Emmi marc PDF - Heidelberg University

24
Marc Repp AG Weidemüller Quantum dynamics of atomic and molecular systems Ruprecht-Karls-University Heidelberg Physics Institute Emmi seminar PI Heidelberg, 16.11.2009 Evaporative Cooling

Transcript of Emmi marc PDF - Heidelberg University

Page 1: Emmi marc PDF - Heidelberg University

Marc ReppAG Weidemüller

Quantum dynamics of atomic and molecular systemsRuprecht-Karls-University Heidelberg

Physics Institute

Emmi seminar PI Heidelberg, 16.11.2009

Evaporative Cooling

Page 2: Emmi marc PDF - Heidelberg University

What is evaporative cooling?

In the Office: In the Lab:

Remove hottestatoms

Thermalization

Trappedatoms

Page 3: Emmi marc PDF - Heidelberg University

Evaporation in the Lab

K. Dieckmann, Thesis, University of Amsterdam (2001)

Page 4: Emmi marc PDF - Heidelberg University

Outline

Thermalization of an ultracold gas

Model of evaporation

Efficiency of evaporative coolingSpeed of evaporative coolingInfluence of loss processes

Conclusion

Page 5: Emmi marc PDF - Heidelberg University

Outline

Thermalization of an ultracold gas

Model of evaporation

Efficiency of evaporative coolingSpeed of evaporative coolingInfluence of loss processes

Conclusion

Page 6: Emmi marc PDF - Heidelberg University

Thermalization of an ultracold gas

Elastic collisions in a dilute and cold gas

k3

k2

k4k1

Dilute gasonly binary collisions

Elastic collision of two particelsExchange of energy and momentum

S-wave cross-section and collision rate

Thermal Equlibrium: Ocupation number (for Bosons)

Zero – energy limitUnitärity limit

Page 7: Emmi marc PDF - Heidelberg University

Thermalization of an ultracold gas

D.W. Snoke and J.P. Wolfe, Phys. Rev. B . 39, 4030 (1989)

Numerical simulation of the thermalizationStarting with an uneqilibrium

e.g. f(k)= f0 d (k-k0)

Probability for bosons with wavevectors (k1 , k2) to scatter to (k3, k4):

Scattering rate into/ out of state with momentum k:

Equlibrium: Only 4 collision events necessary (harmonic quadrupole trap: 2.7 collisions)

Davis et all., PRL 74, 5202 (1995)

Page 8: Emmi marc PDF - Heidelberg University

Thermalization of an ultracold gasMeasurement of thermalization

Density of a thermalizedsample

in a anisotropic harmonictrap (σx≠σy):

Elongation of the cloudealong one axisleads to oszillationalong this axis

Elastic collisions distributethe energy to all degreas of freedom

Thermalization when the aspectratio reached his original value

Blue: Potential with an aspect ratio of 2:1Red: Density distributions along two axis

Mesurement principle

Radial direction Axial direction

Page 9: Emmi marc PDF - Heidelberg University

Thermalization of an ultracold gas

Davis et all., PRL 74,5202 (1995)

Á

Thermalization of sodium atoms in a quadrupol trap with an aspect ratio of 2:1

t= 1s for n = 5x1010 atoms/cm³

t = 13s for n = 4x109 atoms/cm³

Determinating the elastic cross section:

n = 5x1010 atoms/cm³

n = 4x109 atoms/cm³

Page 10: Emmi marc PDF - Heidelberg University

Thermalization near a resonance

C. Chin et all., arXiv 0812.1496v2

Feshbach -Resonances Zero-Energy resonance in 133Csin F=3 mF=+3

Magnetic Field [G]

M. Lee et all., Phys. Rev. A 76,12720 (2007)

Scat

terin

gle

ngth

Page 11: Emmi marc PDF - Heidelberg University

Thermalization near a resonance

Thermalization at a=0

V. Vuletic et all., PRL 82,1406 (1999)

-> no thermalization at a=0

Thermalization rate for Cs near 17G

Magnetic Field [G]

Page 12: Emmi marc PDF - Heidelberg University

Thermalization near a resonance

Thermalization in the unitarity limit

Collision rate now depends on the relative velocity: Monte-Carlo simulations: 10.7 collisions instead of 2.7 needed for thermalization

M. Arndt et all., PRL 79, 625 (1997)

Messurement of the thermalization Temperatur dependent

cross-section

T=53 µK

T=24.5 µK

T=6.7 µK

Magnetic Field [G]

Page 13: Emmi marc PDF - Heidelberg University

Outline

Thermalization of an ultracold gas

Model of evaporation

Efficiency of evaporative coolingSpeed of evaporative coolingInfluence of loss processes

Conclusion

Page 14: Emmi marc PDF - Heidelberg University

Evaporation in the Lab

K. Dieckmann, Thesis, University of Amsterdam (2001)

Page 15: Emmi marc PDF - Heidelberg University

Model of evaporative cooling

Truncation parameter

Truncated Boltzman distribution

Evaporation rate:Removing all particels with an energie E>e

For large η:fraction of atoms with E>e

Rate of evaporation:

