Endocrine System and Disorders

download Endocrine System and Disorders

of 13

Transcript of Endocrine System and Disorders

  • 8/3/2019 Endocrine System and Disorders

    1/13

    Endocrine System and Disorders

    Mark E.Peterson & John F. Randolf

    THE ENDOCRINE GLANDS

    The endocrine system is composed of glands that secrete hormones directly into the bloodstream.

    These hormones regulate many body processes. The endocrine system of the cat includes the

    following glands: thyroid, parathyroids, adrenals, pancreas, gonads (testicles and ovaries), and

    pituitary.

    The thyroid in the cat is a single gland with right and left lobes, situated in the neck

    alongside the upper part of the trachea (windpipe).

    The thyroid lobes produce two major hormones,

    thyroxine(T-4) and trfiodothyronine(T-3). These hormones help control the overall

    metabolism of the body. Adherent to the thyroid gland are the parathyroid glands.

    These four small glands (two per thyroid lobe) produce

    parathyroid hormone (PTH) which regulates calcium and phosphorus concentrations in the

    body.

    Adjacent to the front of each kidney in the cat is an

    adrenal gland. These glands consist of an outer region, or cortex, that surrounds a centrally

    located inner part, or medulla.

    The adrenal cortex elaborates glucocorticoid and mineralocorticoid hormones.

    whereas the adrenal medulla produces catecholarnine hormones (e.g., adrenaline).

    The glucocorticoids affect the metabolism of carbohydrates, fat, and protein; the mineralocorticoids,

    help regulate salt and water balance-, and the catecholamines alter blood pressure and heart function.

    The pancreas of the cat lies along the upper part of the small intestine near the stomach. Theendocrine activity of the pancreas resides in clusters of cells called the islets of Langerhans thatare dispersed among the more predominant pancreatic cells that produce digestive enzymes. The

    pancreatic islets secrete several hormones including glucagon, somatostatin, gastrin, and insulin.

    Insulin is especially important in regulating the metabolism of glucose (blood sugar) and otherfuels for the body.

  • 8/3/2019 Endocrine System and Disorders

    2/13

    The gonads serve as a source of the sex hormones that govern reproduction and fertility. in the

    mate cat, the testicles produce testosterone; in the female cat, the ovaries produce progesteroneand estrogen.

    The pituitary gland is located at the base of the brain. just as the brain is the "nerve center" for

    the nervous system, so the pituitary gland is the control center for many of the endocrine glands.The pituitary gland exerts this control by secreting hormones that affect particular endocrine

    glands. For example, pituitary-derived adrenocorticotropic hormone (ACTH) stimulates theadrenal cortex to produce cortisol, whereas pituitary production ofthyroid-stimulating

    hormone (TSH) stimulates the thyroid to make T-4 and T-3 The pituitary gland also secretes

    growth hormone (GH) which stimulates growth, and vasopressin (also called antidiuretic

    hormone [ADH]) which acts to conserve body water by reducing urine output. Should the

    pituitary gland malfunction, then other endocrine glands under its control may also malfunction.

    Disorders of the endocrine system develop when there is an overproduction (hyper-) orunderproduction (hypo-) of hormones. Certain endocrine disorders such as hyperthyroidism are

    common diseases in cats, whereas other diseases such as hypoadrenocortism are less wellrecognized.

    DISEASES OF THE ENDOCRINE SYSTEM

    Hyperthyroidism

    Hyperthyroidism

    results from excessive production

    of the thyroid hormones T-4 and T-3 In the cat,

    hyperthyroidism is most commonly caused by

    a functional benign tumor involving one or both

    thyroid lobes. Hyperthyroidism occurs in middle- to old-aged cats

    (average age, approximately thirteen years).

    There is no breed or sex predisposition.

    Because the clinical signs of hyperthyroidism in cats mimic other diseases such as diabetes

    mellitus, kidney failure, heart disease, and gastrointestinal disorders, a thorough evaluation of the

    cat should include a complete physical exam and screening laboratory tests (complete bloodcount, serum biochemical profile, and urinalysis). Results of these tests may show alterations that

    will aid in the diagnosis of hyperthyroidism. Even more important, however, results of such

    routine screening tests may reveal the presence of a concurrent disorder not directly related to thehyperthyroidism, a situation that should not be surprising considering the old age of most cats

    with hyperthyroidism. During the physical examination, the veterinarian will carefully feel the

    neck region of the cat to determine if the lobes of the thyroid are enlarged and listen to the heart

  • 8/3/2019 Endocrine System and Disorders

    3/13

    for any abnormalities. Findings on physical examination may prompt the need for further testing,

    such as electrocardiogram, radiographs, or echocardiogram.

