Energy saving through evaporating cooling in comfort and industrial applications

31
EinB2016 5 th Interna1onal Conference “ENERGY in BUILDINGS 2016” Luigi Nalini, Speaker [email protected] Energy saving through evapora7ng cooling in comfort and industrial applica7ons

Transcript of Energy saving through evaporating cooling in comfort and industrial applications

Page 1: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Luigi  Nalini,  Speaker  [email protected]  

Energy  saving  through  evapora7ng  cooling  in  comfort  and  industrial  

applica7ons  

Page 2: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Everybody  has  certainly  experienced  the  cooling  effect  caused  by  a  current  of  air  on  the  swea1ng  skin  or  on  wet   clothes,   as   well   as   the   perceived   lower  temperature   in   the   vicinity   of   waterfalls   where  microscopic  water  droplets  are  suspended  in  the  air.    

Based   on   empirical   observa1ons,   even   without  knowing    its    basic    physical    principle,    humankind    has  

Evapora7ve  cooling  has  been  used  by  humankind  since  50  centuries  ago!  

used  since  from  the  third  millennium  B.C.  the  evapora1ve  cooling  to  mi1gate  the  temperature  of  spaces,  par1cularly  in  areas  with  a  hot  and  dry  climate.    

Only   over   the   last   two   centuries,   scien1sts   have   studied   the   basics   of  thermodynamics  and  processes  related  to  the  exchange  of  sensible  and  latent  heat   and   found   the   theore1cal   principles   of   cooling   by   evapora1on   which,  however,  has  played  a  marginal  role   in  the  recent  past  due  to  the  extensive  use  of  mechanical  refrigera1on  systems.    

Page 3: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

According  to  the  molecular  kine1c  theory,  as  any  element  water  assumes  the  solid,  liquid,  gaseous  state  in  func1on  of  the  internal  energy  of  molecules,  that  occurs  as  vibra1onal,  rota1onal,  transla1onal  mo1on  and    reciprocal  collisions.            

Temperature   is   a  measure   of   the   average   internal   energy   and   therefore   the  higher  the  temperature,  the  greater  the  internal    energy  of  the  molecules.  Upon  an  energy  input,  liquid  water  molecules  increase  their  internal  energy.    

Part   of   them   reaches   an   energy   level   sufficient   to   enter   in   the   evapora7on  process,  overcoming  the  aWrac1ve  forces  of  the  bulk  of  the   liquid,  passing  to  the  gaseous  state  (vapor)  and  spreading  in  the  available  space  around.  

The  Water  Evapora7on  Process  

Page 4: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

0   5   10   15   20   25   30   35   40   45   50  

14000  

12000  

10000  

8000  

6000  

4000  

2000  

0  

temperature  -­‐  °C  

Vapo

r  pressure  -­‐  P

a  

SATURATION  PRESSURE  VPS    OF  WATER  vs  TEMPERATURE  The   diagram   shows   the   pressure  exerted   by   the   water   vapor   molecules  vs   temperature   just   above   the   surface  of  liquid  water.    In   this   condi1ons   water   vapor   is   in  equilibrium   with   its   condensed   state  and   therefore   that   pressure   is   said  Satura7on  Pressure  PVS.    

Leaving   the   liquid   water   and   entering   into   the   atmosphere   the   vapor  molecules  must  «compete»  with  the  pressure  exerted  by  the  other  gases.  

The   vapor   molecules,   due   to   their   kine1c   energy,   exert  over   the   con1guous   bodies   a   macroscopic   pressure  propor1onal   to   the   number   and   to   the   force   of   the  collisions.  As   well   as   the   internal   energy,   also   vapor   pressure  depends  on  temperature.    

Water  Vapor  Pressure  

Page 5: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

The   atmosphere,   a   mixture   of   dry   air   (i.e.:  permanent   gases   -­‐   such   as   N2,   O2,   Ar   -­‐  without   vapor)   and   vapor,   has   a   pressure  PATM   (around  1,033  bar  at   sea   level)   that   is  equal   to   the   sum   of   the   the   individual  p re s su re   o f   t he   seve ra l   ga seous  components.    

