    rewritteninterm

    sofE

    Fas

    EF

    3/2

    =

    EF

    =

    .......(15)

    E

    =

    3.65x101

    9.n

    2/3eV

    3

    82

    3

    n

    h m

    F HG

    I KJ

    /2

    h m

    n

    2

    23

    8

    3

    F HG

    I KJ

    F HG

    I KJ

    /

    54

    Hence

    theFermienerg

    yofametaldepe

    ndsonlyonthed

    ensityof

    electronsofthatmetal.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    55/65

    To

    estimatetheaverageelectronenerg

    yatabsolutezero

    ,let

    uscalculate

    thetotalenergyE

    Tat0K.

    Averageenergyofanelectron

    (Eav

    e)

    =

    ...(16)

    =

    Tota

    lener

    gyo

    fthee

    lectronsat

    K

    E

    Num

    bero

    fenergystates

    at

    K

    n

    T

    0 0

    (

    )

    (

    )

    Herethetota

    lenergyo

    fthe

    ,

    Num

    bero

    fene

    rgy

    Energyof

    F G

    J

    F G

    I J

    x

    Meanenergyofe

    lectronatabs

    olutezero

    55

    ET

    =

    Substutingeqn.(

    13)inabovee

    quationweget

    ET

    =

    N

    E

    dE

    xE

    EF

    b

    g

    0z

    2

    82

    3

    2

    12

    0

    mh

    E

    F

    dE

    E

    F

    F HG

    I KJ

    z

    /

    /

    .

    (E).

    .

    b

    g

    E

    N(E)dE

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    56/65

    Sincethetemperatureis

    0K,

    F(E)=1

    ET

    = = =

    2

    82

    3

    2

    1

    2

    0

    mh

    E

    E

    dE

    EF

    F HG

    I KJ

    z

    /

    /

    .

    .

    b

    g

    2

    82

    3

    2

    3

    2

    0

    mh

    E

    dE

    EF

    F HG

    I KJ

    z

    /

    /

    b

    g

    2

    8

    2 5

    2

    3

    2

    5

    2

    0

    mh

    E

    EF

    F HG

    I KJ

    /

    56

    =

    ET

    =

    .......(17)

    2

    5

    2

    5

    2

    mh

    EF

    HG

    K

    /

    b

    g

    5

    82

    3

    2

    5

    2

    mh

    EF

    F HG

    I KJ

    /

    /

    b

    g

    Tota

    lenergyofanelectronat0K

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    57/65

    Substitutingeqns.(

    17)and

    (14)ineqn.(

    16)weget

    Meanenergy

    at0Kis,

    Eave

    =

    Theaverage

    energyofanelectronat0Kis

    E n

    mh

    E

    h

    m

    E

    T

    FF

    =

    F HG

    I KJ

    5

    882

    3

    5

    3

    3

    3

    /2

    /2

    /2

    /2

    b

    g

    b

    g

    b

    g

    3

    82

    3

    2

    3

    2

    mh

    EF

    F HG

    KJ

    /

    /

    b

    g

    57

    Eave

    =

    ......(18)

    5

    F

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    58/65

    58

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    59/65

    Par

    ticlein1dimensionalb

    ox

    Considera

    particle(e-)of

    massmmovingalongx-axisin1dim

    potential

    boxofwidthlandofinfiniteheight.

    Theparticleisbouncingba

    ckandforthbetweenthewallsofthe

    box.

    (i.e.,)particleismo

    ving

    toandfrobetweenthetw

    owalls

    atx=0andx=l.

    59

    en

    co

    esw

    ewa,

    en

    eresnoossoenergyo

    e

    particle.

    Hence,t

    he

    collisionsarepe

    rfectlyelastic.

    Sothereisnochangeinp

    otentialenergyV.

    TheP.EV

    oftheparticle

    insidetheboxisconstantandcanbe

    takenaszeroforsimplicity.

  • 7/29/2019 EngineeriEngineering Physics 2 Unit-1.pdfng Physics 2 Unit-1

    60/65

    Particlein1dimensionalbox

    Sincethe

    wallsareofinfinitepotential,theparticledoesnot

    penetrateoutfromthe

    box.

    Wemay

    expressthefactbysayingth

    atoutsidethe

    box,

    the

    potentialenergyisfiniteasshowninfig

    ure.

    Inotherwordswe

    canwrite

    60

    V(x)=0

    when

    0