Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in...

40
Empirical Bayes Inference in Structured Hazard Regression Thomas Kneib Department of Statistics Ludwig-Maximilians-University Munich 20.11.2006

Transcript of Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in...

Page 1: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Empirical Bayes Inference inStructured Hazard Regression

Thomas Kneib

Department of StatisticsLudwig-Maximilians-University Munich

20.11.2006

Page 2: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Outline

Outline

• Leukemia survival data.

• Structured hazard regression for continuous survival times.

• Empirical Bayes inference in structured hazard regression.

• Multi-state models.

Empirical Bayes Inference in Structured Hazard Regression 1

Page 3: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

Leukemia Survival Data

• Survival times of adults after diagnosis of acute myeloid leukemia.

• 1,043 cases diagnosed between 1982 and 1998 in Northwest England.

• 16 % (right) censored.

• Continuous and categorical covariates:

age age at diagnosis,wbc white blood cell count at diagnosis,sex sex of the patient,tpi Townsend deprivation index.

• Spatial information in different resolution.

Empirical Bayes Inference in Structured Hazard Regression 2

Page 4: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

• Classical Cox proportional hazards model:

λ(t; x) = λ0(t) exp(x′γ).

• Baseline hazard λ0(t) is a nuisance parameter and remains unspecified.

• Estimate γ based on the partial likelihood.

• Questions / Limitations:

– Simultaneous estimation of baseline hazard rate and covariate effects.

– Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).

– Spatially correlated survival times.

– Non-proportional hazards models / time-varying effects.

⇒ Structured hazard regression models.

Empirical Bayes Inference in Structured Hazard Regression 3

Page 5: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

• Replace usual parametric predictor with a flexible semiparametric predictor

λ(t; ·) = λ0(t) exp[g1(t)sex + f1(age) + f2(wbc) + f3(tpi) + fspat(si)]

and absorb the baseline

λ(t; ·) = exp[g0(t) + g1(t)sex + f1(age) + f2(wbc) + f3(tpi) + fspat(si)]

where

– g0(t) = log(λ0(t)) is the log-baseline hazard,

– g1(t) is a time-varing gender effect,

– f1, f2, f3 are nonparametric functions of age, white blood cell count anddeprivation, and

– fspat is a spatial function.

Empirical Bayes Inference in Structured Hazard Regression 4

Page 6: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

−5

−2

14

0 7 14time in years

log(baseline) Log-baseline hazard.

Time-varying gender effect.

−1

01

2

0 7 14time in years

time−varying effect of sex

Empirical Bayes Inference in Structured Hazard Regression 5

Page 7: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

−1.5

−.7

50

.75

1.5

14 27 40 53 66 79 92age in years

effect of age Effect of age at diagnosis.

Effect of white blood cell count.−

.50

.51

1.5

2

0 125 250 375 500

white blood cell count

effect of white blood cell count

Empirical Bayes Inference in Structured Hazard Regression 6

Page 8: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

−.5

−.2

50

.25

.5

−6 −2 2 6 10townsend deprivation index

effect of townsend deprivation index Effect of deprivation.

Empirical Bayes Inference in Structured Hazard Regression 7

Page 9: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Leukemia Survival Data

-0.44 0 0.3

District-level analysis−0.44 0.3

Individual-level analysis

Empirical Bayes Inference in Structured Hazard Regression 8

Page 10: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

Structured Hazard Regression

• A general structured hazard regression model consists of an arbitrary combination ofthe following model terms:

– Log baseline hazard g0(t) = log(λ0(t)).

– Time-varying effects gl(t)ul of covariates ul.

– Nonparametric effects fj(xj) of continuous covariates xj.

– Spatial effects fspat(s) of a spatial location variable s.

– Interaction surfaces fj,k(xj, xk) of two continuous covariates.

– Varying coefficient interactions ujfk(xk) or ujfspat(s).

– Frailty terms bg (random intercept) or xjbg (random slopes).

• All covariates are themselves allowed to be (piecewise constant) time-varying.

