End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190...

7
Polyethylene End-Use Properties and their Physical Meaning Yury V. Kissin ISBN 978-1-56990-520-3 HANSER Hanser Publishers, Munich • Hanser Publications, Cincinnati Preface

Transcript of End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190...

Page 1: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

PolyethyleneEnd-Use Properties andtheir Physical Meaning

Yury V. Kissin

ISBN978-1-56990-520-3

HANSERHanser Publishers, Munich • Hanser Publications, Cincinnati

Preface

Page 2: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

Table of Content

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

1 Educational Minimum: Manufacture, Structure, and Mechanical Properties of Polyethylene Resins . . . . . . . . . . . . . . . 1

1 .1 Classification and Applications of Polyethylene Resins . . . . . . . . . . . . . . 1

1 .2 Catalysts for Synthesis of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . 4

1 .3 Industrial Processes for the Manufacture of Polyethylene Resins . . . . . . 6

1 .4 Chemistry of Ethylene Polymerization Reactions . . . . . . . . . . . . . . . . . . . 8

1 .5 Molecular Weight Distribution of Polymers and Methods of its Analysis 11

1 .6 Examples of Molecular Weight Distribution of Polyethylene Resins . . . . 14

1 .7 Copolymer Statistics and its Application to Description of LLDPE and VLDPE Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 .8 Compositional Uniformity of Commercial Polyethylene Resins . . . . . . . . 22

1 .9 Morphology of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 .10 Mechanical Deformation of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Melt Index and Melt Flow Ratio of Polyethylene Resin . . . . . . . . 35

2 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 .2 Basics of Polymer Rheology; Melt Flow Through a Capillary . . . . . . . . . . 372 .2 .1 Flow of Polymer Melt Through a Cylindrical Capillary . . . . . . . . . 392 .2 .2 Melt Index of Newtonian Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 .3 Melt Flow of Monodisperse Polyethylene Resins . . . . . . . . . . . . . . . . . . . . 41

2 .4 Additivity Rules for Viscosity; Calculation of Melt Indexes and Melt Flow Ratios from Molecular Weight Distribution Data . . . . . . . . . . . 432 .4 .1 Additivity Rules for Zero-Shear Viscosity η0 . . . . . . . . . . . . . . . . . . 432 .4 .2 Additivity Rules for Effective Viscosity and General Expressions

for Flow of Non-Newtonian Multi-Component Melt . . . . . . . . . . . . 44

InhaltTable of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IXEducational Minimum: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Manufacture, Structure, and Mechanical Properties of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .1  Classification and Applications of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .2  Catalysts for Synthesis of

Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 .3  Industrial Processes for the Manufacture of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 .4  Chemistry of Ethylene Polymerization Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 .5  Molecular Weight Distribution of Polymers and Methods of its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 .6  Examples of Molecular Weight Distribution of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 .7  Copolymer Statistics and its Application to Description of LLDPE and VLDPE Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 .8  Compositional Uniformity of Commercial Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 .9 Morphology of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 .10  Mechanical Deformation of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Melt Index and Melt Flow Ratio of Polyethylene Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 .2  Basics of Polymer Rheology; Melt Flow Through a Capillary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 .2 .1 Flow of Polymer Melt Through a Cylindrical Capillary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 .2 .2 Melt Index of Newtonian Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 .3  Melt Flow of Monodisperse Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 .4  Additivity Rules for Viscosity; Calculation of Melt Indexes and Melt Flow Ratios from Molecular Weight Distribution Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 .4 .1  Additivity Rules for Zero-Shear Viscosity η0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 .4 .2  Additivity Rules for Effective Viscosity and General Expressions for Flow of Non-Newtonian Multi-Component Melt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 .5  Examples of Melt Flow Rates and Melt Flow Ratios for Polyethylene Resins of Different Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 .5 .1 LLDPE Resins Produced with Supported Ziegler-Natta Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 .5 .2 HDPE Resins with Broad Molecular Weight Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 .5 .3 Effect of Long-Chain Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Melting Point of Polyethylene Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 .2 Melting Point of HDPE Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 .3  DSC Melting Curves and Melting Points of LLDPE and VLDPE Resins Produced with Single-Site Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 .3 .1  Crystallization Process of Compositionally Uniform Ethylene/