According   to   the   gas   laws,   the   individual  pressure   of   any   gas   (called   also   par7al  pressure)  in  the  mixture    is    propor7onal    to  

THE  ATMOSPHERE  IS  A  MIXTURE  OF  GASES  OVERALL  PRESSURE  =  101.325  Pa  @  SEA  LEVEL  

NITROGEN   OXYGEN  

ARGON   WATER  VAPOR  

Of  course  the  maximum  quan1ty  is  got  when  the  vapor  par1al  pressure  equals  the  satura1on  pressure  PVS  ;  in  this  condi1on,  the  air  is  said  Saturated.    

However,   differently   from   permanent   gases   (whose   rela1ve   percentage   is  stable)  water  vapor  concentra7on  varies  with  1me,  loca1on  and  weather.      

its  volumetric  frac7on;  therefore  the  number  of  molecules  of  water  contained  in  the  air  is  propor1onal  to  the  vapor  par1al  pressure.      

Vapor  in  the  Atmosphere  

Page 6: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

The  ra1o  between  the  actual  pressure  PV  and   the   satura1on   pressure   PVS   at   the  same   temperature   is   defined   rela7ve  humidity  RH:    

RH  =  PV  /  PVS                    [%]                            (1)    

The   Vapour   Pressure  Deficit,   or  VPD,   is  the  difference  between  the  actual  water  vapor   pressure   and   the   satura1on  pressure:   it   indicates   the   maximum  capability  by  the  air  to  absorb  addi1onal  vapor  at  that  temperature.        

The    formula      closely      appoxima1ng    the  

VAPOR  PRESSURE  OF  WATER  vs  TEMPERATURE  AND  RH  

0  

1000  

2000  

3000  

4000  

5000  

6000  

0   5   10   15   20   25   30   35   40  temperature  -­‐  °C  

Vapo

r  pressure  -­‐  P

a  10%  

25  

PVS  =  3170  

PV  =  1270  

VAPOR  PRESSURE    DEFICIT  

ATMOSPHERIC  PRESSURE  (101,325  Pa)  

When  the  content  of  vapor  in  the  atmosphere  is  not  enough  for  satura7on,  also  the  vapor  pressure  PV  is    lower  than  the  saturated  pressure  PVS.  

saturated  vapor  pressure  Pvs  vs.  temperature  T  [°C]  between  0°C  and  80°C  is:    

PVS  =  exp  (23,5771  -­‐  4042,9/(235,57  +  T))            [Pa]                                      (2)  

Psychrometric  Expressions    1/2  

Page 7: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

The  vapor  content  in  the  atmosphere  is  called  absolute  humidity  x,  expressed  as  mass  of  water  vapor  per  unit  mass  of  dry  air;   it  can  be  calculated  knowing  the  par1al  pressure  Pv  -­‐  func1on  of  temperature  -­‐  and  rela1ve  humidity:        

x  =  0,622  *  PV/(PATM  –  PV)                      [kgv/kga]                                                    (3)    

The   expression   (3)   shows   that,   at   a   certain   atmospheric   pressure,   absolute  humidity  x  is  func7on  exclusively  of  the  vapor  pressure  PV.    

Another   important   parameter   of   humid   air   is   the  enthalpy  H,   i.e.   its   energy  thermal  content,  made  of  the  heat  contained  in  dry  air  and  the  internal  energy  of  vapor  molecules,  that  depends  on  temperature  and  on  absolute  humidity:    

   H  =  cpa  *  T  +  x  *  (r0  +  cpv  *  T)  =  1,005  *  T  +  x  *  (2501  +  1,9  *  T)          [kJ/kga]          (4)    

where:    •  T  [°C]  =  temperature;    •  cpa,  cpv  [kJ/kg°C]=  specific  heat  of  dry  air  and  of  water  vapor;    •  r0  [kJ/kg]  =  latent  heat  of  water  at  0°C.      

The  expressions   from   (1)   to   (4)  are   the  bases  of  psychrometric   chart,   i.e.   the  graph  of  the  thermodynamic  parameters  of  moist  air  at  a  constant  pressure.  

Psychrometric  Expressions    2/2  

Page 8: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Water  liquid  molecules  require  an  heat  input  to  increase  their  internal  energy  in  order  to  pass  to  vapor.    

This  heat  can  be  given  by  an  external  source  (i.e.:  by  the  sun,  by  electricity  or  by  burning  a  fuel)  as  it  happens  normally  during  winter  humidifica1on.      