Empirical Bayes Inference in Structured Hazard Regression 9

Page 11: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

• Penalised splines for the baseline effect, time-varying effects, and nonparametriceffects:

– Approximate f(x) (or g(t)) by a weighted sum of B-spline basis functions

f(x) =∑

ξjBj(x).

– Employ a large number of basis functions to enable flexibility.

– Penalise differences between parameters of adjacent basis functions to ensuresmoothness:

Pen(ξ|τ2) =1

2τ2

∑(∆kξj)2.

– Bayesian interpretation: Assume a k-th order random walk prior for ξj, e.g.

ξj = ξj−1 + uj, uj ∼ N(0, τ2) (RW1).

ξj = 2ξj−1 − ξj−2 + uj, uj ∼ N(0, τ2) (RW2).

Empirical Bayes Inference in Structured Hazard Regression 10

Page 12: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

−2

−1

01

2

−3 −1.5 0 1.5 3

−2

−1

01

2

−3 −1.5 0 1.5 3

−2

−1

01

2

−3 −1.5 0 1.5 3

Empirical Bayes Inference in Structured Hazard Regression 11

Page 13: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

• Bivariate Tensor product P-splines for interaction surfaces:

– Define bivariate basis functions (Tensor products of univariate basis functions).

– Extend random walks on the line to random walks on a regular grid.

f f f f f

f f f f f

f f f f f

f f f f f

f f f f f

v v

v

v

Empirical Bayes Inference in Structured Hazard Regression 12

Page 14: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

• Spatial effects for regional data s ∈ {1, . . . , S}: (Intrinsic Gaussian) Markov randomfields.

– Bivariate extension of a first order random walk on the real line.

– Define appropriate neighbourhoods for the regions.

– Assume that the expected value of fspat(s) = ξs is the average of the functionevaluations of adjacent sites:

ξs|ξs′, s′ 6= s, τ2 ∼ N

1

Ns

s′∈∂s

ξs′,τ2

Ns

.

τ2

2

t−1 t t+1

f(t−1)

E[f(t)|f(t−1),f(t+1)]

f(t+1)

Empirical Bayes Inference in Structured Hazard Regression 13

Page 15: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

• Spatial effects for point-referenced data: Stationary Gaussian random fields.

– Well-known as Kriging in the geostatistics literature.

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Can be interpreted as a basis function approach with radial basis functions.

Empirical Bayes Inference in Structured Hazard Regression 14

Page 16: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Structured Hazard Regression

• Cluster-specific frailty terms:

– Account for unobserved heterogeneity.

– Easiest case: i.i.d Gaussian frailty.

• All covariates in the discussed model terms are allowed to be piecewise constanttime-varying.

Empirical Bayes Inference in Structured Hazard Regression 15

Page 17: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

Empirical Bayes Inference

• Generic representation of structured hazard regression models:

λ(t) = exp [x(t)′γ + f1(z1(t)) + . . . + fp(zp(t))]

• For example:

f(z(t)) = g(t) z(t) = t log-baseline effect,

f(z(t)) = u(t)g(t) z(t) = (u, t) time-varying effect of u(t),f(z(t)) = f(x(t)) z(t) = x(t) smooth function of a continuous

covariate x(t),f(z(t)) = fspat(s) z(t) = s spatial effect,

f(z(t)) = f(x1(t), x2(t)) z(t) = (x1(t), x2(t)) interaction surface,

f(z(t)) = bg z(t) = g i.i.d. frailty bg, g is a groupingindex.

• The generic representation facilitates description of inferential details.

Empirical Bayes Inference in Structured Hazard Regression 16

Page 18: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• All vectors of function evaluations fj can be expressed as

fj = Zjξj

with design matrix Zj, constructed from zj(t), and regression coefficients ξj.

• Generic form of the prior for ξj:

p(ξj|τ2j ) ∝ (τ2

j )−kj2 exp

(− 1

2τ2j

ξ′jKjξj

)

• Kj ≥ 0 acts as a penalty matrix, rank(Kj) = kj ≤ dj = dim(ξj).

• τ2j ≥ 0 can be interpreted as a variance or (inverse) smoothness parameter.