α-Olefin Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 .3 .2 Model for Secondary Crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 .3 .3 Combined DSC Model for LLDPE and VLDPE Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 .4  DSC Melting Curves and Melting Points of LLDPE Resins Produced with Multi-Site Ziegler-Natta Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Crystallinity Degree and Density of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 .1 Crystallinity Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 .1 .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Methods 734 .1 .2  Definition of Crystallinity Degree of LLDPE and VLDPE Resins Based on Copolymer Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 .2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 .2 .1 Measurement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 .2 .2 Physical Meaning of Polyethylene Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80End-Use Mechanical Properties of Polyethylene Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 .1  Mechanical Properties of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 .1 .1 Effect of Testing Speed on Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 .1 .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orientation in Polyethylene Film 855 .2 Dart Impact Strength of LLDPE Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 .2 .1 Description of Dart Impact Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 .2 .2 Model of Dart Impact Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 .2 .2 .1 Effects of Mechanical Properties of Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 .2 .2 .2  Comparison of Film Made from Ethylene/Butene

and Ethylene/Hexene Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .935 .2 .2 .3 Effect of Copolymer Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 .2 .2 .4 Compositionally Uniform and Compositionally Nonuniform Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 .3 Tear Strength of LLDPE and LDPE Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 .3 .1 Description of Tear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 .3 .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical Details of Tear Test 975 .3 .3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model of Tear Test 1025 .3 .3 .1 Effect of Pendulum Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 .3 .3 .2 Effects of Mechanical Properties of Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 .3 .3 .3 Effect of Film Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 .3 .3 .4  Comparison of Tear Strength of Ethylene/Butene and

Ethylene/Hexene Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105 .3 .3 .5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Density Polyethylene 1105 .4  Comparison of Factors Determining Results of Tear Test and Dart Impact Test of LLDPE Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112End-Use Testing of High Molecular Weight HDPE and MDPE Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 .1 Top Load Test of HDPE Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 .1 .1 Mechanics of Top Load Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166 .2  Dynamic Burst Test of HDPE Tubing and Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186 .3  Static Burst Test and Long-Term Fatigue in Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196 .3 .1 Principal Equation for Low-Stress Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 .3 .2 Physical Mechanism of Polymer Failure under Low Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 .4  Environmental Stress-Cracking Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 .4 .1 Description of ESCR Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 .4 .2 Physics of Environmental Stress Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266 .4 .3 Structural Parameters of HDPE Resins Affecting ESCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276 .4 .4  Relationship between ESCR and Long-Term Fatigue in Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306 .4 .5 Mechanism of Environmental Stress Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Page 3: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

VI Table of Content

2 .5 Examples of Melt Flow Rates and Melt Flow Ratios for Polyethylene Resins of Different Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 .5 .1 LLDPE Resins Produced with Supported Ziegler-Natta Catalysts 482 .5 .2 HDPE Resins with Broad Molecular Weight Distributions . . . . . . 512 .5 .3 Effect of Long-Chain Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Melting Point of Polyethylene Resin . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 .2 Melting Point of HDPE Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 .3 DSC Melting Curves and Melting Points of LLDPE and VLDPE Resins Produced with Single-Site Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 .3 .1 Crystallization Process of Compositionally Uniform Ethylene/

α-Olefin Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 .3 .2 Model for Secondary Crystallization . . . . . . . . . . . . . . . . . . . . . . . . 653 .3 .3 Combined DSC Model for LLDPE and VLDPE Resins . . . . . . . . . . . 66

3 .4 DSC Melting Curves and Melting Points of LLDPE Resins Produced with Multi-Site Ziegler-Natta Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Crystallinity Degree and Density of Polyethylene Resins . . . . . . 73

4 .1 Crystallinity Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 .1 .1 Measurement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 .1 .2 Definition of Crystallinity Degree of LLDPE and VLDPE Resins

Based on Copolymer Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 .2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 .2 .1 Measurement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 .2 .2 Physical Meaning of Polyethylene Density . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 End-Use Mechanical Properties of Polyethylene Film . . . . . . . . . 83

