En CURS 1 Two Pole Circuit Elements

download En CURS 1 Two Pole Circuit Elements

of 10

Transcript of En CURS 1 Two Pole Circuit Elements

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    1/23

      1

    COURSE ONE

    TWO POLE CIRCUIT ELEMENTS

    Circuit elements are systems characterized by input and output magnitudes and by the

    relationship between them.  We denote the instantaneous input or excitation magnitude by x(t)

    and the instantaneous output or response magnitude by y(t). The relationship is generally non-

    linear.

    Curves y(x) represented in plane (y,x) for the different values of t are called operational

    characteristics. A point )( 000  y x M   on the curve at the moment 0t   is called operational point.

    The value of the derivative in a point at moment 0t   is called dynamical parametre d P .

    0/ t t d 

    dx

    dyP ==  

    The circuit elements are classified according to the fact that the characteristic is linear or

    non-linear, variable or invariable with the time:

    -  Linear elements invariable with the time Cx y =  

    -  Linear elements variable with the time or parametric )()( t  xt C  y   ⋅=  

    -   Non-linear elements invariable with the time )( x y y =  

    -   Non-linear elements variable with the time ),( t  x y y =  or ( )[ ]t t  x y y ,=  

    Irrespective of the nature of magnitude pair (x,y) the hub voltage )(t u  and the current intensity

    )(t i  are uniquely determined at the hubs of the circuit elements and their product is denoted:

    iu p   ⋅=  

    called instantaneous power ; the power integral in ratio with the time during the interval 12 t t   −  

    is the energy 12W  .

    0 x  

    2t   

     x  

    )0(t   1t   

    0 y  

     y

    0 M   

    )(t  y  )(t  x  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    2/23

      2

     

    ∫=2

    1

    12

     pdt W   

    If at least in one point of the operation characteristic, the instantaneous power is negative

     p0 the element

    receives power from the hubs and it is called a passive element, receiver or load .  Their

    operational characteristics are only placed within scales 1and 3.

    Passive elements able to amass energy in an electric or magnetic field are called  reactive 

    (the coil, the condenser). The resistor irreversibly transforms the energy into heat.

    THE RESISTOR

    The characeristic equation of the resistor is:

    ( )[ ]t t iuu ,=  or ( )[ ]t t uii ,=  

    The charcteristic curve in plane [ ]iu,  at moment t is called characteristic voltage-

    current, in plane i-u  characteristic current-power, respectively. 

    The linear resistor variable with the time

    The characteristic equation is:

    )()( t  Rit u   =  or )()( t Gut i   =  G

     R1

    =   (1)

    i (t)

    u t

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    3/23

      3

    namely Ohm’s Law, where R>0 ( )Ω  and G>0 (siemens conductance)

    in plane (u,i) the characteristic curve is a straight line which passes through the origin, the

    voltage and the current having the same variation with the time.

    If we multiply both terms of the equations (1) by i(t) and by u(t) respectively, we get the

    instantaneous power p 

    ).2(22 Gu Riui p   ===  

    Irrespective of the reference sense of the voltage or current , power  p  is positive and

    corresponds to the electro-calorific effect of irreversible transforming of electric energy into heat

    - If ∞=⇒= G R 0 and 0)(   =t u , the equation (1) becomes:

    0=u   - SHORT CIRCUIT

    if ∞= R   0)(   =G  equation (1) becomes 0=i  

    and the element is called open or broken circuit.

     Linear resistor variable with the time (parametric)

    has the characteristic equation )()()( t it  Rt u   ⋅=  

    =)(t  R  parametric resistance with the symbol

    u u

    i t

    u

    i

    i (t)

    u t

    R(t)

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    4/23

      4

     

    An example of parametric resistor is the potentiometer whose mobile contact alternately

    swings in the two senses with frequency  f  . Denoting =0 R  the resistance at 0=t   and max R  the

     peak amplitude of the part variable with the time. The parametric resistance has the expression:

     ft  R Rt  R   π 2sin)( max0 +=  

    The voltage variation with the time differs from that of the current .