Ratio of elastic collisions and time constant for evaporation:O. Luiten et all., Phys. Rev. A 53, 381 (1996)

Page 16: Emmi marc PDF - Heidelberg University

Remove atoms with potential energy

The system looses the energy

Total Energy of the system:

Model of the evaporation

Decrease of the temperature

Temperature change:

K. Dieckmann. Thesis, University of Amsterdam (2001)

O. Luiten et all., Phys. Rev. A 53, 381 (1996)

Page 17: Emmi marc PDF - Heidelberg University

Density and phasespace-density behavior:

Model of the evaporation

Phasespace density D (for BEC: Dª1 )

Increase of the phasespace-density

K. Dieckmann. Thesis, University of Amsterdam (2001)

O. Luiten et all., Phys. Rev. A 53, 381 (1996)

Page 18: Emmi marc PDF - Heidelberg University

Outline

Thermalization of an ultracold gas

Model of evaporation

Efficiency of evaporative coolingSpeed of evaporative coolingInfluence of loss processes

Conclusion

Page 19: Emmi marc PDF - Heidelberg University

Loss ProcessesCollisions in an ultracold sample

“Good collisions”: Elastic collisionsThermalization

“Bad collisions”: Inelastic collisionsLoos of atoms

• Inelastic one-body collisions– Collisions with background gas

• Inelastic two-body collisions– Dipolar and spin relaxation

• Inelastic three-body collisions– Three-body recombination

Na

H

Loos Mechanism for n=nBEC

W. Ketterle and N. J. van Druten, Advances in Atomic, Molecular, and Optical Physics 37, 181 (1996)

Page 20: Emmi marc PDF - Heidelberg University

Speed of evaporation

Change of the elastic collision rate:Limit for Runaway evaporationIn a harmonic trap

W. Ketterle and N. J. van Druten, Advances in Atomic, Molecular, and Optical Physics 37, 181 (1996)

Elasitic collision rate increasesfor („Runaway Evaporation“)

Page 21: Emmi marc PDF - Heidelberg University

Efficiency of evaporative cooling

Increase of phase space density(per 100 elastic collisions)

Efficiency of one step:

Efficiency of the whole process:

W. Ketterle and N. J. van Druten, Advances in Atomic, Molecular, and Optical Physics 37, 181 (1996)

Maximizing phase-space density Calculated Phasespace densityincrease

Efficiency of evaporative cooling:Calculated efficiency parameter

tll/ tloss = ∞= 500= 200= 100

= 50

linear potentiales

parabolic potentialestll/ tloss=5000

=1000

=200

Page 22: Emmi marc PDF - Heidelberg University

Efficiency of evaporative cooling

C. Hung et all. ,Phys. Rev. A 78, 011601 (2007)

Evaporation of Cs atoms in an opticaltrap at different truncation parameters

Evaporation in an optical dipole trapProblem:Lowering the trap depth also decreasesthe collision rate

Solution:Evaporation via a magnetic gradiant

Red:

Black:

Page 23: Emmi marc PDF - Heidelberg University

Conclusion

Thermalization of an ultracold gas

Model of evaporation

Efficiency of evaporative coolingSpeed of evaporative coolingInfluence of loss processes

Page 24: Emmi marc PDF - Heidelberg University

Literature• W. Ketterle, N. J. van Druten,

Evaporative cooling of atoms,Advances in Atomic, Molecular, and Optical Physics 37, 181 (1996)

• Luiten, O. J., Reynolds, M. W., Walraven, J. T. M.,Kinetic theory of the evaporative cooling of a trapped gas,Phys. Rev. A 53, 381 (1996)

• D. W. Snoke, J. P. Wolfe,Population dynamics of a Bose gas near saturation,Phys. Rev. B 39, 4030 (1989)

• K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, W. Ketterle,Evaporative Cooling of Sodium Atoms,Phys. Rev. Lett. 74, 5202 (1995)

• Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, Cheng Chin,Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps,Phys. Rev. A 78, 011601 (2008)

• M. Arndt, M. Ben Dahan, D. Guery-Odelin, M. W. Reynolds, J. Dalibard,Observation of a Zero-Energy Resonance in Cs-Cs Collisions,Phys. Rev. Lett. 79, 625 (1997)

• Vladan Vuletic, Andrew J. Kerman, Cheng Chin, Steven Chu ,Observation of Low-Field Feshbach Resonances in Collisions of Cesium Atoms,Phys. Rev. Lett. 82, 1406 (1999)

• Kai Dieckmann

Bose-Einstein Condensation with High Atom Number in a Deep Magnetic TrapUniversity of Amsterdam, 2 March 2001 ;Thesis advisor: Prof. Dr. J.T.M. Walraven

from www.staff.science.uva.nl/~walraven/walraven/Theses.htm