Alterna1vely,   the   evapora1on   heat   can   be   supplied  by   the   air   itself   with   no  external   input:  the  molecules  that  evaporate  absorb  heat  from  the  en1re  air-­‐liquid-­‐vapor  system  which  then  undergoes  a  temperature  decrease.  This  process   is   therefore  defined  adiaba7c   (i.e.  without   transfer  of  heat)  and  isenthalpic  because  the  heat  content  of  air  being  humidified  does  not  change.    Just  for  the  same  reason  this  process  is  defined  adiaba7c  cooling.    In  an  adiaba1c  cooler  an  air  stream  is   circulated   over   an   extended  water  surface  with  which   it  comes  into  close  contact.  Within   the   cooler   the   air   flow  causes  the  evapora1on  of  water.  

Adiaba7c  Cooling    1/2  

water      

adiaba1c  cooler      

ADIABATIC  COOLER  SCHEME  

cooled  humid  air  

@  temp.  T2  <  T1    

entering  warm  air  

@  temp.    T1    

Page 9: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Isothermal  Humidifica1on    

Adiaba1c  humidifica1on   Air  Hea1ng   Air  Cooling  

Temperature  

Enthalpy  

Absolute  Humidity  

Rela1ve  Humidity  

0  

5  

10  

15  

20  

25  

30  

0   5   10   15   20   25   30   35   40  

30  

15  

10  

5  

0  

25  

20  

20  

100  

70  

80  

90  

60  

30  

40  

50  

DRY  BULB  TEMPERATURE  -­‐  °C  

ABSO

LUTE  HUMIDITY  –  g/kg  

PATM  =  101.325  Pa  

10%  

Process  Trend  

Psychrometric  Chart  and  Basic  Processes  

ISENTHALPIC  LINES  

Page 10: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Due   to   the   difference   between   the   vapor  pressure   over   the   water   surface   and   the  par1al  vapor  pressure  of  unsaturated  air,  the  evapora1on  of  water  will  take  place.    

The   lowest   temperature   theore1cally  aWainable   corresponds   to   the   intersec1on  between  the  isoenthalpic  line,  followed  along  the  process,  and  the  satura1on  curve:  this   is  represented   by   the   black   arrow   in   the  graphic.  Along  the  process  un1l  the  satura1on:  •  the   Vapor   Pressure   Deficit   decreases  

down  to  zero;  •  the  rela1ve  humidity  arrives  to  100%;  •  the   cooling   effect,   due   to   evapora1on,  

reaches  the  maximum  value.      

RH    [%]  

100%  

60%  40%  

80%  

20%  

P VS  –

 PV  [Pa]  

  4  

2  

6  

0  

   

Qsp  [J/kg  of  air]  

  10  5  

15  

0  

20  

satu

ratio

n  

Vapo

r  pressure    

deficit  

Air  rela7

ve    

humidity

 Co

oling    

effect  

ON  GOING  EVAPORATIVE  COOLING  PROCESS  

   

   

20,6   25   30   35   40  

15  

10  

5  

0  Vapo

r  par7a

l  pressure  -­‐  k

Pa  

 

absolute  hum

idity

 –  g

v/kg

a      

38  

1    

2    

0    

0,5    

2,5    

1,5    

water      

evapora1ve  cooler      

38°C  20%  RH  

 

20,6  °C  100%  RH  

 

Adiaba7c  Cooling    2/2  

Page 11: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

However,   a long   the   process,   the  temperature   and   the   vapor   pressure  differen1als  between  humid  air  and  water  sharply  decrease,  making  the  satura1on  of  leaving  air  hardly  achievable  in  prac1ce.    

The   capacity   of   an   evapora1ve   cooler   to  approach   the   satura1on,   defined   as  Satura7on  Effec7veness  μe,  is:    

μe  =  (T1  –  T2)/(T1  –  TWB)              [%]    

DIRECT  SATURATION  EFFECTIVENESS  

Dry  bulb  temp.  -­‐  °C   T1  T2  TWB  

The   evapora1on   of   water   involves   a   simultaneous   transfer   of   heat   and  mass  (evapora1ng  molecules)  between  the  air  stream  and  the  liquid  surface.    •  The  heat  exchange  is  propor1onal  to  the  temperature  difference.  •  The   mass   exchange   (evapora1ng   water)   is   propor1onal   to   the   vapor  

pressure  difference.  •  Their  rate  depend  linearly  on  the  interface  area  between  water  and  air.  