    A definitive diagnosis of hyperthyroidism in cats is made when the blood concentrations of T-4

    and/or T-3. are increased. Rarely, cats with hyperthyroidism may have normal concentrations of

    thyroid hormones. In these instances, repeating the thyroid hormone measurement or performingother thyroid function tests may be necessary.

    Thyroid imaging (scanning after administration of a small tracer dose of a radionuclide) is

    helpful in determining the extent of thyroid gland involvement in hyperthyroid cats, especially

    when no enlargement of the thyroid gland can be felt, when the enlarged thyroid gland hasdescended into the chest, or in the rare instance when the thyroid tumor is malignant.

    Hyperthyroidism in cats can be treated in three ways: surgical removal ofthe affected thyroid lobe(s), radioactive iodine therapy, or antithyroid drugs. Each form of

    treatment has its advantages and disadvantages. The treatment of choice for an individual cat

    depends on several factors, including the presence of heart disease or other medical problems(e.g., kidney failure) and the availability of a nuclear medicine facility.

    Surgical removal of the enlarged thyroid lobe(s) thyroidectomy-is an effective treatment for

    hyperthyroidism in cats. However, hyperthyroid cats may have increased anesthetic and surgical

    risks because of the effect the disease has had on the cat's heart and metabolism. The mostserious complication of thyroidectomy is hypocalcemia (low blood calcium). This occurs when

    the parathyroid glands are inadvertently injured or removed during surgery. Exacting and special

    attention must be given to try and save at least one of the four parathyroid glands which are

    closely associated with the thyroid glands. This can be tricky, especially to maintain themicroscopic blood supply to these tiny organs. Careful skill and keen surgical vision is essential

    to maintain parathyroid gland function for these cats to avoid the cat having a hypoparathyroidcrisis. If both glands were removed, there is always a question as to how well the parathyroidglands will function; if they fail the cat could have a fatal seizure due to a severe drop in blood

    calcium. Some cats never have complications, others will require supplements and vitamin D

    therapy to help them otherwise maintain their blood calcium levels. Regular post-surgical thyroidchecks are also needed to guard against recurrence and/or see if there is a need for thyroid

    supplementation.

    If both lobes of the thyroid are removed, thyroid hormone supplementation should be given daily

    with periodic measurement of blood T-4 concentration. If only one thyroid lobe is removed, the

    remaining lobe usually can maintain the proper hormone balance without additional treatment.

    However, if only one parathyroid gland remains, it can maintain normal calcium levels. Ifhypocalcemia does develop, it usually occurs within the first three days of surgery. Signs of

    hypocalcemia associate withhypoparathyroidisminclude: Lethargy, anorexia, and depression

    (100%); seizures (50%); muscle trembling, twitching, and fasciculations (83%); panting (33%);posterior lenticular cataracts (33%); bradycardia (17%); fever (17%); hypothermia (17%). There

    is an approximately 10% fatality rate associated with this surgery.

    http://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidismhttp://maxshouse.com/Endocrine_System_&_Disorders.htm#Hypoparathyroidism
  • 8/3/2019 Endocrine System and Disorders

    4/13

    Preparing hyperthyroid cats for surgery by pretreating them with an antithyroid drug may

    minimize the anesthetic and surgical complications. After antithyroid drugs have maintainednormal thyroid hormone blood concentrations for 1 to 3 weeks, most systemic complications

    associated with hyperthyroidism will have improved. In hyperthyroid cats that cannot tolerate

    antithyroid drug treatment, alternate preoperative preparation with

    DOC FOR HYPERTHYROIDISM:

    B-adrenoreceptor-blocking drugs (e.g., propranolol) may be tried. The beta-blockers do not

    lower thyroid hormone concentrations but instead block many of the effects of excess thyroid

    hormones on the heart.

    Radioactive iodine I-131 is the safest, most effective cure for cats with hyperthyroidism

    because it selectively destroys functioning thyroid tissue while sparing the parathyroid glands.The procedure involves first a nuclear medicine scan in which the cat receives an injection of the

    radioactive compound pertechnetate . The resulting scan shows the location of the cats thyroid

    glands, confirms the disease, and, most importantly, determines the cats dose of the radioactiveagent iodine 131. Iodine is joined to the amino acid tyrosine in the thyroid gland to create T4.

