Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why...

28
UNIVERSITAT HAMBURG- KYOTO UNIVERSITY Symposium June 7 th @ DESY, Hambrug U. Emergent Spacetime from Quantum Entanglement Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP) Kyoto U.

Transcript of Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why...

Page 1: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

UNIVERSITAT HAMBURG- KYOTO UNIVERSITY SymposiumJune 7th @ DESY, Hambrug U.

Emergent Spacetime from Quantum Entanglement

Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP)

Kyoto U.

Page 2: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Contents

① Introduction

② Quantum Entanglement and Holography

③ AdS from Optimization of Path-integrals

④ Conclusions

1703.00456 + in preparation

Collaborators: Pawel Caputa (YITP)Nilay Kundu (YITP)Masamichi Miyaji (YITP)Kento Watanabe (YITP)

Page 3: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Why Quantum Entanglement ?

Quantum Entanglement = Measure of `Quantumness’[`Quantumness’ ⇒ We know the total system but not its part.]

= Structures of Quantum Matter

= Structures of Spacetimein Gravity (or String theory)

e.g. Surface Area = Entanglement Entropy (EE)Perturbative Einstein eq. = First law of EE

① Introduction

Holography (Gauge/Gravity duality, AdS/CFT)

Page 4: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Consider the following states in two spin systems:

(i) A direct product state (unentangled state)

(ii) An entangled state (EPR pair)

[ ] [ ] . 21

21 ψψ ⊗=↓+↑⊗↓+↑=ΨBBAA

[ ] . 2

1 21Bψψ ⊗≠↑⊗↓−↓⊗↑=Ψ

ABA

Independent

One determines the other !We know the state of A+Bbut not the state of A or B.

What is the quantum entanglement ?

Page 5: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Entanglement entropy (EE)

Divide a quantum system into two parts A and B.The total Hilbert space becomes factorized:

Define the reduced density matrix for A by

Finally, the entanglement entropy (EE) is defined by

(von-Neumann entropy)

. BAtot HHH ⊗=A BExample1: Spin Chain

AS

Example2: QFT

BA ∂=∂BA

Page 6: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Quantum Entanglement has recently been applied also to other topics in theoretical physics:

• Condensed Matter TheoryEntanglement Entropy (EE), Entanglement Spectrum

→ Quantum Order Parameter~ Required `Size’ of numerical calculations

• Quantum Field Theories (QFTs)(Renyi) Entanglement Entropy (EE)

→ Universal quantities which characterize the degrees of freedom of QFTs

→ Proof of c-theorem, F-theorem etc.``Geometrization of QFTs’’

Page 7: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

An example in Stat-Mech: Quantum Ising spin chain

Consider the Ising spin chain with a transverse magnetic field:

[Vidal-Latorre-Rico-Kitaev 02, Calabrese-Cardy 04]

∑∑ +−−=n

zn

zn

n

xnH 1σσλσ

AS

λ1

Log 2

0≠znσ0=z

acSA

ξlog6⋅≈

Ferromagnetism

Paramagnetism

Page 8: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

[1] It is recently reported that (2nd Renyi) EE was measured even experimentally in a cold atom system.[Greiner et.al. 1509.01160]

[2] Recent Experimental realization of `holographic EE’arXiv:1705.00365

Page 9: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(2-1) AdS/CFT[Maldacena 97]

Basic Principle (Bulk-Boundary relation):

=

AdS/CFT

Classical limit Large N limitStrong coupling limit

CFTGravity ZZ =

Quantum Gravity (String theory) on d+2 dim. AdS spacetime

(anti de-Sitter space)

Conformal Field Theory (CFT) on d+1 dim. Minkowski spacetime

General relativity with Λ<0(Geometrical)

Strongly interacting quantum many-body systems

② Quantum Entanglement and Holography

Page 10: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(2-2) Holographic Entanglement Entropy (HEE)[Ryu-TT 06; derived by Lewkowycz-Maldacena 13]

is the minimal area surface (codim.=2) such that

homologous

. ~ and AA AA γγ∂=∂

=

≈∂=∂

N

A

4G)Area( Min γ

γγ

AAA

AA

S

2dAdS + z

A

)direction. timeomit the (We

BAγ

1dCFT +

21

22222

zdxdtdz

Rdsd

i i∑=+−

⋅=

off)cut (UV

ε>z

Note: In time-dependent spacetimes, we need to take extremal surfaces.[Hubeny-Rangamani-TT 07]