 

In  direct  evapora1ve  coolers  μe  ranges  between  20-­‐30%  (typical  of  the  tabletop  equipment)  up  to  90%  and  more  for  large  high  performance  ducted  units.  

Direct  Satura7on  Effec7veness  

Page 12: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

The   adiaba1c   evapora1on   process   is   very   efficient   because,   where  prac1cable,  produces  a  cooling  effect  with  no  energy  consump7on.    

An   evapora1ve   cooler   designed   for   air   condi1oning   purposes   reduces   the  processed  air  temperature  but  increases  its  humidity  content;  this  should  be  considered   in   order   to   keep   the   hygrothermal   room   condi1ons  within   the  limits  required  for  each  applica1on.  

Therefore   room  air   condi1oning  by  means  of   an  evapora1ve  cooler  is  not  viable  just  recircula7ng  internal   air   because   the   indoor   humidity   would  soon  approach  the  satura1on  condi1on.    

Instead,   it   requires   the   introduc7on   of   outside  air  to  which  obviously  must  correspond  an  equal  rate  of  exhaust  air.    

Evapora1ve   cooling   equipment   can   be   direct   or  indirect.    

40%  RH  80%  RH  

100%  RH  100%  RH  

YES  

NO  

Adiaba7c  Cooling  Requires  Air  Changes  

Page 13: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

GI   Total  air  flow  rate   Gvent   Min  fresh  air  flow   EC   Evapora1ve  cooler   CC   Cooling  coil  GO   Outside  air  flow   CD   Combined  dampers   PC   Pre-­‐hea1ng  coil   RC   Re-­‐hea1ng  coil  

The   free   cooling   by   Direct   Evapora7ve   Cooling   (DEC)   is   got   cooling   (and  humidifying)   outdoor   air   and   introducing   it   straight   into   the   space:   this   is  therefore   viable   whenever   the   temperature   T2   of   the   outdoor   air  downstream  the  adiaba1c  cooler  is  lower  than  the  indoor  temperature  Tamb.  In  fact,  for  the  same  air  flow,  the  cooling  capacity  is  propor1onal  to  the  air  flow  rate  and  to  the  difference  (T2-­‐Tamb).  

GI      

GO      

GI      

CD   PC   EC   CC   RC  

AHU  UNIT  WITH  DIRECT  ADIABATIC  COOLER  AND  MOTORIZED  DAMPERS  TO  ADJUST  THE  AIR  FLOW  RATES    

T2 Tamb

Direct  Evapora7ve  Cooling  

from  the  space  

to  the  space  

from  outdoor  

to  outdoor  

Page 14: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

GI   Total  air  flow  rate   Gvent   Min  fresh  air  flow   EC   Evapora1ve  cooler   HU   Humidifier  GO   Outside  air  flow   α   Ra1o  GO/GE   HE   Heat  exchanger   CC   Cooling  coil  GE   External  air  flow   CD   Combined  dampers   PC   Pre-­‐hea1ng  coil   RC   Re-­‐hea1ng  coil  

GO  (=  r  *  GE);  TO;  HO      

GE;  TE;  HE      

   

GI      

CD   PC   HU   CC   RC  

GI-­‐GE      

HE      

GI  ≥  GE  ≥  Gvent      

AC      

GO  ;  TC;  HA      

GE  ;  TX;  HX  

GO  ;  TA;  HA  

GI      

AHU  UNIT  WITH  INDIRECT  ADIABATIC    COOLER  AND  MOTORIZED  DAMPERS  TO  ADJUST  THE  AIR  FLOW  RATES    

The   Indirect   Evapora7ve   Cooling   (IEC)   occurs   by   cooling   air   in   an   adiaba1c  humidifica1on  process,  and   then   in   turn  using   the  same  air   to   reduce  –  via  a  heat  exchanger  –  the  temperature  of  a  second  stream  of  air,  whose  moisture  content  remains  unchanged.  

Indirect  Evapora7ve  Cooling  

Page 15: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Based  on  a  mass  transfer  process,  an  adiaba1c  cooler  should  have:  •  enough  air  velocity  to  create  a  sufficient  turbulence  and  the  removal  of  

vapor  molecules  from  the  water  surface;  •  enough  interface  surface  between  cooled  air  and  evapora1ng  water.    There  are  two  basic  ways  to  expand  the  surface:  1)  by  using  a  solid  wet  media  with  an  extended  surface  that,  if  kept  wet,  

act  as  a  vast  water-­‐air  interface  area;  2)  by  introducing  into  the  air  stream  water  in  the  form  of  minute  droplets  

using  a  process  known  as  nebulisa7on,  pulverisa7on  or  atomisa7on.    