    If the resistor is passed by a sinusoidal current, ( )α π    += t  f  I t i 1max 2sin)( , the hub voltage

    )(t u  has the expression:

    ( ) ( )[ ]   ( )[ ]α π α π α π    ++−−−++= t  f  f  I  R

    t  f  f  I  R

    t  f  I  Rt u 1maxmax

    1maxmax

    1max0 2cos2

    2cos2

    2sin)(  

    The expression has two frequency terms 1 f  f  −  and 1 f  f  +  and a frequency term 1 f  .

    A switch is modelled as a circuit element by a parametric resistor which modifies the

    resistance from a very low value when the ciruit is closed, to a very high value when it is open.

    An ideal switch is represented at the closing of the circuit by the short circuit element and at the

    opening of the circuit by the open circuit element.

    The real switch can be modelled by an ideal switch with two linear resistors invariable

    with the time, the first having very high 1 R  and the second very low resistance 2 R , as shown in

    the figure below.

    u

    i

    max

    max

     R R

     R R

    o

    o

    +

    〉 

     ft  R R  π 

    2sinmax0 +  

    max R Ro  −  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    5/23

      5

     

    The coil

    When not magnetically coupled, the coil is a passive cirucit element with the following

    characteristic equation:

    ( )[ ]t t i ,Φ=Φ  

    The graphic symbol is:

    The characteristic curve in plane ( )i,Φ  is called characteristic flux-current. The link

    equation between the flux and the hub voltage or the voltage inductive drop is the evolution

    equation:

    dt 

    d u

      Φ=   (3)

    By integrating in the interval t →0 , we get:

    t d t ut 

    o

    ′′+Φ=Φ ∫ )()0()(  

    t d t u

    O

    ′′=Φ ∫∞−

    )()0(

    Since the magnetic flux is conditioned by the previous values of voltage, the coil is a

    memory element.

    (t)

    u (t)

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    6/23

      6

     

    The absolute continuity of the magnetic flux

    By writing t d t ut 

    ′′=Φ ∫∞−)()( ( 3′ ) where )(t u   ′  is an integrable function, the magnetic flux

    defined by the equation (3) in interval (-∞, ∞) is an absolute continuous function of time.

    Irrespective of the means of switching the coil, in the electric circuit, the magnetic flux

    does not vary discontinuously (the magnetic flux in the coil is preserved).

    The linear coil, invariable with the time and not magnetically coupled

    has the equation:

    1

    )()(

    )()(

    −Γ=

    ΦΓ=

     L

    t t i

    t i Lt 

     

    = L  independent inductance from )(,,  H t iΦ  

    Γ >0 mutual inductance

    In plane ),( iΦ  the characteristic curve is a straight line through the origin and,

    consequently, the magnetic flux and the current have the same form of time variation. Taking

    into account (4), equation (3) becomes:

    dt 

    di Lt u   =)(   (5)

    Integrating on interval 0-t we get:

    )6()(1

    )0(

    )()0()(1

    )0()(

    0

    0

    00

    t d t u L

    iunde

    t d t uit d t u L

    it i

    t t 

    ′′=

    ′′Γ+=′′+=

    ∫∫

    ∞−

     

    The current strength )(t i  at the moment )(t   is conditioned by the current strength at the

    initial moment (0) and previous values of voltage 0)(t u   ′ < t t  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    7/23

      7

     

    By multiplying the equation (5) by t id  ′  and integrating we get energym

    W   amassed in the

    magnetic field of the coil.

    ( ) L

    ii Lid i Lt d t it uW 

    it 

    m

    22

    002

    1

    2

    1

    2

    1)(

      Φ⋅=Φ⋅=⋅=′′=′′′= ∫∫  

    where we assumed that 0)0(   =i .

    Irrespective of the current sense in respect with that of voltage, the magnetic energy is

     positive and thus, the coil is a passive element.

    The theorem of the current uniform continuity in the coil 

    Writing equation (6) at moment dt t  +  and substracting term by term from the equation,

    equation (5), it results that:

    t d t u L

    t idt t i

    dt t 

    ′′=−+ ∫+

    )(1

    )()(

    If in the time interval [ ]T −0  voltage is bordered U t u  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    8/23

      8

    where =⋅dt 

    t dit  L

    )()( the inductive voltage drop by pulsating (due to the current variation with the

    time);

    =dt 

    t dL

    t i

    )(

    )( parametric inductive voltage drop (due to inductance variation with the time).

