Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S....

28

Transcript of Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S....

Page 1: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,
Page 2: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia, R. Flukiger, R. Gauthier, M. Juchno, A. Mereghetti, N. Peray, J.-C. Perez, G. de Rijk, E. Todesco,

Radiation resistance of insulation systems for IR

Triplets

Page 3: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

3

Outline

Outline

• Structural requirements for MQXF based on expected dose

• Measurement techniques for irradiated samples

• Experimental results on CTD-101K samples and CE-epoxy blend materials

• Experimental and FE simulations of the SBS Test on G10

• Suggested Plan

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 4: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

26 July 2012, joint WP2, WP3, and WP10 meeting

Beam screen shielding

Beam screen with W

absorbers at mid-planes

* 0.5 mm clearance between BP and W

4

Configurations Diameter aperture at mid-planes (mm)

3.7 mm BP + 7 mm W inserts 114.6

3.7 mm BP + 2 mm BS + 6 mm W absorbers* 111.6

Minimum aperture requested from optics is 116 mm

• To go below 20 MGy one would need 2 mm BS + 9 mm W absorbers(105.6 mm residual aperture)

• Maximum thickness shielding for Q1-first half Q2A tailor-made

• Possible use of other materials for BS/CB under investigation

With courtesy of F. Cerutti, L.S. Esposito on behalf of CERN FLUKA team [1]

140 mm Nb3Sn

Structural req + energy deposition

Page 5: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

5

Q1 Energy deposition

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

With courtesy of F. Cerutti, L.S. Esposito on behalf of CERN FLUKA team [2]+[3]

Azimuthal energy deposition at Q1 peak

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 6: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

6 Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

t

tt

t

t

tt

t

30-40 MPa sheart

t t

t

Cool-down Max-gradient (155 T/m)

150 mm Nb3Sn Shear stress

50-60 MPa shear singularity?

Observation of Shear stress

between turns and shear between inner

and outer layers

~0 MPa shearWith courtesy of M. Juchno and P. Ferracin [4]

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 7: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

7 Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

With courtesy of M. Juchno and P. Ferracin [4]

150 mm Nb3Sn Azimuthal stress

Cool-down Max-gradient (155 T/m)

160 MPa compression stress

Risk of tensile stre

ss

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 8: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

8

Detailed coil model status

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

• “Rectangular” cable with 150um G10 insulation

• Cable material have similar properties as initial coil block (altered to spring model)

• High shear stress peaks at cable corners due to difference in thermal contraction

• Shear stress in coils up to ~30-40 MPa (cables and insulation around conductor in the vicinity of poles and copper blocks

• Possible next step: round “corners” or strand model with resin

With courtesy of M. Juchno and P. Ferracin [4]

Plan

End

Page 9: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

9

Measurement techniques 1

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Test Nb 1 2 3 4

Name Flexural test Ultimate Tensile Test (UTS)

Mode I: intralaminar crack opening

Mode II: intralaminar shear mode

Diagram

Remarks Recommended by IEC. Most radiation-sensitive property for thermoset. Done at CERN for yellow books.

Tests used for radiation effects on insulators for superconducting fusion magnets by the ATI, Vienna. In order to load the anisotropic FRPs in mode I as well as in mode II under their weakest condition, the fiber orientation with the lower fiber content was chosen to be perpendicular to the notches of the specimens.

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 10: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

10

Measurement techniques 2

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Test Nb 5 6 7

Name Short Beam Shear (SBS). Interlaminar

Shear/compression test

10° off-axis tensile test

Diagram

Remarks SBS: interlaminar strength.

Other tests were done: double-lap-shear (DLS) test method, cycling test, etc. (not presented here).10° off-axis tensile test is normally used for intralaminar shear strength

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 11: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

11

ATI Vienna Facility 1

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

MTS 810 test facility

10 cm

5 cm

Short-beam-shear test

23 mm 6.4 – 6.5 mm

• Sample thickness should be 3 mm, preferably 4 mm. • At least 10 samples are needed for one test. • In case of a wrapped insulation, the tests should be

carried out parallel and perpendicular to the winding direction (10 + 10 samples).

• Approximately 90 shear samples can be irradiated in one run.

With the courtesy of R. Prokopec [32]

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Plan

End

Page 12: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

12

ATI Vienna Facility 2

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

• At least 5 samples are needed for static tests and additional 20 samples for stress lifetime curves.