Features  of  Most  Used  Adiaba7c  Coolers  

Page 16: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

In   these  adiaba1c  humidifiers   the  air   is  passed   through  weWed   pads,   i.e.:   honeycomb   structures   of   resin-­‐impregnated   cellulose   or   glass   fiber   offering   a   wide  interface  area.    

The  pads,  placed  ver1cally,  are  kept  wet  by  a  water  flow  distributed  on  their  upper  edge.  

Wet  Media  Humidifiers    1/2  

In   ducted   HVAC   systems   wet   media  humidifiers  are  generally  placed   inside  of  air  handling   units;   the   wet   pad   is   made   using  modules.  This   makes   possible   to   adapt   the   front  surface   and   the   depth   of   the   wet   media    according  to  the  available  space,  the  air  flow  rate,   the   efficiency,   the   allowed   pressure  loss.  

Page 17: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Only  part  of  the  water  drawn  from  a   boWom   tank   by   a   recircula1on  pump   and   distributed   onto   the  pads   evaporates   when   the   rest   is  recirculated.    

The   evapora1on   process   increases  the   concentra1on   of   salts   which  may   build   up   on   the   surface,  forcing  to  clean  or  replace  the  pads  when  clogged.  Furthermore   they  should  be  periodically  controlled  because  the  presence  of  a  warm  water  recircula7on  poten7ally  promotes  a  risky  bacterial  growth.    

Last  but  not  least,  the  air  side  pressure  drop  of  the  pads  requires  an  addi7onal  energy  consump7on  even  when  no  humidifica7on  is  needed.    

Their   use,   widespread   for   the   limited   price,   should   be   carefully   evaluated  looking  also  at  the  opera1ng  costs,  some1mes  surprisingly  high.  

Wet  Media  Humidifiers    2/2  

Page 18: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

These   devices   are   equipped   with   a  volumetric   pump   which   pressurizes  the  water  to  values  between  70  and  100   bar   and   delivers   it   to   small  nozzles   that   produce   a   fine   mist  (droplets   of   10-­‐15   micron)   easily  absorbed  by  air  stream    because    the    

surface  offered  by  1  liter  of  water  atomized  at  15  μm  is    as  high  as  400    m2.    

PUMPING  STATION   ATOMIZING  NOZZLE  

High  Pressure  Atomising  Systems    1/2  

The   distribu1on   piping   network   that   supports   and   supplies   the   nozzles   is  posi1oned  in  an  air  duct  or  placed  directly  into  the  environment  to  humidify.      

NOZZLE  RACK   SUSPENDED  TYPE  NOZZLE  RACK  IN  AHU  SECTION  

Page 19: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

High  pressure  atomising  systems  may  reach  an  excellent  level  of  accuracy  (±   2%)   of   the   humidity   in   the   controlled   space   and   very   high   capaci1es  with  a  negligible  electric  consump1on  absorbed  by   the  pump  (<4  W  per  liter  of  sprayed  water).      

Under   the  hygienic  aspect   they  are  not   cri1cal  because  do  not  promote  bacterial  growth;  infact:  §  in   the   case   of   direct   atomiza1on   into   the   environment,   the   sprayed  

water  is  fully  absorbed  by  the  air;  §  in  ducted  systems  the  frac1on  not  evaporated  -­‐  usually  very  small  -­‐  is  

drained  without  recircula1on.    

The  use  of  demineralised  or  sweetened  water  is  recommended  to  prevent  clogging  of  the  nozzles.    

High   pressure   atomising   systems   are   available   for   capacity   up   to   many  thousands  of  kg/h.  

High  Pressure  Atomising  Systems    2/2  

Page 20: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Ultrasonic  Humidifiers  

STAND  ALONE  UNIT  

SMALL  SIZE    UNIT  

DUCTED  TYPE  UNIT  

Ultrasonic   humidifiers   provide   an   extra   fine  atomiza1on  of  water  (≈  3  μm)  by  means  of  the  high-­‐frequency   vibra1on   (close   to   1,7   Mhz)   of   a  piezoelectric  element  (or  more  than  one,  in  parallel);  the  absorp1on  of  vapor  is  immediate  due  to  the  wide  interface  surface  (2000  m2  offered  by  1  liter  of  water  atomized  at  3  μm).    

