ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996....

46
ENGG2013 Unit 21 Power Series Apr, 2011.
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    217
  • download

    1

Transcript of ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996....

Page 1: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

ENGG2013 Unit 21

Power Series

Apr, 2011.

Page 2: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Charles Kao

• Vice-chancellor of CUHK from 1987 to 1996.

• Nobel prize laureate in 2009.

kshum 2

K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEE, vol. 133, no. 7, pp.1151–1158, 1966.

“It is foreseeable that glasses with a bulk loss of about 20 dB/km at around 0.6 micrometer will be obtained, as the iron impurity concentration may be reduced to 1 part per million.”

Page 3: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Special functions

From the first paragraph of Prof. Kao’s paper (after abstract), we see

• Jn = nth-order Bessel function of the first kind

• Kn = nth-order modified Bessel function of the second kind.

• H(i)= th-order Hankel function of the ith

type.kshum 3

Page 4: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

J(x)• There is a parameter called the “order”.• The th-order Bessel function of the first kind

– http://en.wikipedia.org/wiki/Bessel_function

• Two different definitions:– Defined as the solution to the differential

equation

– Defined by power series:

kshum 4

Page 5: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Gamma function (x)

• Gamma function is the extension of the factorial function to real integer input.– http://en.wikipedia.org/wiki/Gamma_function

• Definition by integral

• Property : (1) = 1, and for integer n, (n)=(n – 1)!

kshum 5

Page 6: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Examples

• The 0-th order Bessel function of the first kind

• The first order Bessel function of the first kind

kshum 6

Page 7: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

INFINITE SERIES

kshum 7

Page 8: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Infinite series• Geometric series

– If a = 1 and r= 1/2,

– If a = 1 and r = 1 1+1+1+1+1+…– If a = 1 and r = – 1

1 – 1 + 1 – 1 + 1 – 1 + …– If a = 1 and r = 2 1+2+4+8+16+…

kshum 8

= 1

diverges

diverges

diverges

Page 9: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Formal definition for convergence• Consider an infinite series

– The numbers ai may be real or complex.

• Let Sn be the nth partial sum

• The infinite series is said to be convergent if there is a number L such that, for every arbitrarily small > 0, there exists an integer N such that

• The number L is called the limit of the infinite series.kshum 9

Page 10: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Geometric pictures

kshum 10

Complex infinite series

Complex plane

Re

Im

L

Real infinite series

L L+L-

S0

S1S2

Page 11: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence of geometric series

• If |r|<1, then converges, and the limit

is equal to .

kshum 11

Page 12: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Easy fact

• If the magnitudes of the terms in an infinite series does not approach zero, then the infinite series diverges.

• But the converse is not true.

kshum 12

Page 13: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Harmonic series

kshum 13

is divergent

Page 14: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

But

kshum 14

is convergent

Page 15: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Terminologies

• An infinite series z1+z2+z3+… is called absolutely convergent if |z1|+|z2|+|z3|+… is convergent.

• An infinite series z1+z2+z3+… is called conditionally convergent if z1+z2+z3+… is convergent, but |z1|+|z2|+|z3|+… is divergent.

kshum 15

Page 16: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Examples

is conditionally convergent.

is absolutely convergent.

kshum 16

Page 17: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence tests

Some sufficient conditions for convergence.Let z1 + z2 + z3 + z4 + … be a given infinite series.(z1, z2, z3, … are real or complex numbers)1. If it is absolutely convergent, then it converges.2. (Comparison test) If we can find a convergent

series b1 + b2 + b3 + … with non-negative real terms such that

|zi| bi for all i, then z1 + z2 + z3 + z4 + … converges.

kshum 17

http://en.wikipedia.org/wiki/Comparison_test

Page 18: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence tests

3. (Ratio test) If there is a real number q < 1, such that

for all i > N (N is some integer), then z1 + z2 + z3 + z4 + … converges.

If for all i > N , , then it diverges

kshum 18

http://en.wikipedia.org/wiki/Ratio_test

Page 19: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence tests

4. (Root test) If there is a real number q < 1, such that

for all i > N (N is some integer),then z1 + z2 + z3 + z4 + … converges.