    Iodine 131 is carried directly to the thyroid gland as though it were regular iodine. Iodine 131,

    being radioactive, emits high speed electrons which kill the surrounding abnormal thyroid tissue.

    Because these electrons penetrate only fractions of an inch, only the thyroid gland experiencesthe radiation and the rest of the body is spared. Radioactive iodine treatment does not require

    surgery or anesthesia. In most cats with hyperyroidism, a single treatment with radioactive iodine

    sufficient to return thyroid hormone concentrations normal. Cats that remain hyperthyroid canbe successfully retreated with radioiodine. Cats whose T4 levels drop too low can be

    supplemented with T-4 At present the major disadvantage of radioactive iodine treatment is the

    unavailability of nuclear medicine facilities and the period of quarantine for treated cats. Cats

    receiving radioactive iodine need to be confined a nuclear medicine facility. This amounts toabout nine days of hospitalization.(depending on the dose of radioiodine used and radiation

    safety regulations). This method of therapy is the safest and most effective cure for feline

    hyperthyroidism.

    If kidney function is not thoroughly investigated prior to this therapy, latent kidney failure may

    be unmasked irreversibly by this therapy. This can be avoided simply by screening potentialcandidates for kidney failure prior to recommending radiotherapy. Those who have possible

    kidney insufficiency should be treated with medication to bring the thyroid levels under control.

    If kidney function begins to show deterioration on this therapy, medication is discontinued and

    one must reevaluate the need for treating thyroid disease. If kidney functionremains stable on treatment with anti-thyroid medications, then radiotherapy can proceed. A

    glomerular filtration rate test may well be an excellent predictor of possible kidney problems

    after I-131treatment and should be considered before I-131 radiotherapy.

    Antithyroid drugs inhibit the production of thyroid hormones, but they do not destroy the

    thyroid tumor. If doses of antithyroid drugs are missed, the signs of hyperthyroidism will recur.The most commonly used antithyroid drug is methimazole. In cats in which long-term

    methimazole treatment is planned, the goal of treatment is to maintain the blood T4

  • 8/3/2019 Endocrine System and Disorders

    5/13

    concentrations within the low-normal range with the lowest possible daily dose. Adverse

    reactions associated with methimazole include loss of appetite, vomiting, and lethargy. In mostcats, these mild reactions disappear in a few days. However, if these gastrointestinal signs

    persist, the drug may need to be discontinued. Other, less common side effects of methimazole

    requiring cessation of the drug include severe scratching of the head and neck, liver damage,

    severe thrombocytopenia (low clotting-cell count predisposing to bleeding episodes), severeleukopenia (low white blood cell count predisposing to infection), immune-mediated hernolytic

    anemia, and lupus-like syndrome.

    Some cats simply cannot take methimazole or other drugs of its class. In most cases, there was a

    good reason why oral therapy was selected over radiotherapy and surgery. These factors are stillpresent even if side effects preclude the use of methimazole. Fortunately there is an alternative:

    IPODATE (ORAGRAFFIN)

    Ipodate blocks the activation of T4 into T3. It may also block the activity of existing T3. BecauseIpodate does not block T4 production, T4 levels will remain high. In other words, T4 levels

    cannot be used to monitor success of Ipodate treatment. Further, because Ipodate is an iodinecontaining substance just as T3 & T4 are, Ipodate may interfere with the uptake of iodine 131should radiotherapy be selected after Ipodate treatment has been underway. (The most current

    recommendation is to withdraw Ipodate for 3-4 weeks prior to radiotherapy). Ipodate may,

    however, be used up until the day of thyroid surgery with no ill effects.