• Relation to penalized likelihood: Penalty terms

Pλj(ξj) = log[p(ξj|τ2

j )] = −12λjξ

′jKjξj, λj =

1τ2j

.

Empirical Bayes Inference in Structured Hazard Regression 17

Page 19: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• Likelihood contributions for right- and uncensored survival times:

λ(T )δ exp

(−

∫ T

0

λ(t)dt

),

where δ is the censoring indicator.

• Likelihood contributions for interval-censored observations:

P (T ∈ [Tlower, Tupper]) = S(Tlower)− S(Tupper)

= exp

[−

∫ Tlower

0

λ(t)dt

]− exp

[−

∫ Tupper

0

λ(t)dt

].

⇒ Derivatives of the log-likelihood become much more complicated for interval-censored survival times.

• In general, numerical integration has to be used to evaluate the cumulative hazardrate (e.g. the trapezoidal rule).

• Left truncation can easily be included.

Empirical Bayes Inference in Structured Hazard Regression 18

Page 20: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• Principal idea of empirical Bayes estimation:

– Differentiate between parameters of primary interest and hyperparameters.

– Estimate the hyperparameters up-front from their marginal posterior.

– Plug the resulting estimates back into the joint posterior and maximize with respectto the parameters of primary interest (yields posterior mode estimates).

• In structured hazard regression models:

– regression coefficients are parameters of primary interest,

– variance components are hyperparameters.

• Employ mixed model methodology to perform empirical Bayes inference: Consider ξj

a correlated random effect with multivariate Gaussian distribution.

• Problem: In most cases partially improper random effects distribution (kj = rk(Kj) <dim(ξj) = dj).

Empirical Bayes Inference in Structured Hazard Regression 19

Page 21: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• Mixed model representation: Decompose

ξj = Xjβj + Zjbj,

wherep(βj) ∝ const and bj ∼ N(0, τ2

j Ikj).

⇒ βj is a fixed effect and bj is an i.i.d. random effect.

• This yields the variance components model

λ(t; ·) = exp [x′β + z′b] ,

where in turnp(β) ∝ const, b ∼ N(0, Q),

andQ = blockdiag(τ2

1 I, . . . , τ2pI).

Empirical Bayes Inference in Structured Hazard Regression 20

Page 22: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• Obtain empirical Bayes estimates / penalized likelihood estimates via iterating

– Penalized maximum likelihood for the regression coefficients β and b.

– Restricted Maximum / Marginal likelihood for the variance parameters in Q:

Lmarg(Q) =∫

L(β, b,Q)p(b)dβdb → maxQ

.

• Penalized score function and penalized Fisher information:

sp(β, b) =

∂l(β, b)∂β

∂l(β, b)∂b

−Q−1b

Fp(β, b) =

∂2l(β, b)∂β∂β′

∂2l(β, b)∂β∂b′

∂2l(β, b)∂b∂β′

∂2l(β, b)∂b∂b′

−Q−1

.

Empirical Bayes Inference in Structured Hazard Regression 21

Page 23: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• Marginal likelihood estimation corresponds to REML estimation of variances inGaussian mixed models.

• The marginal likelihood can not be derived analytically ⇒ Apply a Laplaceapproximation.

• This yields the approximate marginal log-likelihood

lmarg(Q) ≈ l(β̂, b̂)− 12

log |Q| − 12b̂′Q−1b̂− 1

2log |Fp|,

where Fp is the penalised Fisher information matrix.

• If both l(β̂, b̂) and b̂ vary only slowly when changing the variance components we canfurther reduce the marginal log-likelihood to

lmarg(Q) ≈ −12

log |Q| − 12

log |Fp| − 12b′Q−1b,

where b denotes a fixed value, e.g. a current estimate.

Empirical Bayes Inference in Structured Hazard Regression 22

Page 24: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Empirical Bayes Inference

• This allows to device a Fisher Scoring algorithm based on matrix differentiation rules.

Empirical Bayes Inference in Structured Hazard Regression 23

Page 25: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Software

Software

• Implemented in BayesX, a software package for Bayesian inference in geoadditive andrelated models.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

Empirical Bayes Inference in Structured Hazard Regression 24

Page 26: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Software

• More features:

– Fully Bayesian inference based on MCMC in comparable model classes.