 

Due   to   size   and   cost   they   are   convenient   for   small   and   medium  installa1ons  (0,5  to  15  kg/h).    

The  use  of  demineralised  water  is  highly  recommended.  

 

Best  ultrasonic  humidifiers  reach  excep1onal  levels  of  precision  (±  1%)  in  the  en1re  range  of  their  rated  capacity  and,  thanks  to  the   high   efficiency   of   absorp1on,   they   are   suitable   for   the  distribu1on  of  the  produced  mist  directly  into  the  room  as  well  as  in  ducted  systems.      

Page 21: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

To  Conclude,  let  Us  Men7on  a  Few  Case  Studies  

Page 22: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Evapora7ve  Cooling:  Datacenter  Applica7on  

The  need:  humidity  control  and  evapora1ve  cooling  

A  company  has  a  big  data  center  in  Middlesbrough  (Newcastle-­‐  UK).  It  has  more  than  180  global  data  centers  and  IT  service  companies.  

Data  hall  

Atomizing  nozzles  

Hot  exhaust  air  

to  data  centre  

Coniugated    

dampers  

Page 23: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Internal  Views  

Page 24: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Evapora7ve  Cooling:  Air  Cooled  Heat  Exchangers  

In  aircooled  heat  exchangers  (i.e.:  condensers,  radiators,  etc.)  the  intake  air  is  adiaba1cally  cooled  to  improve  the  performance  in  hoWest  periods.  Water   may   be   sprayed   in   excess   in   order   to   wet   the   finned   coil   so  promo1ng  a  further  evapora1on  during  air  hea1ng  along  the  exchanger.  

Page 25: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

COMPARATIVA ESTACIONES 4/09/06

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

12.30

13.00

13.30

14.00

14.30

15.00

15.30

16.00

16.30

17.00

17.30

18.00

18.30

19.00

19.30

20.00

20.30

21.00

21.30

22.00

22.30

23.00

23.30

HORA

ºC Y

%H

R

Tª EXT. PEÑAG. Tª EXT. ILUST. Tª AMB. PEÑAG. Tª AMB. ILUST. Tª IMP. PEÑAG. Tª IMP. ILUST.HR EXT. PEÑAG. HR EXT. ILUST. HR AMB. PEÑAG. HR. AMB. ILUST. HR IMP. PEÑAG. HR IMP. ILUST.

El e cp a S.L.Instalaciones y Control

The   aim   of   this   solu1on   is   to   provide   more   comfort,   cooling   the  environment   using   water   as   a   “source   of   power”,   because   it’s  considerably  more  economic  than  tradi1onal  cooling  systems  (direct  expansion)  as  it  consumes  less  power.    

Evapora7ve  Cooling:  Subway  Applica7on  

Number  of  pla�orms:  2  Q   =   90,000   m3/h   for   each   pla�orm  (ven1la1on)  Outdoor  air  =  100%  Discharging  air  condi1ons:    27-­‐28°C/70-­‐80%  r.H.  

Result:   In   the  period  15/july/2006   to  15  sept/2006,   the   temperature  in  this  sta1on  was  3.4°C  colder  than  in  other  comparable  sta1ons.  

Peñagrande  subway  sta1on,  Madrid  

Page 26: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Need:  efficiency  improvement    of  a  new  gas  turbine  for  produc1on  of  electricity  

Petrochemical  complex  With  23  plants,    they  operate  400,000  barrels  per  day  of  crude  oil,  produce  18.4  million  tons  per  annum  (mpta)  of  petroleum-­‐based  products  and  2.4  mpta  of  ethylene  and  propylene-­‐based  deriva1ves  

Evapora7ve  Cooling:  Industrial  Applica7on  

Technical  note:      Cooling  the  combus1on  air  ingested  by  the  turbine      –  even  by  a  few  degrees  –  can  increase  power  output  substan1ally.        This  because  cooled  air  is  denser  and  therefore  gives  the  turbine    a  higher  mass-­‐flow  rate  and  pressure  ra1o,  resul1ng  in  increased    turbine  output  and  efficiency  –  as  much  as  1  %  per  degree  Celsius.    