If for all i > N , , then it diverges.

kshum 19

http://en.wikipedia.org/wiki/Root_test

Page 20: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Derivation of the root test from comparison test

• Suppose that for all i N. Then

for all i N. But

is a convergent series (because q<1). Therefore z1 + z2 + z3 + z4 + … converges by the comparison test.

kshum 20

Page 21: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Application

• Given a complex number x, apply the ratio test to

• The ratio of the (i+1)-st term and the i-th term is

Let q be a real number strictly less than 1, say q=0.99. Then,

Therefore exp(x) is convergent for all complex number x.

kshum 21

Page 22: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Application

• Given a complex number x, apply the root test to

• The ratio of the (i+1)-st term and the i-th term is

Let q be a real number strictly less than 1, say q=0.99. Then,

Therefore exp(x) is convergent for all complex number x.

kshum 22

Page 23: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Variations: The limit ratio test

• If an infinite series z1 + z2 + z3 + … , with all terms nonzero, is such that

Then1.The series converges if < 1.2.The series diverges if > 1.3.No conclusion if = 1.

kshum 23

Page 24: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Variations: The limit root test

• If an infinite series z1 + z2 + z3 + … , with all terms nonzero, is such that

Then1.The series converges if < 1.2.The series diverges if > 1.3.No conclusion if = 1.

kshum 24

Page 25: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Application

• Let x be a given complex number. Apply the limit root test to

• The nth term is

• The nth root of the magnitude of the nth term is

kshum 25

Page 26: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Useful facts

• Stirling approximation: for all positive integer n, we have

kshum 26

J0(x) converges for every x

Page 27: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

POWER SERIES

kshum 27

Page 28: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

General form

• The input, x, may be real or complex number.• The coefficient of the nth term, an, may be real

or complex number.

kshum 28

http://en.wikipedia.org/wiki/Power_series

Page 29: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Approximation by tangent line

kshum 29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

y = log(x)

Tangent line at x=0.6

x = linspace(0.1,2,50);plot(x,log(x),'r',x, log(0.6)+(x-0.6)/0.6,'b')grid on; xlabel('x'); ylabel('y');legend(‘y = log(x)’, ‘Tangent line at x=0.6‘)

Page 30: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Approximation by quadratic

kshum 30

x = linspace(0.1,2,50);plot(x,log(x),'r',x, log(0.6)+(x-0.6)/0.6-(x-0.6).^2/0.6^2/2,'b')grid on; xlabel('x'); ylabel('y')legend(‘y = log(x)’, ‘Second-order approx at x=0.6‘)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.5

-1

-0.5

0

0.5

1

x

y

y = log(x)

Second-order approx at x=0.6

Page 31: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Third-order

kshum 31

x = linspace(0.05,2,50);plot(x,log(x),'r',x, log(0.6)+(x-0.6)/0.6-(x-0.6).^2/0.6^2/2+(x-0.6).^3/0.6^3/3,'b')grid on; xlabel('x'); ylabel('y')legend('y = log(x)', ‘Third-order approx at x=0.6')

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-3

-2

-1

0

1

2

3

4

x

y

y = log(x)

Third-order approx at x=0.6

Page 32: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Fourth-order

kshum 32

x = linspace(0.05,2,50);plot(x,log(x),'r',x, log(0.6)+(x-0.6)/0.6-(x-0.6).^2/0.6^2/2+(x-0.6).^3/0.6^3/3-(x-0.6).^4/0.6^4/4,'b')grid on; xlabel('x'); ylabel('y')legend(‘y = log(x)’, ‘Fourth-order approx at x=0.6‘)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-5

-4

-3

-2

-1

0

1

x

y

y = log(x)

Fourth-order approx at x=0.6

Page 33: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Fifth-order

kshum 33

x = linspace(0.05,2,50);plot(x,log(x),'r',x, log(0.6)+(x-0.6)/0.6-(x-0.6).^2/0.6^2/2+(x-0.6).^3/0.6^3/3-(x-0.6).^4/0.6^4/4+(x-0.6).^5/0.6^5/5,'b')grid on; xlabel('x'); ylabel('y')legend(‘y = log(x)’, ‘Fifth-order approx at x=0.6‘)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-4

-2

0

2

4

6

8

10

x

y

y = log(x)

Fifth-order approx at x=0.6

Page 34: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Taylor series• Local approximation by power series.