    So far, no negative side effects have been reported with Ipodate in the treatment of feline

    hyperthyroidism even at the highest doses tested. One might ask, why this medication has not

    replaced Methimazole as drug of choice? Indeed, in the future, we may see that Ipodate doeseclipse Methimazole; however, one recent study performed at the Animal Medical Center inNew York City, found that a full 30% of hyperthyroid cats did not respond to ipodate (these cats

    were felt to be the most severely affected). Further, the Veterinary profession must still beconcerned about off-label use of medications. Neither Methimazole nor Ipodate is licensed foruse in animals; it is simply too expensive for pharmaceutical companies to pursue this kind of

    registration. The FDA recognizes that most animal diseases could not be treated if veterinarianswere restricted to prescribing only those medications licensed for animal use; however, the FDA

    expects off-label drugs to be used only if there is extensive literature published supporting their

    use. Ipodates use in hyperthyroid cats is still newly recognized and not widely published

    whereas Methimazoles use has been well reported for over ten years. Most veterinarians choose

    to reserve Ipodate for cats unable to tolerate Methimazole. If a cat has not had a clear response

    to ipodate after 6 weeks of treatment, one of the other treatment methods should be selected.

    In hyperthyroid cats with compromised kidney function, a trial course of antithyroid drug

    therapy may be advisable prior to more permanent treatment modalities (thyroidectomy or

    radioiodine). Deterioration of kidney function may occur in some cats after correction of thehyperthyroid state. If no decompensation of kidney function develops when normal thyroid

    levels are achieved by methimazole treatment, then more permanent intervention may be

    attempted.

  • 8/3/2019 Endocrine System and Disorders

    6/13

    Hypothyroidism

    Naturally occurring hypothyroidism (decreased T-4 and T-3 production resulting from a loss of

    functioning thyroid tissue) is an extremely rare clinical disorder in the adult cat. However,

    hypothyroidism can be created in adult cats by complete surgical removal or radioiodine

    destruction of the thyroid gland in the treatment of hyperthyroidism. Kittens may develop acongenital hypothyroidism resulting from defects in thyroid hormone synthesis.

    The clinical signs associated with hypothyroidism in the adult cat include lethargy, weight gain,

    dullness, low body temperature, dry scaly skin, matting of hair, and possibly hair loss. Kittens

    afflicted with hypothyroidism may also show retarded growth (with an enlarged head and shortneck and limbs) and constipation.

    A tentative diagnosis of hypothyroidism can be made on the basis of clinical signs, physicalexamination, exclusion of nonthyroidal disease, and the finding of a low blood T4 concentration.

    However, because many factors can falsely lower blood T4 levels, a definitive diagnosis of

    hypothyroidism usually requires thyroid function testing (i.e., TSH response test or thyrotropin-releasing hormone stimulation test).

    Treatment of hypothyroid cats consists of administering a thyroid hormone supplement. Dosageof the supplement is adjusted based on clinical response and serial blood T-4 concentrations. In

    hypothyroid kittens, dullness, constipation, and growth abnormalities may persist despite thyroidhormone supplementation,

    .Hyperparathyroidism

    The parathyroid glands are sensitive to the balance of calcium and phosphorus in the blood. Ifthere is a chronic excess of phosphorus or a deficit of calcium, the parathyroid glands will

    overproduce the parathyroid hormone (PTH) resulting in secondary hyperparathyroidism. This

    overproduction causes calcium to be removed from the bones to reestablish the proper calcium-to-phosphorus ratio in the blood. Secondary hyperparathyroidism may develop as a result of

    kidney disease or feeding all-meat diets.

    In contrast, primary hyperparathyroidism is caused by a tumor of one or more parathyroid glands

    that results in an overproduction of PTH that is totally unrelated to the calcium-to-phosphorus

    ratio in the blood. in fact, the increased PTH in this instance causes hypercalcemia (high blood-

    calcium concentration). Primary tumors of the parathyroid glands are rare in the cat. When theyoccur, they seem to develop more commonly in older female Siamese cats. The most common

    clinical signs of primary hyperparathyroidism in cats are lethargy and inappetance.

    Primary hyperparathyroidism may be suspected when a cat with appropriate clinical signs is

    found to be consistently hypercalcemic on screening laboratory tests. However, other causes ofhypercalcernia (e.g., nonparathyroid tumors, vitamin D toxicity, kidney disease,

    hypoadrenocorticism, and spurious factors) must be ruled out. Determination of blood

  • 8/3/2019 Endocrine System and Disorders

    7/13

    concentrations of PTH and ionized calcium may help differentiate among these causes of

    hypercalcemia.

    Treatment of primary hyperparathyroidism involves surgical removal of the parathyroid tumor.

    Postoperatively, the blood-calcium concentration might fall too low, until the remaining

    parathyroid glands resume their function. Temporary vitamin D and calcium supplementationmay be required during this transition.