Page 11: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Holographic Proof of Strong Subadditivity

BCBACBBA SSSS +≥+⇒ ∪∪∪∪

ABC

=ABC

≥ABC

CACBBA SSSS +≥+⇒ ∪∪

ABC

=ABC

≥ABC

[Headrick-TT 07]

Algebraic relations in Quantum Information Theory ⇔ Geometric properties in Gravity

Page 12: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

A is a round ball (radius l) in 3d CFT. Its center is at . The perturbative Einstein equation is rewritten as follows:

OOlxtSl Axll =∆

−∂−∂−∂ ),,( 3

222

Matter field contributionsC.C.Kinetic term

O↔ φ

),( xt

[Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharya-TT 13]

The perturbative Einstein eq. turns out to be equivalent to the first law of entanglement entropy. [Lashkari-McDermott-Raamsdonk 13, Faulkner-Guica-Hartman-Myers-Raamsdonk 13]

).( , 0)||( :EE of law 1 AAH

AAAAA eHSSst −≡≈∆−∆=∆+ ρρρρ

(2-3) Einstein Equation from Entanglement

Page 13: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(2-4) Emergent Spacetime from Quantum Entanglement

The HEE suggests the following novel interpretation:A spacetime in gravity = Bits of quantum entanglement

BAγ

A

Planck length

⇒ Manifestly realized in the recently argued connection between AdS/CFT and Tensor networks !

[Swingle 09, cf. Raamsdonk 09, Susskind-Maldacena 13, ….]

Page 14: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(2-5) Tensor Networks and AdS/CFT

Tensor Network [See e.g. Cirac-Verstraete 09(review)]

Tensor network = Geometrical description of wave function⇒ Efficient variational ansatz for the ground state

wave functions in quantum many-body systems.

⇒ An ansatz should respect the correct quantum entanglement of ground state.~Geometry of Tensor Network

Page 15: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

! CFT 2din results with agrees log

]links[#Min

⇒∝∝

LSA

Isometry

[ ] [ ] adbcdabc TT δ=†

a b

c

d a d

MERA (Multiscale Entanglement Renormalization Ansatz):⇒ An efficient variational ansatz for CFT vacuum. [Vidal 05]

To increase entanglement in a CFT, we add (dis)entanglers.

=Unitarty trsf.

Page 16: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Some of these problems may be due to lattice artifacts.We should consider CFTs in genuine continuum limit.

In our latest work, we gave a new approach which realizes continuous description using path-integrals.

The original idea: Tensor Network of MERA (∃scale inv.)= a time slice of AdS space

However, recent detailed studies show several problems: (1) MERA does not have any isometry other than scale inv.(2) Why EE bound is saturated ?(3) Sub AdS scale locality

Page 17: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

⇒ Tensor network renormalization [Evenbly-Vidal 14, 15]

③ Optimization of Path-Integral and AdS/CFT(3-1) MotivationRemember that the MERA can be obtained from the `optimization’ of tensor networks

Euclidean Path-Integral ⇒

MERA ⇐

Page 18: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Optimization of Path-Integral

TNR: Optimization of TN

Optimization of Path-integral

Euclidean Time (-z)

Space (x)

Hyperbolic Space = Time slice of AdS3

[Miyaji-Watanabe-TT 2016]

εLattice Constant

Page 19: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Below we focus on 2d CFTs for simplicity.

Deformation of discretizations in path-integral = Curved metric such that one cell (bit) = unit length.

