EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL...

25
EMC effect in neutrino DIS Ian Clo ¨ et Collaborators Wolfgang Bentz and Tony Thomas EMC effect in neutrino DIS – p.1/25

Transcript of EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL...

Page 1: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

EMC effect in neutrino DIS

Ian CloetCollaborators

Wolfgang Bentz and Tony Thomas

EMC effect in neutrino DIS – p.1/25

Page 2: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Outline

Nuclear structure functions

Convolution formalism

Nambu−Jona-Lasinio (NJL) modelQuark distributions

Nucleon distributions

ResultsQuark distributions in nucleiEMC effect for neutrino DIS

Conclusion

EMC effect in neutrino DIS – p.2/25

Page 3: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Parton Model Structure Functions

The Isoscalar Parton model expressions

F(ν)JH2 (x) =

q

x[

qJH(x) + qJH(x)]

,

F(ν)JH3 (x) =

q

[

qJH(x) − qJH(x)]

,

F(ν)i (x) ≡ 1

2J + 1

J∑

H=−J

F(ν)JHi (x).

2J + 1 quark distributions

J integer =⇒ 2J + 2 structure functionsJ half-integer =⇒ 2J + 1 structure functions

EMC effect in neutrino DIS – p.3/25

Page 4: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

The Calculation

Definition: Nuclear quark distribution functions

qJHA (xA) =

P+

A

dξ−

2πeiP

+ xA ξ−/A

〈A,P,H|ψ(0) γ+ ψ(ξ−)|A,P,H〉.

Using Convolution formalism

qJHA (xA) =

κ,m

dyA

dx δ(xA − yA x) f(JH)κ,m (yA) qκ(x) ,

EMC effect in neutrino DIS – p.4/25

Page 5: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Diagrammatically

P PA-1

p p

EMC effect in neutrino DIS – p.5/25

Page 6: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

The NJL Model

Investigate the role of quark degrees of freedom.

Low energy effective theory

⇒G

Lagrangian has same flavour symmetries as QCD:Importantly chiral symmetry and CSB,→ Dynamically generated quark masses,→ Non-zero chiral condensate.

EMC effect in neutrino DIS – p.6/25

Page 7: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

The NJL Model

Lagrangian

LNJL = ψ (i 6∂ −m)ψ +G(

ψΓψ)2,

Γ = Dirac, colour, isospin matrices

Using Fierz transformation can decompose LI intosum of qq interaction channels

LI,s = Gs

(

ψ γ5C τ2 βAψ

T)(

ψT C−1 γ5 τ2 βAψ)

,

LI,a = Ga

(

ψ γµC ~ττ2 βAψ

T)(

ψTC−1γµ ~ττ2 βAψ)

.

EMC effect in neutrino DIS – p.7/25

Page 8: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Regularization

Proper-time regularization

1

Xn=

1

(n− 1)!

∫ ∞

0dτ τn−1 e−τ X

−→ 1

(n− 1)!

∫ 1/(ΛIR)2

1/(ΛUV )2dτ τn−1 e−τ X .

IR-cutoff eliminates unphysical thresholds forhadrons decaying into quarks and mesons.→ simulates confinement.

Need this to obtain nuclear matter saturation.W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

EMC effect in neutrino DIS – p.8/25

Page 9: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

The Nucleon in the NJL model

Nucleon is approximated as a quark-diquark boundstate.

We use a relativistic Faddeev approach to describethis bound state.

First diquark - bound state of two quarks:

Solve Bethe-Salpeter equation for diquark.

= +τ K K τ

Here we include scalar and axial-vector diquarks.

EMC effect in neutrino DIS – p.9/25

Page 10: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Nucleon quark distributions

q(x) associated with a Feynman diagram calculation.

p p

k k

p-k

+p p

q q

k k

p-q

q-k

q(x) → X = γ+ δ(x− k+

p+ )

∆q(x) → X = γ+γ5 δ(x− k+

p+ )

EMC effect in neutrino DIS – p.10/25

Page 11: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Quark distributions in the ProtonSpin-independent

uv(x) = f sq/P (x) +

1

2f sq(D)/P (x) +

1

3faq/P (x) +

5

6faq(D)/P (x),

dv(x) =1

2f sq(D)/P (x) +

2

3faq/P (x) +

1

6faq(D)/P (x),

Spin-dependent

∆uv(x) = f sq/P (x) +

1

2f sq(D)/P (x) +

1

3faq/P (x)

+5

6faq(D)/P (x) +

1

2√

3fmq(D)/P (x),

∆ dv(x) =1

2f sq(D)/P (x) +

2

3faq/P (x)

+1

6faq(D)/P (x) − 1

2√

3fmq(D)/P (x),

EMC effect in neutrino DIS – p.11/25

Page 12: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

uv(x) and dv(x) distributions

0

0.4

0.8

1.2

1.6xdv(x

)an

dxuv(x

)xdv(x

)an

dxuv(x

)

0 0.2 0.4 0.6 0.8 1xx

Q20 = 0.16 GeV2

Q2 = 5.0 GeV2

MRST (5.0 GeV2)

MRST, Phys. Lett. B 531, 216 (2002).