    Hypoparathyroidism

    In the cat, the most common cause of hypoparathyroidism is inadvertent injury or removal of the

    parathyroid glands during thyroidectomy for hyperthyroidism. In contrast, naturally occurring

    hypoparathyroidism is a rare disorder in the cat, affecting mainly young to middle-aged cats. The

    most common clinical signs of hypoparathyroidism, regardless of cause, are lethargy,

    inappetance, and muscle tremors.

    The diagnosis of hypoparathyroidism is based on history, clinical signs, laboratory evidence ofhypocalcemia and hyperphosphatemia (high blood-phosphorus concentration), and exclusion of

    other causes of hypocalcemia (e,g., phosphate enema toxicity, kidney failure, pancreatitis,

    intestinal malabsorption). if naturally occurring hypoparathyroidism is suspected, the disorder

    may be confirmed by determination of blood PTH concentrations or biopsy of parathyroid tissue.

    Treatment of hypoparathyroidism, regardless of cause, includes the use of calcium supplements

    and vitamin D. With naturally occurring hypoparathyroidism, long-term management isnecessary; however, with hypoparathyroidism following thyroidectomy, calcium and vitamin D

    therapy usually may be tapered off and eventually discontinued based on results of serial blood-calcium concentrations.

    Hyperadrenocorticism

    Hyperadrenocorticism (Cushing's syndrome) results from excessive production ofglucocorticoids by the adrenal glands. The syndrome appears to be quite rare. Most cases of

    hyperadrenocorticism in the cat are caused by overstimulation of the adrenal glands by a

    pituitary tumor, or by an overly active pituitary gland producing excess amounts of ACTH; the

    remaining cases result from functional adrenal tumors. Hyperadrenocorticism occurs mainly in

    middle-aged to older cats, with a slightly greater incidence in females.

    The most common clinical signs associated with hyperadrenocorticism, in cats include excessivedrinking and urinating, increased appetite, enlarged abdomen, hair loss, thin skin, and lethargy.

    A cat afflicted with Cushing's syndrome may also exhibit extreme fragility of the skin that results

    in skin tears during routine handling.

  • 8/3/2019 Endocrine System and Disorders

    8/13

    Cats with hyperadrenocorticism are predisposed to developing diabetes mellitus because of the

    effects of chronic glucocorticoid excess on blood sugar metabolism. In fact, more than 90percent of the cats with hyperadrenocorticism have concurrent diabetes mellitus. Interestingly,

    many of these cats with hyperadrenocorticism and secondary diabetes mellitus require

    exceptionally high doses of insulin (more than 1 to 2 units per pound of body weight per day),

    because the excess glucocorticoids antagonize the actions of the insulin.

    The ideal diagnostic testing protocol for hyperadrenocorticism in cats is still unknown, buthelpful procedures include adrenal function testing (e.g., dexamethasone suppression test),

    measurement of ACTH concentrations, and radiographic studies (e.g., ultrasound, computed

    tomography).

    In general, surgical removal of the adrenal gland(s) -adrenalectomy-appears to be the most

    successful means of treating cats with hyperadrenocorticism. Only the affected adrenal gland is

    removed in cats. with a functional adrenal tumor, whereas both adrenal glands are removed incats with an overstimulating pituitary tumor/gland. Permanent replacement therapy with

    glucocorticoids and mineralocorticoids is necessary in cats that have had both adrenal glandsremoved. Temporary glucocorticoid supplementation may be required in cats following removalof the adrenal gland tumor.

    Unfortunately, drugs used in dogs with Cushing's syndrome to destroy the adrenal cortex orblock glucocorticoid synthesis do not seem to be consistently effective in the cat. Similarly,

    radiation therapy directed at the causative pituitary tumor has had variable results in cats.

    Hypoadrenocorticism

    Naturally occurring hypoadrenocorticism (also known as primary hypoadrenocorticism or

    Addison's disease) is caused by destruction of the adrenal cortices. The resultant deficiency ofboth glucocorticoids and mineralocorticoids causes the clinical signs observed. Primary

    hypoadrenocorticism is a rare disease in the cat.

    The most common clinical signs of primary hypoadrenocorticism in the cat are lethargy,inappetance, and weight loss. Vomiting and diarrhea are less frequently encountered. in some

    cats, the symptoms may wax and wane. Physical examination may reveal depression, weakness,

    dehydration, and low body temperature.