    THE CONDENSER

    Is a passive circuit element, with the characteristic equation:

    ( )[ ]   ( )[ ]t t quusaut t uqq ,,   ==  

    The characteristic curve in plane ( )uq, at a moment t  is called characteristic charge-

    voltage.

    The link equation between the electric charge and the current strength is:

    dt 

    dqi =  (8)

    Integrating equation (8) in interval t −0 , we get:

    ( )

    ( ) t d t iq

    t d t iqt q

    ′′=

    ′′+=

    ∞−

    0

    0

    )0(

    )0()(

     (9)

    The electric charge )(t q  at moment ( )t   is conditioned by the initial charge and the

     previous values of strength )(t i   ′ , t t  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    9/23

      9

     

    The absolute continuity of the electric charge

    Equation (9) can be written:

    ( ) t d t it qt 

    ′′= ∫∞−)( (10)

    where ( )t i   ′  is an integral function, the electric charge defined on interval ( )∞∞− , is an absolute

    function continuous in time. Irrespective of the condenser’s linking and switching means the

    electric charge does not vary discontinuously.

    The linear condenser invariable with the time

    The characteristic equation:

    )()( t Cut q   =  or )()( t Sqt u   =  

    where C>0 [ ]F   does not depend on t uq ,,

    S =  mutual capacity [ ] DF   

    In plane [ ]uq,  the characteristic curve is a straight line passing through the origin and

    thus the electric charge and voltage have the same variation form with the time.

    Since

    dt 

    dqi =  and

    dt 

    duC t it Cut q   =⇒= )()()(

    Integrating, it results that:

    ( ) ( )

    ( ) ( ) t d t iC 

    u

    t d t iS ut d t iC 

    ut u

    t t 

    ′′=

    ′′+=′′+=

    ∫∫

    ∞−

    0

    00

    10

    )0(1

    )0()(

     

    Hence, voltage )(t u  at moment t   is conditioned by the initial voltage ( )0u  and previous

    values of the current t t  

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    10/23

      10

    ( ) ( ) qU qC 

    CU duuC t d t it uW 

    t t 

    e2

    1

    2

    1

    2

    1 22

    00

    ====′′′= ∫∫  

    where we considered 0)0(   =u .

    Irrespective of reference senses, the condenser’s energy is positive, which makes thecondenser a passive element.

    The theory of the voltage uniform continuity at the condenser’s hubs

    In a similar manner with the magnetic flux, the electric voltage at the condenser’s hubs

    continuously vary in the open interval (0,T) if the current strength is bordered in the closed

    interval [ ]T ,0 .

    THEREFORE: Voltage at the condenser’s hub cannot pass from a finite value to anotherfinite value if the current strength is bordered.

    The linear condenser variable with the time (parametric)

    The characteristic equation:

    )()()( t ut C t q   ⋅=  

    where =)(t C   parametric capacity.

    Graphically, the parametric condenser is represented below:

    The current strength is derived form the relation:

    dt 

    t dC t u

    dt 

    dut C t i

    si

    t ut C t qundedt 

    dqt i

    )()()()(

    )()()()(

    +=

    ⋅==

     

    The first termdt 

    dut C  )( represents the pulsating component

    u t C t

    i t

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    11/23

      11

     dt 

    t dC t u

    )()( represents the parametric component.

    THE INDEPENDENT GENERATOR

    This is an active circuit element, whose hubs voltage does not depend on the current

    strength, its characteristic equation being: ( )t eu = .

    In plane (u,i) the operating characteristic is a straight line parallel to axis (0,i).

    Since a voltage value uniquely corresponds to a current strength, the generator can be

    considered a nonlinear active resistor with current control .

    As a circuit element, the independent generator is characterised by the manner in which

    the electromotive voltage ( )t e  varies with the time.

    The generator is of direct voltage if the electromotive voltage  E t e   =)(  is constant.

    In the direct current the dependence of hub voltage bU   to the current strength I is due to

    the internal resistance of generatorg R .

    The real generator of direct voltage is characterised by the electromotive voltage E and

    internal resistanceg

     R  and Joubert equation has the form:

    ggb  I  RU  E    =−  

    The operation characteristic is a straight line which does not pass through the origin .