EMC effect in neutrino DIS – p.12/25

Page 13: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

∆uv(x) and ∆dv(x) distributions

−0.2

0

0.2

0.4

0.6

0.8x

∆dv(x

)an

dx

∆uv(x

)x

∆dv(x

)an

dx

∆uv(x

)

0 0.2 0.4 0.6 0.8 1xx

Q20 = 0.16 GeV2

Q2 = 5.0 GeV2

AAC

M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

EMC effect in neutrino DIS – p.13/25

Page 14: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

NJL Model at Finite Density

Re-calculate diagrams

L = ψ (i 6∂ −M∗− 6V )ψ − (M∗ −m)2

4Gπ+VµV

µ

4Gω+ LI

Equivalent to:Scalar field: via effective massesVector field: via scale transformation

Nuclear Matter (εF = EF + 3V0)

qA (xA) =εFEF

qA0

(

εFEF

xA − V0

EF

)

,

Finite Nuclei (MNκ = MN − 3Vκ)

qA,κ(xA) =MN

MN

qA0,κ

(

MNκ

MNκ

xA − Vκ

MNκ

)

.

EMC effect in neutrino DIS – p.14/25

Page 15: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Nucleon distribution functions

Definition

fκm(yA) =

√2MN

A

d3p

(2π)3

δ(

p3 + εκ −MN yA

)

Ψκm(~p ) γ+ Ψκ m(~p ) ,

Central Potential Dirac eigenfunctions

Ψκm(~p ) = i`

(

Fκ(p) Ωκm(θ, φ)

−Gκ(p) Ω−κm(θ, φ)

)

,

spherical two-spinor has the form

Ωκm(θ, φ) =∑

m`,ms

〈`m` sms|j m〉Y`m`(θ, φ) χsms

,

EMC effect in neutrino DIS – p.15/25

Page 16: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Nucleon distributions: Results

Spin-independent nucleon distribution

fκ,m(yA)=P

k=0,2,...,2j(−1)j−m

√2k+1

j j km −m 0

(2j+1)√

2k+1MN16π3

R

Λdp p

2√

6(−1)`Fκ(p)Gκ(p)

P

L=k±1(2L+1)PL

MN yA−εκ

p

”√(2`+1)(2˜+1)

` L ˜0 0 0

”“

L 1 k0 0 0

(

˜ s jL 1 k` s j

)

+(−1)j+12 Pk

MN yA−εκ

p

”h

Fκ(p)2(2`+1)“

` k `0 0 0

”n

` k `j s j

o

+Gκ(p)2(2˜+1)“

˜ k ˜0 0 0

”n

˜ k ˜j s j

oi

.Infinite nuclear matter

f(yA)= 3

4

εFpF

”3»

pFεF

”2

−(1−yA)2–

.

EMC effect in neutrino DIS – p.16/25

Page 17: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Nucleon distributions: 12C

0

1

2

3

4

5

6

7N

ucl

eon

Dis

trib

uti

ons

Nu

cleo

nD

istr

ibu

tion

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2yAyA

κ = −1

κ = −2

κ = −2, m = 12

κ = −2, m = 32

EMC effect in neutrino DIS – p.17/25

Page 18: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Results: Quark distributions

Putting it all together, an example

uJHA (xA) =

κ,m

[up,κ(x) ⊗ fκm(yA)] +∑

κ,m

[un,κ ⊗ fκm(yA)]

EMC effect in neutrino DIS – p.18/25

Page 19: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Quark distribution in 12C

12C

0

0.2

0.4

0.6

0.8

1

1.2x Aq A

(xA

)x Aq A

(xA

)

0 0.2 0.4 0.6 0.8 1 1.2xAxA

freescalar+ Fermi+ vector

EMC effect in neutrino DIS – p.19/25

Page 20: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

The EMC effect

F2 EMC ratio

R2(x) =F2A(x)/A

F2N (x)

F3 EMC ratio

R3(x) =F3A(x)/A

F3N (x)

Ratios equal 1 in non-relativistic and no-mediummodification limit.

EMC effect in neutrino DIS – p.20/25

Page 21: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

EMC ratios 12C

12C

Q2 = 5 GeV2

0.6

0.7

0.8

0.9

1

1.1

1.2E

MC

Rat

ios

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1xx

R(e)2 EMC effect

R(ν)3 EMC effect

12C – J. Gomez et al., Phys. Rev. D 49, 4348 (1994).

EMC effect in neutrino DIS – p.21/25

Page 22: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

EMC ratios 16O

16O

Q2 = 5 GeV2

0.6

0.7

0.8

0.9

1

1.1

1.2E

MC

Rat

ios

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1xx

R(e)2 EMC effect

R(ν)3 EMC effect

12C – J. Gomez et al., Phys. Rev. D 49, 4348 (1994).

EMC effect in neutrino DIS – p.22/25

Page 23: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

EMC ratios 28Si

28Si

Q2 = 5 GeV2

0.6

0.7

0.8

0.9

1

1.1

1.2E

MC

Rat

ios

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1xx

R(e)2 EMC effect

R(ν)3 EMC effect

27Al – J. Gomez et al., Phys. Rev. D 49, 4348 (1994).

EMC effect in neutrino DIS – p.23/25

Page 24: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Nuclear Matter

Nucl. Matt.

Q2 = 10 GeV2

0.6

0.7

0.8

0.9

1

1.1

1.2E

MC

Rat

ios

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1xx

R(e)2 EMC effect

R(ν)3 EMC effect

I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

EMC effect in neutrino DIS – p.24/25

Page 25: EMC effect in neutrino DIS · EMC effect in neutrino DIS – p.6/25. The NJL Model Lagrangian LNJL = (i6@ m) +G 2; = Dirac, colour, isospin matrices Using Fierz transformation can

Conclusions

Effective chiral quark theories can be used toincorporate quarks into many-body physics.

Calculated nuclear quark distributions where thequarks bind to mean scalar and vector fields.

Reproduced EMC effect.

Determined medium modifications to F3.Compariable with F2, although increased Adependence.

Future Workinclude ρ mean field to calculate N 6= Z.Solve self-consistently for nuclear potentials.incorporate pions.

EMC effect in neutrino DIS – p.25/25