    Primary hypoadrenocorticism should be suspected in a cat with appropriate clinical features and

    laboratory abnormalities. Classic laboratory findings in a cat with Addison's disease include low

    blood sodium and high blood potassium concentrations (resulting from the lack ofmineralocorticoids), as well as hyperphosphatemia, azotemia, (excess urea in the blood), and

    mild anemia. However, these laboratory findings also can be seen with other diseases. The most

    accurate screening test for hypoadrenocorticism is the ACTH stimulation test, in which the

    response of the adrenal glands to a test dose of commercial ACTH is evaluated.

    Therapy for the cat with primary hypoadrenocorticism consists of lifelong glucocorticoid andmineralocorticoid supplementation, either oral or injectable. Initial treatment also may require

  • 8/3/2019 Endocrine System and Disorders

    9/13

    fluid administration. The dosage of mineralocorticoid replacement is adjusted based on the

    results of serial blood sodium and potassium concentrations.

    Secondary hypoadrenocorticism develops when pituitary ACTH secretion is deficient, resulting

    in inadequate stimulation of adrenal glucocorticoid production. Certain drugs containing

    glucocorticoids or progesterone can inhibit pituitary ACTH secretion. The resultant deficiency inglucocorticoid production may result in clinical signs similar to those observed in primary

    hypoadrenocorticism, except the electrolyte (sodium and potassium) disturbances associated withmineralocorticoid deficiency arc absent.

    Diabetes mellitus

    Diabetes mellitus, a common endocrine disorder in the cat, is caused by decreased insulin

    production by the pancreatic islet cells, or decreased responsiveness of the cat's body cells to theaction of insulin. When insulin quantity or activity is decreased, most body tissues cannot use

    glucose. Hyperglycemia (high blood sugar concentration) and subsequent glucosuria (sugar in

    the urine) rapidly develop. The glucosuria leads to excessive urination and thirst. Because thebody's cells cannot use the available glucose, lethargy and weight loss develop, despite a good

    appetite. As the disease progresses, derangements in fat and protein metabolism accelerate,

    causing inappetance, vomiting, weakness, and dehydration.

    Diabetes mellitus occurs in cats of any age, breed, or sex, but typically it is seen in aged (olderthan ten years), obese (over fifteen pounds), castrated male cats. A veterinarian's diagnosis ofdiabetes mellitus is based on clinical signs, physical examination, laboratory tests, and the

    persistent presence of hyperglycemia and glucosuria. Diagnosis usually is not based on a single

    elevated blood sugar test, especially in the cat with equivocal clinical signs, because stressed cats

    can have temporary sugar levels that are abnormally high. The presence ofketones, a by-product

    of the body's digestion of its own tissues to produce energy when sugar cannot be metabolized,in urine or blood indicates the disease has progressed.

    Proper treatment of diabetes mellitus is based on the severity of the disorder. Diabetic cats that

    are ill (i.e., inappetance, vomiting, dehydration) with ketones in their blood and urine require

    intensive care. Their hospitalized treatment program will probably include fluid therapy tocorrect dehydration and electrolyte abnormalities, and short-acting insulin (e.g., regular insulin

    given frequently during the day) to lower blood glucose and stop ketone production. Once the ill

    diabetic cat starts to feel better (i.e., eating with no vomiting, normal hydration), then the fluidtherapy is tapered off and discontinued, and a longer acting insulin given once or twice a day is

    substituted for the short-acting insulin.

    In diabetic cats that are not ill, the longer acting insulins (NPH insulin, lente insulin, or ultralenteinsulin) given once or twice a day by injection under the skin may be started initially.

    Alternatively, in diabetic cats that are not ill and do not have ketones, an attempt may be made

    for management without insulin treatment by use of dietary modification and oral hypoglycemicdrugs, These cats should be monitored carefully; if they become ill, develop ketones, or remain

    persistently hyperglycemic, then insulin therapy should be initiated.

  • 8/3/2019 Endocrine System and Disorders

    10/13

    INSULIN. In general, home therapy for diabetic -cats involves the injection of ultralente insulin

    once or twice daily, or NPH or lente insulin twice daily, or NPH or lente insulin twice daily.Selection of the type and dose frequency of insulin of an individual diabetic cat should be based

    on eighteen- to twenty-four-hour blood glucose profiles following insulin administration. These

    in-hospital profiles involve frequent determinations of blood glucose values throughout the day

    to assess how long the insulin action lasts and how effectively the insulin lowers the bloodglucose. The dose of insulin is also variable for each cat and may need to be adjusted based on

    blood glucose profiles, intermittent blood glucose determinations, clinical response, and at home

    urine glucose monitoring. Obtaining a urine sample from a diabetic cat to check urine glucosemay be facilitated by using nonabsorbent Kitty Litter substitutes, such as plastic beads or

    aquarium gravel.