Note: The original flat metric is given as follows (ε is the UV cutoff):

).( 22),(22 dzdxeds zx += φ

(3-2) Formulating Optimization of Path-integral[Caputa-Kundu-Miyaji-Watanabe-TT 2017]

A Basic Rule: Simplify a path-integral such that itproduces the correct UV wave functional [ ].)(Flat xUV ΦΨ

).( 2222 dzdxds +⋅= −ε

Page 20: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

In CFTs, owing to the Weyl invariance, we have

Our Proposal (Optimization of Path-integral for CFTs):

Minimize w.r.t with the boundary condition

)],([ zxN φ ),( zxφ.| 22 −

= = εεφ

ze

[ ] [ ] . )()],([)( Flat2

xzxNx UVeg

UVabab ΦΨ⋅=ΦΨ = φδφ

[ ] ( ))0,()( ),()( )(

0

=Φ−Φ⋅Φ=ΦΨ Φ−

∞<<∞−∞<<

∫ ∏ zxxezxDx CFTS

xz

gUV δ

Ground state UV wave function in curved space

Page 21: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(3-3) AdS3/CFT2 (Vaccum State) [Caputa-Kundu-Miyaji-Watanabe-TT 2017]

[ ]( )[ ]

.1 :Minimum

)(

)()(

,

)(ds Lattice dDiscretize of Metric

22

22

222

24

2222

2

ze

edxdz

edxdzS

e

dzdxe

zx

zxL

Sc

g

eg L

abab

abab

=⇒

+∂+∂=

+∂+∂=

∝Ψ

Ψ⇒

+=

∫∫

=

⋅=

φ

φ

φ

π

δ

δ

φ

φφ

φφ

φ

[Liouville Theory]

⇒2dim. Hyperbolic space= a time slice of AdS3

Page 22: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

(3-4) Analysis of Excited States

Consider the vacuum state of 2d CFT on a circledual to a global AdS3.⇒ Optimize the path-integral

on a disk with the unit radius.

The solution is simply given by (in the general expressions)

|w|=1

. ,)( w)wB(wwA ==

.)||1(

422

2

wwdwdds

−= Hyperbolic Disk H2

Page 23: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Now we insert an operator O(x) in the center of the disk x=x0.O(x): conformal dim. hL=hR=h

Thus we minimize

O(x0)|w|=1

.~)( 2 ϕ⋅−⇒ hexO

.)(224

Flat

02 xhSc

eg ee L ϕπϕ −= ⋅∝

Ψ

Ψ

.0)(641 22 =+−∂∂ w

cheww δπϕ ϕ

Page 24: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Solution:

Metric:

⇒ Deficit angle geometry

This agrees with the expected gravity dual if h/c<<1.

Note: the AdS/CFT predictsInterestingly, if we consider the quantum Liouville CFT, then

⇒ We get

)./121( , ,)( chaw)wB(wwA aa −≡==

.2~ aπθθ +

θζζζζ ia rewddds =≡

−= ,

)||1(4

222

./241 cha −=

)./2( ,31 .),2/(4

2 γγαγγα+≡+=−= QQcQh

./241 cha −=

Page 25: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

If we insert a local operator in the path-integral:

Time

Optimize

We locallt need afine graining⇒ The metric gets larger ! Local excitation

(energy source)

This agrees with general relativity !

Page 26: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

④ Conclusions

• Holography tells us that gravitational dynamics is dual to that of quantum entanglement in QFTs.⇒ Emergent spacetime from quantum entanglement !

• We argue that the optimization of Euclidean path-integral is an interesting candidate of emergent spacetime in AdS/CFT. This works even in continuum limit.⇒Many future problems: Higher dim. version ?

Time-dependent b.g. ?dS/CFT version ?

:

Page 27: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Motivation of Our ProposalThe normalization N estimates repetitions of same operations of path-integration. → Minimize this !

⇒ Our conjecture: ]][exp[)],([ ϕϕ CzxN ≈

TNin Tensors of # ~ state TN of complexity nalcomputatio][ ≡ϕC

[Relevance of Complexity in holography: Susskind et.al.See also Czech 1706.00965]

Solving Einstein equation

Minimizing Computational Complexity

Our Hope Optimization of Tensor Network (~ Path-integral)

==

Page 28: Emergent Spacetime from Quantum Entanglement - desy.degudrid/kyoto/Hamburg17-takayana.pdf · Why Quantum Entanglement ? Quantum Entanglement = Measure of `Quantumness’ [`Quantumness’

Thank you !

Your visit to Kyoto U is very welcome !

Strings 2018 in OIST, Okinawa: June 25-29

Post Strings WS in YITP, Kyoto: July 2- Aug 3