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    12/23

      12

     

    THE INDEPENDENT CURRENT GENERATOR

    This is the active element which has the current strength independent of voltage and its

    characteristic equation is :

    ( )t ii g=  

    In plane (u,i) the operation characteristic is a straight line parallel to the axis 0-u.

    The current generator is completely characterised by the manner in which the injected

    current ( )t ig  varies with the time. If the current strength is constant with the time, ( ) gg  I t i   =  the

    source is of direct current. The current strength of real injectors depend on voltage. In direct

    current this is due to the internal conductance G.

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    13/23

      13

      The real injector is characterised by the current injection g I   and conductance gG .

    On considering the equation:

    ggb  I  RU  E    =−  

    and dividing both terms byg

    gG

     R 1= , we get:

    bgg U G I  I    =− , where ggg U Gl   =  is the short circuit current of the generator

    The equations of voltage drop  in the generator and current decrease  in the current

    generator are dual and the correspondence of dual magnitude is the following:

    gggg G R I U  I  E    ↔↔↔ ;; 0 ;

    As circuit elements sources admit dual models of the voltage generator and current

    generator.

    WAYS OF VOLTAGE AND CURRENT VARIATION WITH THE TIME

    •  CONTINUOUS – as defined by the equation: .)( const C t C t Y    =∞

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    14/23

      14

     

    The function delayed by 0t   can be written as:

    ( )⎩⎨⎧

    ≥−

    <=−−

    00

    0

    00)(

    0)(

    t t t t  f 

    t t t t ht t  f   

    •  SLOPE UNIT - ( )⎩⎨⎧

    <=

    0

    00

    t t 

    t r t   

    The slope unit function is equal to the non-definite integral of the unit function.

    1

    1 t

    г 

    г t

    1

    1

    г t-t0  

    г

    t0

    t

    h

    1

    h t

    t

    h

    h t-t0  

    t0 

    t

    f(t).h(t)

    f t

    f(t-t0).h(t-t0)

    f t-t0

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    15/23

      15

    )()()(0

    t tht d t ht r 

    =′′∫  

    The delayed slope unit function can be written as:

    ( ) ( ) ( )000 t t ht t t t r    −−=−  

    RECTANGULAR UNIT IMPULSE (of unit area)

    ⎪⎪

    ⎪⎪

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    16/23

      16

     

    Since ( )10 ,lim)( 1 t t  pt  t  →=δ    

    integrating, ( ) ( ) 1,lim 101

    =′=′∂′ ∫∫   →∞

    ∞−

    t d t t  pt t t 

    δ    

    Multiplying both terms of the equation

    ( ) ( )t hdt 

    t dht 

    1)()(   ==δ    with a function )(t  f   continuous in its origin, bordered and integrable

    and integrating between ∞∞− si  we get:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )000

    0

    0

    0

     f t d t  f t d t t  f t d t t  f    =′′=′′′=′′′ ∫∫∫+

    −−

    ∞−

    δ  δ  δ    

    This property is called filtering.

    EQUIVALENT THEOREMS OF REACTIVE ELEMENTS

    THEOREM 1 The linear coil invariable with the time of inductance  L and initial current

    )0( Li is equivalent either with current generator ( )t hit i  Lg )0()(   =  connected in parallel with

    coil L, with the initial current nil, or with electromotive generator )()0()( t  Lit e  L   δ  =  

    connected in series with coil L having the initial current nil.

    δ 

    δ

    δ t

    f t

    δ t-tδ t-t0  

    t

    tt

    t

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    17/23

      17

     

    Using the equation determined for the linear coil invariable with the time

    ( ) ( ) ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ′′=′′+= ∫∫

    ∞−

    t d t u L

    it d t u L

    it i

    t  0

    0

    )(1

    0)(1

    0)(

    According to Kirchhoff’s first law by using function )(t h  

    t d t u L

    t hit i

     L  ′′+⋅= ∫

    0

    )(1

    )()0()(  

    to the first term in the second member corresponds the current generator

    )()0()( t hit i  Lg   = , and to the second term the inductance coil L and initial nil current.