    One of the most potentially dangerous complications of insulin therapy is hypoglycemia (low

    blood sugar). Signs of hypoglycernia include weakness, lethargy, wobbly gait mimicking a

    drunken state, convulsions, and coma. Should these signs develop, you should offer the cat itsnormal food if it will eat, or rub a tablespoon of Karo syrup on its gums. Food or fluids should

    never be forced down the mouth, nor should fingers be placed inside the mouth of a convulsingcat. If no response to food or Karo syrup is observed within a few minutes, the cat should betaken to a veterinarian. Whenever signs of hypoglycemia occur, your cat's veterinarian should becontacted and subsequent doses of insulin should be reduced until appropriate insulin dosage

    adjustments can be made based on the results of serial blood glucose determinations.

    Some diabetic cats lose their need for insulin injections. These temporary diabetics may develop

    hypoglycemia as their insulin requirements gradually decrease. Once the diabetic state has

    resolved, these cats may go for weeks to years without requiring insulin, although diabetesmellitus may recur.

    In contrast, other diabetic cats seem to require excessive doses of insulin (greater than 1 to 2units of insulin per pound of body weight per day). These cats may have concurrent diseases

    (e.g., hyperadrenocorticism, infections, acrornegaly) that are blocking insulin's action, technical

    problems with insulin administration (e.g., inadequate mixing of the insulin, outdated ordenatured insulin), poor absorption of insulin, too rapid metabolism of insulin, or even

    overdosage of insulin. Your cat's veterinarian can help you sort out most of these conditions by

    careful history, thorough physical examination, screening laboratory tests, and a blood glucoseprofile.

    DIET. Obese diabetic cats should lose weight to better control their diabetes. The weight loss

    should be gradual, with no greater a loss than 3 percent of body weight weekly. High-fiber dietshave been recommended in the management of diabetic cats, because they help promote weight

    loss and may help control the increase in blood glucose after eating. Thin diabetic cats should be

    fed a high-calorie diet initially and then be switched to a lower calorie, high-fiber diet once theirideal body weight is reached.

    Diabetic cats receiving insulin should have their meals spaced according to their insulinadministration. With once-daily injection of insulin, the cat is fed one-half of its food at the time

    of insulin injection and the remainder at the time of peak insulin activity (about eight to twelve

  • 8/3/2019 Endocrine System and Disorders

    11/13

    hours later). When a cat is receiving insulin twice daily, feedings should coincide with insulin

    injections. Diabetic cats that are being given oral hypoglycemic drugs rather than insulin shouldbe encouraged to eat several small meals throughout the day to minimize the increase in blood

    sugar after eating.

    ORAL HYPOGLYCEMIC DRUGS. Oral hypoglycemic drugs are not "oral insulins," but ratherdrugs that stimulate insulin secretion from the cat's own pancreatic islet cells. The oral

    hypoglycemic drug that is most commonly used in diabetic cats is glipizide. Diabetic catsreceiving glipizicle should have their blood glucose levels monitored weekly by a veterinarian.

    The ideal goal of treatment is a normal blood glucose, at which time the dose of glipizicle may

    be discontinued or tapered. Side effects of glipizide in cats include vomiting, inappetance, andliver damage. If the diabetic cat receiving glipizide becomes ill, develops ketones, or remains

    persistently hyperglycemic after one to two months of treatment, then the glipizide should be

    discontinued and insulin therapy should be started.

    Pancreatic Islet Cell Tumors

    Pancreatic islet cell tumors (e..g., insulinoma, gastrinorna) are extremely rare in the cat. Insulin-

    secreting islet cell tumor (insulinoma) seems to occur most commonly in older, castrated, male

    Siamese cats. Clinical signs are related to hypoglycemia and include weakness and convulsions.

    Laboratory findings of hypoglycemia and increased blood insulin concentration are consistentwith the diagnosis of insulinoma. Treatment has included surgical removal of the insulinoma.

    and medical management with frequent feedings and oral glucocorticoids. Unfortunately, most

    insulinomas in cats seem to be malignant.