• Try to approximate a function f(x) near x0, by

a0 + a1(x – x0) + a2(x – x0)2 + a3(x – x0)3 + a4(x – x0)4 + …

• x0 is called the centre.• When x0 = 0, it is called Maclaurin series.

a0 + a1x + a2 x2 + a3 x3 + a4x4 + a5x5 + a6x6 + …

kshum 34

Page 35: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Taylor series and Maclaurin series

kshum 35

Brook TaylorEnglish mathematician1685—1731

Colin MaclaurinScottish mathematician1698—1746

Page 36: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Examples

kshum 36

Geometric series

Exponential function

Sine function

Cosine function

More examples at http://en.wikipedia.org/wiki/Maclaurin_series

Page 37: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

How to obtain the coefficients• Match the derivatives at x =x0

• Set x = x0 in f(x) = a0+a1(x – x0)+a2(x – x0)2 +a3(x – x0)3+...

a0= f(x0)

• Set x = x0 in f’(x) = a1+2a2(x – x0) +3a3(x – x0)2+… a1= f’(x0)

• Set x = x0 in f’’(x) = 2a2+6a3(x – x0)+12a4(x – x0)2+…

a2= f’’(x0)/2– In general, we have ak= f(k)(x0) / k!

kshum 37

Page 38: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Example f(x) = log(x), x0=0.6• First-order approx.

log(0.6)+(x – 0.6)/0.6• Second-order approx.

log(0.6)+(x – 0.6)/0.6 – (x – 0.6)2/(2· 0.62)• Third-order approx.

log(0.6)+(x–0.6)/0.6 – (x–0.6)2/(2· 0.62) +(x–0.6)3/(3· 0.63)

kshum 38

Page 39: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Example: Geometric series• Maclaurin series 1/(1– x) = 1+x+x2+x3+x4+x5+x6+…• Equality holds when |x| < 1

• If we carelessly substitute x=1.1, then L.H.S. of 1/(1– x) = 1+x+x2+x3+x4+x5+x6+…is equal to -10, but R.H.S. is not well-defined.

kshum 39

Page 40: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Radius of convergence for GS• For the geometric series 1+z+z2+z3+… , it

converges if |z| < 1, but diverges when |z| > 1.

• We say that the radius of convergence is 1.• 1+z+z2+z3+… converges inside the unit disc,

and diverges outside.

kshum 40

complex plane

Page 41: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence of Maclaurin series in general

• If the power series f(x) converges at a point x0, then it converges for all x such that |x| < |x0| in the complex plane.

kshum 41

x0

Re

Im

conve

rge

Proof by comparison test

Page 42: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Convergence of Taylor series in general

• If the power series f(x) converges at a point x0, then it converges for all x such that

|x – c| < |x0 – c| in the complex plane.

kshum 42

x0

Re

Im

conve

rge

Proof by comparison test also

cR

Page 43: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Region of convergence

• The region of convergence of a Taylor series with center c is the smallest circle with center c, which contains all the points at which f(x) converges.

• The radius of the region of convergence is called the radius of convergence of this Taylor series.

kshum 43

Re

Im

conve

rge

cR

diverge

Page 44: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Examples

• : radius of convergence = 1. It converges

at the point z= –1, but diverges for all |z|>1. • exp(z): radius of convergence is , because it

converges everywhere.• : radius of convergence is 0, because

it diverges everywhere except z=0. kshum 44

Page 45: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Behavior on the circle of convergence

• On the circle of convergence |z-c| = R, a Taylor series may or may not converges.

• All three series zn, zn/n, and zn/n2

Have the same radius of convergence R=1.

But zn diverges everywhere on |z|=1, zn /n diverges at z= 1 and converges at z=– 1 , zn/n2 converges everywhere on |z|=1.

kshum 45

R

Page 46: ENGG2013 Unit 21 Power Series Apr, 2011.. Charles Kao Vice-chancellor of CUHK from 1987 to 1996. Nobel prize laureate in 2009. kshum2 K. C. Kao and G.

Summary

• Power series is useful in calculating special functions, such as exp(x), sin(x), cos(x), Bessel functions, etc.

• The evaluation of Taylor series is limited to the points inside a circle called the region of convergence.

• We can determine the radius of convergence by root test, ratio test, etc.

kshum 46