    If both terms of previous relations are multiplied by L and are derived in respect with the

    time we get:

    ( ) )()0( t ut i Ldt di L  L   +⋅=   δ     for scheme 2

    THEOREM 2  A circuit made up of a linear coil of inductance  L and initial nil current,

    connected in parallel with a current injector )(t ig  is equivalent to a circuit having an

    electromotive generatordt 

    di Lt e

    g=)( in series with coil L

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    18/23

      18

      If we write Kirchhoff’s first law in a node, t d t u L

    t it i

    g  ′′+= ∫0

    )(1

    )()( .

    By deriving in respect with the time and multiplying by L, we get:

    )()()( t udt 

    t di Ldt 

    t di L g +=  

    şi ( ) ( )dt 

    di Lge

    dt 

    t di L

    dt 

    t di Lt u

    g +−=+−=)()(

     

    THEOREM 3 The linear condenser, invariable with the time of capacitance  C and initial

    voltage )0(cu is equivalent either to the electromotive generator ( )t hut e c )0()(   =  in series

    with C having the initial voltage nil, or to the current generator

    ( )t Cut i

    cg  δ  )0()(   =  in parallel

    with the condenser of initial voltage nil.

    Considering the relation:

    t d t iC ucudt t iC ut u

    ′′=′+= ∫∫ ∞−

    0

    0)(

    1

    )0()(

    1

    )0()(

    and using function )(t h  it becomes:

    ( ) t d t iC 

    t hut u

    ′′+⋅= ∫0

    0 )(1

    )(

    Multiplying by C and deriving we get:

    ( )t it uC dt 

    duC  c   += )()0(   δ    

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    19/23

      19

    According to Kirchhoff’s first law this corresponds to figure 2.

    THEOREM 4 A circuit made up of a linear condenser invariable with the time of capacitance C

    and initial nil voltage, connected in series to an electromotive generator is equivalent to the

    circuit having in parallel to condenser C a current generatordt 

    deC ig  = .

    From Kirchhoff ' 2nd equation written as ( )t uet d t iC 

    =−′′∫0

    )(1

     derived and multiplied by C we

    get:

    dt duC 

    dt deC t i   +=)( , namely scheme (b)

    SERIES AND PARALLEL CONNECTIONS OF TWO POLE ELEMENTS

    Let us consider m two-pole elements passed by currents k i , with hub voltage k u .

    The series connection is obtained by connecting hubs ,32,21 cucu   ′′  etc.

    T1 Kirchoff at node 1k   it results that: ek  ii   =  

    and voltage at hubs (1), ( )m′  has the expression:

    ∑=

    =m

    k e uu1

     

    The parallel connection is obtained by connecting together hubs 1,2,...m

    m′′′ ...2,1 ,respectively. Applying T2 Kirchhoff to the loop made up of elements 1+k sik  , it

    results that:

    ck k  uuu   ==   +1   mk  ,...2,1= .

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    20/23

      20

      Applying T1 Kirchhoff to one of the nodes, we get the total strength of the current ei .

    ∑=

    =m

    k e ii1

     

    CIRCUITS WITH RESISTORS

    Series 

    ( )

    =

    =

    =

    =

    m

    K e

    m

    eK e

     R R

    iuu

    1

    Parallel  the equivalent resistor has the characteristic equation ( )∑=

    =m

    ek e uii1

     

    and

    ∑=

    =m

    k  K 

    e

     R

     R

    1

    1

    Mixed  it contains dipole elements connected in series and parallel .

    CIRCUITS WITH COILSSERIES  We consider m linear coils characterised by inductivity LK  or reciprocal

    inductivity 1−=Γ K K   L  and currents’ strengths at the initial moment )0(k i , connected in series.