• 20 samples can be irradiated in one run (for 4 mm sample thickness).

ATI d-ASTM

ASTM

Static: with and without strain recording

Dynamic: load controlled

Tensile tests

2010

140

70

10

Tensile test specimen geometries

With the courtesy of R. Prokopec [32]

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

• Dose rate: 40 MGy in 5 open days• 1 Container = 1 dose level• Costs: 50 MGy = 16 k€ per container + staff

Plan

End

Page 13: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

13

Relative mechanical properties for CTD-101K

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

0 0 3 30 3001%

10%

100%

CTD-101K, with 50% Vf virgin S-2 Glass

Torsional Shear ModulusCompressive StrengthCompressive ModulusFlexural ModulusTorsional Shear StrengthFracture Resistance GICTorsional Shear StrainShear Strength

Absorbed dose (MGy)

Rel

ativ

e m

echa

nica

l pro

pert

ies

(tes

ts 7

7 K

) ILSS0 ≈ 120 MPa 30% degradation at 50 MGy

Shear strength and degradation with

irradiation is the most sensitive property

[29]+[30]+[31]

UTS: 35% reduction at 180 Mgy from UTS0 ~ 1050 MPaCompressive strength = 1080 MPa at 160 Mgy (Loss 20%)Fracture Resistance GIC: 66% reduction at 230 MGy

G10 SBS Test

70% degradation at 90 MGy

Plan

End

SBS test gives «apparent ILSS»

95% degradation at 160 MGy

Page 14: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

14

Shear/compressive properties of CTD-101K

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

• Shear/compression failure envelope• Shear strength increases with

angle till 84°, then drops• Compression prevents shear

failure• On vertical plane (at peak dose

location), compression is huge and shear stress is small Almost pure compression state

0 200 400 600 800 1000 1200 1400 16000

50

100

150

200

250

300

Shear/compression failure envelope for CTD-101K virgin fibers insulation system at 76 K

0° (SBS)15°45°75°84°90° (compression)

Compressive Stress (MPa)

Shea

r Str

engt

h (M

Pa)

Angle

• 45° shear/compression test to characterize both types of heat treatment (14% reduction)

• No significant difference in mechanical properties between for specimen with and without heat treatment

• Not possible to compare interlaminar shear properties after 700°C heat treatment using SBS test (tensile mode failure) UTS of fibers significantly damaged

G10 SBS Test

[29]+[30]+[31]+[37]+[38]+[39]

Plan

End

Page 15: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

FE studies on Shear/Compression test

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

15

• Comparison analytical vs numerical investigations shows inhomogeneous and tri-axial stress state.

• Considerable thermal stresses arise from cooling to cryogenic temperatures (not evaluated by analytical considerations)

• Failure of the specimens mainly takes place at the interface (influence of thermal stresses)

• The reliability of the test method is questionable if the specimen fractures at the interface. Strong dependency of surface conditions (arbitrary circumstances)

• Irradiation problem: high activation of steel plates

[37]+[41]

Plan

End

Page 16: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

16

Mechanical properties for CE-epoxy blend

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

O

O

CH3

H

CN

C

N

Cyanate ester

(AroCy-L10)

G10 SBS Test

[32+[33]+[34]

Plan

End

Page 17: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

G10 SBS experimental results

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

SBS [MPa] FSBS_1 FSBS_2 FSBS_3 FSBS_4 FSBS_5 Average Standard deviation Coefficient of variation %Series A 54.80 58.03 55.87 55.37 56.77 56.17 1.27 2.26Series B 53.50 54.22 52.14 48.32 51.68 51.97 2.28 4.39Series C 38.17 36.30 35.84 36.11 33.54 35.99 1.65 4.59Series D 54.91 56.28 55.86 55.04 54.86 55.39 0.64 1.16

 Nb of

specimenL

(mm)b

(mm)t

(mm)l

(mm) l/t

Specimens A 5 24 10 4 12 3

Specimens B 5 24 10 4 16 4

Specimens C 5 42 10 4 28 7

Specimens D 5 24 6 4 16 4

With the courtesy of A. Gerardin (EDMS N° 1259235) + [40]

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

17

Plan

End

Page 18: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

FE studies on SBS test

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

18

• f-factor = 1 inside the specimens the stress is equal to the shear stress obtained from an analytical 2D solution