Varia1on  of  the  performance  of  a  gas  turbine  vs.  air  intake  temperature  

Page 27: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

The  solu7on   Project  condi7ons:  Airflow  :  80.000  m3/h    From  43°C  and  20%  R.H.  Desired  25  °C  with  max  85%  R.H.  Total  Rack  Capacity  :  690  l/h  

Turbine  Evapora7ve  Cooling  Diagram  

Page 28: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Humidifica7on  in  a  Music  Hall  in  Athens  The  needs    1)   Control  humidity  level  during  all  seasons,  ie..  instruments  made  of  wood  are  the  most  affected  and  come  into  contact  with  non-­‐wood  pieces,  string  instruments  (guitars,  violins,  etc.).  

2)   Changes  in  humidity  cause  the  detune  problems  to  singers,  during  a  performance.  Room  environment  must  be  at  show1me  condi1ons  before  musicians  being  warming  up.  

The  solu7ons    Music  hall:    4  –  adiaba1c  mul1zone  Master  sta1on  10  –  adiaba1c  mul1zone  Slave  sta1on  14  –  distribu1or  rack  14  –  drop  separators    Library:  2  –  adiaba1c  mul1zone  Master  sta1on  6  –  adiaba1c  mul1zone  Slave  sta1on  8  –  distribu1or  rack  8  –  drop  separators  

Greek  Na1onal  Opera,  Athens  

Page 29: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

CAR  FACTORY      Humidifica1on   in  most  automo1ve  paint  booths  has   tradi1onally   been   accomplished   by   water  spray   coils   or   wet-­‐media   located   in   the   air  houses  serving  the  paint  booths.  

The  needs    Desired  stable  paint  booth  condi1ons  at  65  to  75°F  &  65  to  75%rH.    The  pain1ng  booths  are  supplied  with  permanently  condi1oned  air  by  a  ducted  system.  

Humidifica7on  in  Water-­‐Borne  Pain7ng  Booths  

The  results:  the  system  has  operated  with  a  precision  previously  unknown  in  this  industry,  achieving   set   point   in   10   minutes   from   cold  startup.  From   the   actual   performance   graph,   from   a  cold  start,  the  system  comes  into  specifica1on  within   10    minutes   and   then  maintains   ±1°F  and  ±2%rH.    The  old,  simple  cardboard  pads  will  no  longer  provide   the   precision   and   reliabil ity  demanded.  

Page 30: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Humidifica7on  in  a  Museum  in  Venice  The  need  Temperature  and  Humidity  control  inside  the  various  rooms  with  1ght  Temperature  and  Humidity  set  point  range  (24°C  Temperature  –  50%  rH  with  ±  5%  tolerance).    

The  installed  system  It   was   chosen   a   Direct   Expansion   Units   (Mul1func1on   air/water   cooled   units   for  climate   control   +   Fan   Coils)   with   its   regula1on   system   for   temperature   control,  temperature   and   Humidity   values   recording   and   remote  management   via   Internet  access.   Due   to   historical   architecture   of   the   building,   it   was   not   allowed   the  installa1on  of  water  piping  for  hydronic  systems.  

Technical  Solu7on:  Air/Water  Units  –  Fan  Coils  –  Ultrasonic  Humidifiers  

AG150A

fan-coil

Bus

M-N

et fan-coil

gateway

Ethernet (cross cable)

fan-coil

BU

S

SU

PE

RV

ISIO

N

BU

S pLA

N

BUS GATEWAY

BUS HUMIDIFIERS

RS485 bus GATEWAY RS485 bus pLAN RS485 bus HUMIDIFIERS RS485 bus SUPERVISION

Results  •  Reduced  energy  requirements:  60W  per  litre  of  spray  per  hour,  corresponding  to  about  7%  of  the  energy  consump1on  of  a  tradi1onal  humidifier.  

•  Use  of  demineralized  water  eliminates  the  problem  of  bacteria  improving  the  air  quality.  

•  The   adiaba7c   humidifica7on   process  decreases   the   temperature   of   the   air   in  summer7me,   thus   reducing   the   ac7vity   of  the  compressors  and  saving  energy.  

•  Extremely  fine  droplet  spray:  the  water  is  finely  sprayed  into  extremely  small  droplets  (few  microns)  easily  and  quickly  absorbed  by  the  air.      

Page 31: Energy saving through evaporating cooling in comfort and industrial applications

EinB2016  –  5th  Interna1onal  Conference  “ENERGY  in  BUILDINGS  2016”    

Luigi  Nalini,  Speaker  [email protected]