    )()( t it i ek    =  

    Voltage at the coil’s hubs k has the expression:

    dt 

    di Lt u eK k    =)(  

    Voltage at the circuit’s hubs is computed in the following manner:

    ( )dt 

    di

    dt 

    di Lt ut u e

    m

    k  K 

    em

    m

    k e ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    Γ=⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ ==   ∑∑∑

    === 111

    1)(  

    therefore

    Γ

    =

    e

    K e  L L

    1

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    21/23

      21

    PARALLEL Current ( ) ( ) ( ) t d t u L

    it i

    e

    K k   ′′+= ∫

    0|

    10

    Applying T1 Kirchhoff we derive that:

    t d t u L

    it it i

    e

    m

    k  K 

    m

    m

    k e   ′′⎟⎟ ⎠ ⎞⎜⎜

    ⎝ ⎛ +== ∫∑∑∑

    === 0111

    )(1)0()()(

    Therefore,

    ∑=

    =m

    k  K 

    e

     L

     L

    1

    1

    CIRCUITS WITH CONDENSERS

    We shall consider m linear condensers having capacity K C   and hub voltages at the initial

    moments )0(K u .When connecting in parallel, conditions are met by equalling the currents )()( t it i eK    = .

    The characteristic equation of condenser k  is written as:

    ( ) t d t iC 

    ut u

    e

    k K   ′′+= ∫

    0

    1)0()(  

    Hence, voltageeu  has the expression:

    t d t iC ut ut u

    e

    m

    m

    k  K K 

    m

    k K e

      ′′⎟⎟ ⎠

     ⎞

    ⎜⎜⎝ 

    ⎛ 

    +== ∫∑ ∑∑ = == 01 11 )(1

    )0()()(  

    Thus:

    ∑=

    =n

    k  K 

    e

    1

    1

    1  ∑

    =

    =m

    K e uu1

    )0()0(

    PARALLEL The equality of voltages is implied

    )()( t ut u ek    =  

    The strength of currentk i  through the capacity condenser K C   is given by the relation

     below:

    dt 

    duC t i eK k    =)(

    The total currentei  is obtained by:

    ∑∑ == ==

    m

    e

    m

    k k e dt 

    du

    C t ii 11 )(

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    22/23

      22

    and ∑=

    =m

    K e C C 1

     

    CIRCUITS WITH INDEPENDENT GENERATORS

    SERIES The electromotive voltage of m generators series connected computed with the

    formula below are:

    ∑=

    =m

    K e t et e1

    )()(

    Due to the restriction in the series connection, the generators which are independent from

    current can be series connected only if they have the same current.

    mk t it i gegk  ...2,1)()(   ==  

    The series circuit with m generators of continuous voltage k  E   and internal resistors gk  R  

    is equivalent to the voltage generator e E   and internal resistor ge R .

    ∑∑==

    ==m

    gk ge

    m

    k e  R R E  E 11

    ;

    The circuit with m  current generators gk  I   and internal resistors gk  R   series connected is

    equivalent to m voltage generators gk gk K   I  R E    =  and resistors gk  R  series connected.

    The electromotive voltagese E   and internal resistor ge R  of the equivalent voltage

    generator has the expressions:

    ∑∑==

    ==m

    gk gegk 

    m

    gk e  R R I  R E 11

    ;

    Going back to the scheme of the current generator we get:

    =

    ==m

    gk 

    m

    gk gk 

    ge

     R

     I  R

     I 

    1

    1  

    PARALLEL The current generator is an active element, of resistive type with voltage

    control; then, it results that the current strength )(t ige of the equivalent generator with m current

    generators parallel connected is computed with the relation below:

  • 8/8/2019 En CURS 1 Two Pole Circuit Elements

    23/23

      23

    )()(1

    t it im

    gk ge   ∑=

    =  

    Due to the restriction of parallel connexion, the independent voltage generators can be

    connected in parallel only if they have the same electromotive voltage

    mk t et e ek  ...2,1)()(   ==  

    The parallel circuit with m generators of direct current gk  I   and internal conductance gk G  

    is equivalent to the current generatorge I   and internal conductance geG :

    ∑∑==

    ==m

    gk ge

    m

    gk ge  I  I GG11

    ;

    The circuit with m voltage generators k  E   and internal resistors gk  R  parallel connected is

    equivalent to m current generatorsgk 

    gk  R

     E  I    =  connected in parallel.

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ==

    ∑∑

    =

    = m

    k  gk 

    ge

    m

    k  gK 

    ge

     R

     R R

     E  I 

    1

    1 1

    Therefore, the current generator will have:

    ∑=

    gk 

    gk 

    e

     R

     R

     E 

     E 1

    .