    Gastrin-secreting pancreatic tumor (gastrinoma) results in vomiting and weight loss. The

    increased gastrin secreted by these tumors causes excessive production of stomach acid that

    leads to intestinal ulcers. Possible treatment includes surgical removal of the tumor andmanagement of the ulcers with antacids.

    Acromegaly

    Acromegaly occurs when there is an excess of growth hormone (GH) in an adult cat. Although

    uncommon, acromegaly in the cat is most often caused by a GH-secreting pituitary tumor. Most

    of the cats diagnosed with acromegaly have been middle-aged or old, and male.

    The clinical features of acromegaly are caused by the excess GH. They include large head and

    paws, forward-jutting lower jaw, weight gain, enlarged abdomen, thick skin, and enlargement of

    many of the organs in the body (e.g., heart, liver, kidneys). The overgrown heart and kidneysmay fail as the disease progresses.

    Cats with acromegaly are prone to the development of diabetes mellitus because of the effect ofchronic GH excess on blood sugar metabolism. So far, all the cats diagnosed with acromegaly

    have had concurrent diabetes mellitus. In fact, cats with acromegaly and secondary diabetes

    mellitus require very large doses of insulin (greater than I to 2 units per pound of body weightdaily), because the excess GH antagonizes the action of insulin.

  • 8/3/2019 Endocrine System and Disorders

    12/13

    Acromegaly should be suspected in any diabetic cat that is persistently hyperglycemic

    throughout the day despite daily insulin doses exceeding 20 units, especially if accompanied byclinical signs characteristic of acrornegaly (e.g., weight gain, changes in facial features and body

    dimensions). The definitive diagnosis of acromegaly generally requires finding increased blood

    GH concentrations. However, because GH determinations in the cat are not performed by most

    laboratories, a tentative diagnosis is based on characteristic clinical and laboratory features,normal results on thyroid and adrenal testing, and demonstration of a pituitary tumor by brain

    scan. Measurement ofsomatomedin C (a substance produced in response to GH) also may be

    helpful diagnostically.

    Acromegaly can be treated in three ways: surgical removal of the pituitary tumor, radiation of thepituitary tumor, or drugs that inhibit GH secretion. Unfortunately, at this time, there does not

    appear to be a consistently effective treatment for acromegaly in cats. Surgical removal of GH-

    secreting pituitary tumors has not been evaluated in cats. Radiation of the pituitary tumor is

    temporarily effective in lowering GH levels in some cats, yet ineffective in other cats. Long-acting somatostatin, a drug that inhibits GH secretion in people with acromegaly, does not have

    the same effect in acromegalic cats.

    Diabetes insipidus

    Diabetes insipidus is caused by deficient pituitary secretion of vasopressin (also calledantidiuretic hormone or ADH), or by the kidneys' inability to respond to the vasopressin

    hormone. The kidneys' inability to respond to vasopressin can be caused by various drugs and

    diseases. The reasons for the pituitary's decreased secretion of vasopressin include pituitarytumor, pituitary cyst, head trauma, and unknown factors. The following discussion pertains to

    deficient secretion of vasopressin by the pituitary gland.

    All the cats diagnosed with diabetes insipidus have been kittens or young adults, and most havebeen males. The major clinical signs of this rare condition are extreme thirst and the elimination

    of vast quantities of urine.

    .The diagnosis of diabetes insipidus requires that it be differentiated from other, more common

    causes of increased drinking and urinating in the cat, such as kidney failure, diabetes mellitus,and hyperthyroidism. A veterinarian can help distinguish many of these disorders by evaluating

    the cat's history, performing a complete physical examination, and completing some laboratory

    tests (e.g., routine hemogram, serum biochemical profile, analysis of the urine, T4concentration). However, definitive diagnosis of diabetes insipidus requires more extensive

    testing; these additional in-hospital procedures monitor the cat's ability to make more

    concentrated urine as water is withheld and following an injection of vasopressin.

    The treatment of choice for diabetes insipidus is desmopressin (DDAVP), a synthetic form of

    vasopressin. Desmopressin is available as a nose spray for people that can be converted to an eye

    drop for cats. The number of drops is adjusted to control the excessive drinking and urinating.Adverse side effects of DDAVP are uncommon but could include excess water retention.

  • 8/3/2019 Endocrine System and Disorders

    13/13