5 .1 Mechanical Properties of Polyethylene Resins . . . . . . . . . . . . . . . . . . . . . . 835 .1 .1 Effect of Testing Speed on Mechanical Properties . . . . . . . . . . . . . 845 .1 .2 Orientation in Polyethylene Film . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 .2 Dart Impact Strength of LLDPE Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 .2 .1 Description of Dart Impact Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 .2 .2 Model of Dart Impact Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 .2 .2 .1 Effects of Mechanical Properties of Resins . . . . . . . . . . . . 92

Page 4: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

Table of Contents� VII

5 .2 .2 .2 Comparison of Film Made from Ethylene/Butene and Ethylene/Hexene Copolymers . . . . . . . . . . . . . . . . . . . . . . . 93

5 .2 .2 .3 Effect of Copolymer Composition . . . . . . . . . . . . . . . . . . . . 945 .2 .2 .4 Compositionally Uniform and Compositionally

Nonuniform Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 .3 Tear Strength of LLDPE and LDPE Film . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 .3 .1 Description of Tear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 .3 .2 Physical Details of Tear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 .3 .3 Model of Tear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 .3 .3 .1 Effect of Pendulum Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 .3 .3 .2 Effects of Mechanical Properties of Resins . . . . . . . . . . . . 1075 .3 .3 .3 Effect of Film Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 .3 .3 .4 Comparison of Tear Strength of Ethylene/Butene and

Ethylene/Hexene Copolymers . . . . . . . . . . . . . . . . . . . . . . . 1105 .3 .3 .5 Low Density Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 .4 Comparison of Factors Determining Results of Tear Test and Dart Impact Test of LLDPE Film . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 End-Use Testing of High Molecular Weight HDPE and MDPE Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 .1 Top Load Test of HDPE Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 .1 .1 Mechanics of Top Load Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 .2 Dynamic Burst Test of HDPE Tubing and Pipes . . . . . . . . . . . . . . . . . . . . . 118

6 .3 Static Burst Test and Long-Term Fatigue in Polyethylene . . . . . . . . . . . . . 1196 .3 .1 Principal Equation for Low-Stress Failure . . . . . . . . . . . . . . . . . . . . 1206 .3 .2 Physical Mechanism of Polymer Failure under Low Stress . . . . . . 122

6 .4 Environmental Stress-Cracking Resistance . . . . . . . . . . . . . . . . . . . . . . . . 1256 .4 .1 Description of ESCR Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 .4 .2 Physics of Environmental Stress Cracking . . . . . . . . . . . . . . . . . . . 1266 .4 .3 Structural Parameters of HDPE Resins Affecting ESCR . . . . . . . . . 1276 .4 .4 Relationship between ESCR and Long-Term Fatigue

in Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306 .4 .5 Mechanism of Environmental Stress Cracking . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Page 5: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

Introduction

Every commercial information sheet describing a polyethylene resin, every profes-sional discussion of the application range for a resin, every issue of the resin pric-ing — they all involve the same short list of resins’ end-use properties . Although the items in the list may vary depending on application, they are universally under-stood throughout the “insider’s” word without any need for an explanation . For commercial film-grade LLDPE resins these parameters usually include the melt index, the melt flow ratio, the melting point, the dart impact strength, and the tear strength in two directions of the film . For blow-molding HDPE resins the usual parameters are the high-load melt index, environmental stress cracking resist-ance, the top-load strength, and so on . Tables I .1 and I .2 show two representative examples of these parameters taken from commercial product data-sheets .