– Univariate responses from exponential families (Gaussian, Binomial, Poisson,Negative Binomial, Gamma, . . . ).

– Categorical responses (multinomial regression models, cumulative models,sequential models).

• Latest development: Multi-state models.

Empirical Bayes Inference in Structured Hazard Regression 25

Page 27: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Multi-State Models

Multi-State Models

• Multi-state models form a general class for the description of the evolution of discretephenomena in continuous time.

• We observe paths of a process

X = {X(t), t ≥ 0} with X(t) ∈ {1, . . . , q}.

• Yields a similar data structure as for Markov processes.

• Examples:

– Recurrent events:

����3

����

����

1 2........................................................................................................................................................

.......................

........................................................................................................................................................

.......................

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.......................

........................................................................................................................

.......................

Empirical Bayes Inference in Structured Hazard Regression 26

Page 28: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Multi-State Models

– Disease progression:

����

q

����

����

����

����

1 2 3 q-1· · ·

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................................................................................................

.......................

................................................................................................................................................................................................................................................................................................

.......

.......................

.......................................................................................................................................................................................................................................................................................................

.......................

– Competing risks:

����

����

����

����

2 3 4 q

����1

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................................................................................

.......................

...................................................................................................................................................................................................................................................................................................

.......................

.........................................................................................................................................................................................................................................................................................

.......................

• (Homogenous) Markov processes can be compactly described in terms of the transitionintensities

λij = lim∆t→0

P (X(t + ∆t) = j|X(t) = i)∆t

Empirical Bayes Inference in Structured Hazard Regression 27

Page 29: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Multi-State Models

• Often not flexible enough in practice since

– The transition intensities might vary over time.

– The transition intensities might be related to covariates.

– The Markov model implies independent and exponentially distributed waiting times.

Empirical Bayes Inference in Structured Hazard Regression 28

Page 30: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Human Sleep Data

Human Sleep Data

• Human sleep can be considered an example of a recurrent event type multi-statemodel.

• State Space:

Awake Phases of wakefulnessREM Rapid eye movement phase (dream phase)

Non-REM Non-REM phases (may be further differentiated)

• Aims of sleep research:

– Describe the dynamics underlying the human sleep process.

– Analyse associations between the sleep process and nocturnal hormonal secretion.

– (Compare the sleep process of healthy and diseased persons.)

Empirical Bayes Inference in Structured Hazard Regression 29

Page 31: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Human Sleep Data

stat

e

awak

eN

on−

RE

MR

EM

time since sleep onset (in hours)

cort

isol

0 2 4 6 8

050

100

150

Empirical Bayes Inference in Structured Hazard Regression 30

Page 32: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Human Sleep Data

• Data generation:

– Sleep recording based on electroencephalographic (EEG) measures every 30 seconds(afterwards classified into the three sleep stages).

– Measurement of hormonal secretion based on blood samples taken every 10minutes.

– A training night familiarises the participants of the study with the experimentalenvironment.

⇒ Sleep processes of 70 participants.

• Simple parametric approaches are not appropriate in this application due to

– Changing dynamics of human sleep over night.

– The time-varying influence of the hormonal concentration on the transitionintensities.

– Unobserved heterogeneity.

⇒ Model transition intensities nonparametrically.

Empirical Bayes Inference in Structured Hazard Regression 31

Page 33: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Specification of Transition Intensities

Specification of Transition Intensities

• To reduce complexity, we consider a simplified transition space:

Awake

Non-REM REM

Sleep

?

6

-

¾

λRN(t)

λNR(t)

λAS(t) λSA(t)

Empirical Bayes Inference in Structured Hazard Regression 32

Page 34: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Specification of Transition Intensities

• Model specification:

λAS,i(t) = exp[γ

(AS)0 (t) + b

(AS)i

]

λSA,i(t) = exp[γ

(SA)0 (t) + b

(SA)i

]

λNR,i(t) = exp[γ

(NR)0 (t) + ci(t)γ

(NR)1 (t) + b

(NR)i

]

λRN,i(t) = exp[γ

(RN)0 (t) + ci(t)γ

(RN)1 (t) + b

(RN)i

]

where

ci(t) =

{1 cortisol > 60 n mol/l at time t

0 cortisol ≤ 60 n mol/l at time t,

b(j)i ∼ N(0, τ2

j ) = transition- and individual-specific frailty terms.