• The real “ILSSs” are higher than the experimental results

[36]

Plan

End

Page 19: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

G10 SBS FE results

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

19

Shear at D (MPa) Shear at F (MPa)Sigma x at F Inside (MPa)

Sigma z at F Inside (MPa)Exp. ILSS SBS

(MPa) Inside Outside f-factor Inside Outside

Series A 56.17 55.61 67.97 1.22 129.79 140.24 374.48 -127.01

Series B 51.97 51.05 63.63 1.25 125.01 130.38 454.98 -122.71

Series C 35.99 33.99 43.84 1.29 88.36 82.41 509.98 -86.82

Series D 55.39 55.38 64.83 1.17 133.19 147.61 494.08 -130.83

Contrainte de rupture à la flexion, <= 10 mm perpendiculairement aux strates, sens longitudinal : > 350 N/mm2

Plan

End

Page 20: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

20

Page 21: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

21

Suggested planInternal test campaign prior to irradiation campaign (unirradiated fibers)• SBS test of heat treated fibers with 3 resins (CTD-101K,

CE/epoxy blend, MY750)• Resin with 1)virgin fiber, 2) 50h @700°C fiber, 3) 50h @700°C ht fiber +

ceramic binder + 4) 50h @700°C ht fiber + PVA

• 10° off axis-test as support of SBS test• Shear/compression test of the system [cable + insulation]

Irradiation campaign (to be discussed)• What is the maximum dose level (20 MGy)?• SBS – Interlaminar shear test (qualitative)• Shear/compression test of the system [cable + insulation]

(Quantitative)

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

CTD-101K MY750 CE

Virgin fibers

Fibers after reaction

Fibers after reaction and ceramic binder

SBS + Tensile +/- 10° +

shear/compression

Plan

End

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Page 22: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

22

Thanks for your attention

Questions?

Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

Plan

End

Outline

Structural req + energy deposition

Measurement techniques

CTD-101K + CE-epoxy

results

G10 SBS Test

Page 23: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,
Page 24: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

24 Elvis Fornasiere | CERN, 26th February 2013 TE-MSC-MDT

With courtesy of M. Juchno and P. Ferracin [4]

150 mm Nb3Sn Radial stress

Page 25: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

References1. F. Cerutti, L.S. Esposito on behalf of CERN Fluka team, “Shielding the 140 option”, Hi-Lumi LHC WP10, CERN, 26

July 2012.2. F. Cerutti, L.S. Esposito on behalf of CERN Fluka team, “First estimates of energy deposition for the new inner

triplet”, Hi-Lumi LHC WP10, CERN, 7 June 2012.3. L.S. Esposito, private communication, CERN, 25.02.2013.4. M. Juchno, private communication, CERN, 25.02.2013.5. C. Barrère, D. Dal Maso, Résines époxy réticulées par des polyamines: structure et propriétés, Revue de L’Institut

Français du Pétrole, Vol. 52, N° 3, Mai-Juin 19976. P. Bardonnet, Résines époxydes (EP) – Composants et propriétés, Doc. A 3 465, Techniques de l’Ingénieur, 20127. T. Devanne, Vieillissement radiochimique d’un réseau époxyde, Thèse N° 2003-05, E.N.S.A.M, 16 Mai 20038. D.W. Clegg, A. A. Collyer, Irradiation effects on polymers, Elsevier Science Publishers LTD, London, 19919. A. Idesaki, A. Shimada, N. Morishita, M. Sugimoto, M. Yoshikawa, Evalutation of Radiation Resistance for

Organic Materials Used in Atomic Energy-related Facilities, Radiation Effects in Super Conducting Magnet Materials (RESMM’12), Fermilab, February 13-15,2012

10. D. Reed, Radiation Tolerance of Resins, Rad-Hard Insulation Workshop, Fermilab, April 20, 200711. H. Schönbacher, A. Stolarz-Izycka, Compilation of radiation damage test data – Part II: Thermosetting and

thermoplastic resins, CERN 79-08, Geneva, 197912. M. H. Van de Voorde, Effects of radiation on materials and components, CERN 70-5, Geneva, 197013. M. H. Van de Voorde, Action des radiations ionisantes sur les résines époxydes, CERN 70-10, Geneva, 197014. M. Tavlet, A. Fontaine and H. