Energy efficiency in steelmaking Evaluation of the · PDF file ·...

29
Stahl-Zentrum STAHL 2015 1 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl Energy efficiency in steelmaking Prof. Dr. Johannes Schenk Chair of Ferrous Metallurgy, Montanuniversität Leoben, Österreich Evaluation of the capabilities of direct and smelting reduction processes to enhance the energy efficiency of the steel production in Europe Weichenstellung für morgen | Setting the course for tomorrow

Transcript of Energy efficiency in steelmaking Evaluation of the · PDF file ·...

Page 1: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

1 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Energy efficiency in steelmaking

Prof. Dr. Johannes Schenk Chair of Ferrous Metallurgy, Montanuniversität Leoben, Österreich

Evaluation of the capabilities of direct and smelting reduction processes to enhance the energy efficiency of the steel production in Europe

Weichenstellung für morgen | Setting the course for tomorrow

Page 2: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

2 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Outline of presentation

• State of the art technology and penetration of iron production with DR

and SR processes

• Boundary conditions and requirements for the DR and SR processes

to produce iron in Europe

• Possible concepts for integration of DR and SR processes into existing

integrated iron and steelworks

• Comparison of energy consumption of the process routes

• Comparison of emissions of the process routes

• Hydrogen production and hydrogen reduction

Page 3: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

3 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Source: Stahlfibel (Herausgegeben vom Verein Deutscher Eisenhüttenleute, 1999)

Process Routes for Production of Crude Steel

Routes with Direct Reduction and Smelting Reduction

Page 4: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

4 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Quelle: World Steel Association, Steel Statistcal Yearbook 2014, own data

Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013)

Hot Metal from SR ~ 0.3 % of Crude Steel Production

DRI/HBI is ~ 5 % of Crude Steel Production

Hot Metal from BF is ~ 71 % of Crude Steel Production

1649

1168

74

Page 5: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

5 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Classification of Direct Reduction Processes

Energy Source

Iron Ore Source

Reduction Stage

Gas Production

DR Processes

MIDREX® HYL/

Energiron

Shaft Furnace

Gas Reforming

Pellets / Lump Ore Fine Ore

Coal Natural Gas

Coal Gasification

COREX®

DR-Shaft

Fluidized Bed

FINMET® 2 FIOR2, Circored® 2

Iron Carbide 2

Circofer® 1

Rotary Hearth

Rotary Kiln

COMET1

FASTMET3 ITMK3

RedIron3 Iron

Dynamics3

SL/RN DRC

others

1 Process tested in pilot scale, 2 Operation stopped, 3 Recycling of residues

Plants in industrial scale are in operation

Page 6: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

6 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

DRI/HBI Production by Process (production 2014: 74.6 million t)

Other gas based

Page 7: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

7 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

DRI/HBI Production by Region 2000/2014

Page 8: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

8 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

World DRI/HBI Production and Transports

Page 9: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

9 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Reactivity of sponge iron (DRI) versus treatment technology

Source: Direct from Midrex, 4th Quater 2006

Page 10: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

10 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Fluidized Bed Cyclone Shaft Furnace

Pellets / Lump Ore

Coal

OxyCup TECNORED 2 COREX®

AusIron 1 ROMELT 1 DIOS 1 HIsmelt ® 3

Char Bed In-Bed Processes

Metal / Slag Bath In-Bath Processes

FINEX® CCF 1

Hisarna 2

Electrical Smelting

Rotary Hearth

IDI Redsmelt Fastmelt 1

Fine Ore (Sinter and Pellet Feed)

Coal/ Electricity

Energy Source

Iron Ore Source

Pre-reduction Stage

Smelting Stage

SR Processes

1 Process tested in pilot or semi-industrial scale, 2 Pilot tests under execution, 3 Operation stopped

Classification of Smelting Reduction Processes

Plants in industrial scale are in operation

Page 11: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum 11 | 25.08.2015 H.B. Lüngen· © Stahlinstitut VDEh

Stahlinstitut VDEh

Customer Type of plant Number of

module Year of start-up Fe burden

Capacity in million t/a HM Use of the export gas

POSCO, Pohang Works, Korea Corex/Finex plant 01 1995/2003*)**) Iron ore fines 0.8 Power plant, steel shop

POSCO, Pohang Works, Korea Finex plant 02 2007 Iron ore fines 1.5 Power plant, steel shop

POSCO, Pohang Works, Korea Finex plant 03 2014 Iron ore fines 2 Power plant, steel shop

Jindal South West Steel, Toranagallu, India Corex plant 01 1999 Lump ore,

pellets 0.8 DR plant, power plant, steel shop

Jindal South West Steel, Toranagallu, India Corex plant 02 2001 Lump ore,

pellets 0.8 DR plant, power plant, steel shop

ArcelorMittal Steel South Africa; Saldanha Works, South Africa Corex plant 1998 Lump ore,

pellets 0.8 DR plant, steel shop

Baosteel, Luojing/ Shanghai, China Corex plant 01 2007***) Lump ore,

pellets 1.5 Power plant, steel shop

Bayi Steel, Xinjiang Corex plant 01 2015****) Pellets, Sinter 1.5 Power plant, steel shop

Baosteel, Luojing/ Shanghai, China Corex plant 02 2011***) Lump ore,

pellets 1.5 Power plant, steel shop

Bayi Steel, Xinjiang Corex plant 02 2017****) Pellets, Sinter 1.5 DR plant (?), steel shop

Essar Steel, Hazira, India Corex plant 01 2011 Lump ore, pellets 0.8 Power plant, DR plant and steel shop

Essar Steel, Hazira, India Corex plant 02 2011 Lump ore, pellets 0.8 Power plant, DR plant and steel shop

*) Conversion of a Corex plant to a Finex plant **) Idled 2014

***) Idled 2012 and (to be) relocated from Shanghai (Baosteel) to Xinjiang (Bayi Steel) ****) Relocated from Shanghai (Baosteel) Source: Primetals

Overview of Corex and Finex Plants (as of August 2015)

Page 12: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

12 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

DR-Technologies SR-Technologies

Available Plant Capacities for Ironmaking Technologies

Biggest DR- und SR-Plant Modules are in the Capacity Range of Midsized Blast Furnaces

Page 13: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

13 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Primary Energy Use – Comparison of Routes

Hot Metal (75 % Fe)

Scrap (25 % Fe)

FINEX® Plant

Hot Metal (75 % Fe)

DRI (75 % Fe)

Crude Steel

Crude Steel

Crude Steel

BF Route

EAF

BOF

BOF

SrapIron OreCoal

Natural Gas

DR Shaft

Page 14: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

14 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Page 15: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

15 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Remark: The average conversion efficiency in Germany for electric energy production from fossil fuels was 43 % in 2013 (Source: Deutsches Bundes Umweltamt)

Net primary energy consumption:

lowest with BF-BOF route

Page 16: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

16 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Direct Emissions • Conversion of fossil carbon and calcination in the process (no credits considered)

Indirect Emissions • Production and transport of raw materials (pellets, sinter, coke, burnt lime) • Production of electric energy and oxygen

Indirect CO2 Emissions: • 0 kg CO2/kWh (BF + FINEX) • 0 kg CO2/Nm³ O2 (BF + FINEX) • 0,6 kg CO2/kWh (DR+EAF) • 0,3 kg CO2/Nm³ O2 (DR+EAF) • 162 kg CO2/t Pellet • 1400 kg CO2/t Burnt Lime

Substantial lower CO2 emissions for

DR-Shaft + EAF Route Total: ~ 35 % Direct: ~ 60 %

Page 17: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

17 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Natural Gas 9 % increase

Hard/Bituminous Coal

27 % decrease

Basis: Crude Steel Production

with BF+BOF 2013 in Germany

28.9 Mill tons

Total 1.5 % decrease

Page 18: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

18 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Use of Coke Oven Gas for DRI Production in Integrated Route

Case Study: 100 % of Coke Oven Gas is utilized for Steelmaking with DR-Shaft – EAF Route

Hot Metal(75 % Fe)

Scrap (25 % Fe)

Coke Oven Gas (1.9 GJ/t HM)

DRI (75 % Fe)

EAF

Scrap(25 % Fe)

Crude Steel (85 %)

Crude Steel (15 %)

Srap

BOFBF RouteCoal

DR Shaft

Iron Ore

Page 19: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

19 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Overall Effect for Integrated Steel Works by Utilization of COG for DR-Shaft-EAF • 3 % lower total energy consumption • 15 % lower fossil energy consumption • Production increase by 17 %

Page 20: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

20 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Overall Effect for Integrated Steel works by Utilization of COG for DR-Shaft+EAF • 11 % lower direct CO2 Emission • 10 % lower total CO2 Emission

Upstream Substitution of COG by NG for hot rolling is considered in CO2

Balance

Page 21: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

21 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Use of Coke Oven Gas for DRI Production in Integrated Route

Case Study: Use of DRI in BF

Case Study: 100 % of Coke Oven Gas is utilized for DRI Production for BF

Hot Metal

Coke Oven Gas(1,7 GJ/t HM)DRI

(150 kg/t HM)

BF Route

Iron Ore

Coal

Srap

BOF

Crude Steel

DR Shaft

Page 22: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

22 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Overall Effect for Integrated Steel Works by Utilization of COG to produce DRI for BF • 3 % lower total energy consumption • 11 % lower fossil energy consumption • Production increase by 5 to 7 %

Page 23: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

23 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Overall Effect for Integrated Steel Works by Utilization of COG to produce DRI for BF • 6 % lower direct CO2 Emission • 6 % lower total CO2 Emission

Upstream Substitution of COG by NG for hot rolling is considered in CO2

Balance

Page 24: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

24 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Hot Metal

Hot Metal

LRI (Low Reduced Iron,Met 50 – 70 %)

FINEX®

Crude Steel

BF Route

SrapIron Ore

Coal

Coal

BOF

Combination of BF-Route and Smelting Reduction Use of LRI (Low Reduced Iron) produced in FINEX as substitute for Sinter in Blast Furnace

Reduction in comparison to separate routes • Coal: 40 kg/t HM • CO2-Emission:

up to 100 kg/t Steel

Page 25: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

25 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Source: Siemens, Presentation at VDEh, WG "Efficiency increase and CO2 mitigation along the value added chain steel“, Oct. 12, 2015

In 2013 the world has added more capacity for renewable power each than coal, natural gas, and oil combined for the first time.

Race Between Fossil Fuels and Renewable Energies

Page 26: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

26 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Conversion of Energies into Chemical Power

Source: Siemens, Presentation at VDEh, WG "Efficiency increase and CO2 mitigation along the value added chain steel“, Oct. 12, 2015

Steel Industry

Page 27: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

27 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Reduction Shaft

Scrubber

Recycle Gas Compressor

AirHydrogen

Recycle Gas

Fuel Gas

Reducing Gas

Gas heater

Flue Gas

Pellets, Lump Ore

HDRI(Hot Direct

Reduced Iron)

SteelElectric Arc

Furnace

ChargingBin

HDRI

Scrap

Production of Steel on Renewable Energies Process Concept of DR-Shaft and Electric Arc Furnace was investigated in ULCOS Direct Reduction Shaft Process is operated with 100 % H2

Page 28: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

28 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Summary and Conclusions • Annual production of DRI/HBI and hot metal in SR plants corresponds to

5.3 % of world steel production • Overall energy consumption of the steelmaking routes (BF + BOF, FINEX +

BOF and DR-Shaft + EAF) are nearly the same • Steelmaking route of DR-Shaft + EAF has significantly lower CO2-emission as

BF + BOF and FINEX + BOF • Prospective for DR- and SR-Technologies in Europe:

Integration of BF + BOF route with DR- und SR-Technologies • Reduction of specific energy consumption • Reduction of CO2 emissions • Increase of capacity and productivity of existing plants

• Growth of electric power production from renewable energies will drive the convergence between energy market and industries. • Supply of hydrogen enables low CO2 steel production • Steel industry in Europe has to become prepared for the challenges and chances

of this change in the next decades

Page 29: Energy efficiency in steelmaking Evaluation of the · PDF file · 2018-02-19Production of Crude Steel, Hot Metal and DRI/HBI (1995 – 2013) Hot Metal from SR ~ 0.3 % of Crude Steel

Stahl-Zentrum

STAHL 2015

29 | 12.11.2015 · STAHL 2015 · © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl

Energy efficiency in steelmaking THANK YOU FOR YOUR ATTENTION

Weichenstellung für morgen | Setting the course for tomorrow

Prof. Dr. Johannes Schenk Chair of Ferrous Metallurgy, Montanuniversität Leoben, Österreich