Empirical Bayes Inference in Structured Hazard Regression 33

Page 35: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Counting Process Representation

Counting Process Representation

• A multi-state model with k different types of transitions can be equivalently expressedin terms of k counting processes Nh(t), h = 1, . . . , k counting these transitions.

awak

eN

on−

RE

MR

EM

700 720 740 760 780 800

awake => sleep

700 720 740 760 780 800

2122

2324

Non−REM => REM

700 720 740 760 780 800

67

89

sleep => awake

700 720 740 760 780 800

2223

2425

REM => Non−REM

700 720 740 760 780 800

45

67

Empirical Bayes Inference in Structured Hazard Regression 34

Page 36: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Counting Process Representation

• From the counting process representation we can derive the likelihood contributionsfor individual i:

li =k∑

h=1

[∫ Ti

0

log(λhi(t))dNhi(t)−∫ Ti

0

λhi(t)Yhi(t)dt

]

=ni∑

j=1

k∑

h=1

[δhi(tij) log(λhi(tij))− Yhi(tij)

∫ tij

ti,j−1

λhi(t)dt

].

k number of possible transitions.

Nhi(t) counting process for type h event and individual i.

Yhi(t) at risk indicator for type h event and individual i.

tij event times of individual i.

ni number of events for individual i.

δhi(tij) transition indicator for type h transition.

Empirical Bayes Inference in Structured Hazard Regression 35

Page 37: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Counting Process Representation

• Baseline effects:

0 2 4 6 8

−2.

5−

2.0

−1.

5−

1.0

awake −> sleep (mixed model)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5−

2.0

−1.

5

sleep −> awake (mixed model)

0 2 4 6 8

−14

−12

−10

−8

−6

−4

−2

Non−REM −> REM (mixed model)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5

REM −> Non−REM (mixed model)

Empirical Bayes Inference in Structured Hazard Regression 36

Page 38: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Counting Process Representation

• Time-varying effects for a high level of cortisol:

0 2 4 6 8

−4

−3

−2

−1

01

2

Non−REM −> REM (mixed model)

0 2 4 6 8

−2

−1

01

REM −> Non−REM (mixed model)

• Individual-specific variation is only detected for the transition between REM andNon-REM.

Empirical Bayes Inference in Structured Hazard Regression 37

Page 39: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib Conclusions

Conclusions

• Unified framework for general regression models describing the hazard rate of survivalmodels.

• Empirical Bayes inference based on mixed model methodology.

• Extendable to models for transition intensities in multi state models.

• Future work:

– More general censoring mechanisms for multi-state models.

– Conditions for propriety of posteriors.

– Joint modelling of covariates and duration times.

Empirical Bayes Inference in Structured Hazard Regression 38

Page 40: Empirical Bayes Inference in Structured Hazard Regression · Empirical Bayes Inference in Structured Hazard Regression 22 Thomas Kneib Empirical Bayes Inference † This allows to

Thomas Kneib References

References

• Brezger, Kneib & Lang (2005). BayesX: Analyzing Bayesian structured additiveregression models. Journal of Statistical Software, 14 (11).

• Fahrmeir, Kneib & Lang (2004). Penalized structured additive regression forspace-time data: a Bayesian perspective. Statistica Sinica 14, 731–761.

• Kneib & Fahrmeir (2006). A mixed model approach for geoadditive hazardregression. Scandinavian Journal of Statistics, to appear.

• Kneib (2006). Geoadditive hazard regression for interval censored survival times.Computational Statistics and Data Analysis, 51, 777-792.

• Kneib & Hennerfeind (2006). Bayesian semiparametric multi-state models. Inpreparation.

Empirical Bayes Inference in Structured Hazard Regression 39