Table I.1 ExxonMobil LLDPE resin, LL 1001 Series

SI units� Englis�h units�Density 0.918 g/cm3 0.0332 lb./in3

Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min

Peak melting temperature 121°C 250 °F

Tensile strength at yield, MD   9.4 MPa 1,400 psi

Tensile strength at yield, TD   9.5 MPa 1,400 psi

Tensile strength at break, MD  50 MPa 7,700 psi

Tensile strength at break, TD  35 MPa 5,100 psi

Elongation at break, MD 580 % 580 %

Elongation at break, TD 850 % 850 %

Secant modulus, MD, at 1 % 190 MPa 28,000 psi

Secant modulus, TD, at 1 % 220 MPa 32,000 psi

Dart drop impact strength 100 g 100 g

Elmendorf tear strength, MD  80 g  80 g

Elmendorf tear strength, TD 400 g 400 g

Page 6: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

X Introduction

Table I.2 Braskem GM7746C Blow Molding HDPE Resin

SI units� Englis�h units�Density 0.944 g/cm3 0.0341 lb./in3

Melt index (190 °C, 21.6 kg) 4.5 g/10 min 4.5 g/10 min

Vicat softening point 126°C 259°F

Tensile strength at yield 23 MPa 3,340 psi

Tensile strength at break 42 MPa 6,090 psi

Elongation at yield 13 % 13 %

Elongation at break 880 % 880 %

Flexural (secant) modulus at 1 % 890 MPa 129,000 psi

Secant modulus, TD, at 1 % 220 MPa 32,000 psi

Environmental stress-cracking resistance (100 % Igepal)

≥ 1,000 h

≥ 1,000 h

These terms and these values have become “the lingua franca” of all product engi-neers, plant operators, and catalyst chemists throughout the world involved in the production and testing of polyethylene resins . However, the exact physical mean-ing of the end-use properties and the correlations between their values and the basic “scientific” properties of polymers, such as the average molecular weight, the molecular weight distribution, the content of α-olefin in an LLDPE resin or a VLDPE plastomer, are not clearly defined .

This book provides a necessary bridge between the values of engineering end-use parameters of polyethylene resins and their scientific molecular and structural characteristics . The main goal is to translate such common parameters as the melt index of a resin or the dart impact strength of a film sample into the universal lan-guage of the polymer science . After this translation is completed, many facets of the resin properties became transparent and easily explainable . For example:

� What happens with the melt flow ratio of a resin after the catalyst used to pro-duce it is modified to increase its sensitivity to an α-olefin?

� What happens with the dart impact strength or the tear strength of LLDPE film when butene is replaced with hexene or octene in an ethylene/α-olefin copoly-meri za tion reaction employing the same catalyst and why does it happen?

� Why are the melting points of metallocene LLDPE resins so much lower com-pared to the melting points of LLDPE resins of the same density and molecular weight prepared with supported Ziegler-Natta catalysts?

These are the types of questions this book provides answers to . Detailed analysis of many such links between the end-use engineering properties of a resin and molec-ular characteristics of the polymer turn out to be quite complex . For this reason, a description of each such linkage is accompanied by numerous examples of practi-cal significance and by explicit data for common commodity polyethylene resins .

Page 7: End-Use Properties and their Physical Meaning · Density 0.918 g/cm 30.0332 lb./in Melt index (190 °C, 2.16 kg) 1.0 g/10 min 1.0 g/10 min Peak melting temperature 121°C 250 °F

Introduction XI

This book is written with three audiences in mind . The first, the most populous, includes product engineers, the specialists who evaluate properties of resins and judge their usefulness (as well as pricing) for a particular application . These spe-cialists are very adept at measuring and evaluation of end-use engineering proper-ties of the resins they are working with . However, they are usually less surefooted when asked which of the molecular characteristics of the polymers they think should be changed, and in what direction, to improve a particular end-use prop-erty .

The members of the second audience are plant and pilot plant operators in the polyethylene industry . These individuals deal with large-scale, steady production processes and need to know which of the process variables they control are crucial for maintaining or achieving the desired end-use parameters of the resins .

The members of the third audience are catalyst chemists, specialists in designing new polymerization catalysts and modifying the existing ones . These professionals often judge success or a failure of the catalyst they develop based on properties of a small amount of polymer prepared in the laboratory, from ~ 10 to ~ 200 g . Their principal interest is to know which of the small-volume, bench-type tests of the polymers has the highest predictive power and how to translate the changes they make in the catalyst recipe into the changes in the end-use properties of the resins manufactured on the commercial scale . One has to take into account that the meas-urement of some end-use properties requires large quantities of resins far exceed-ing what can be prepared in the laboratory .

This book is intended to improve communication bridges between these three groups of specialists and to aid them in understanding each other better and faster .

Yuri V. Kissin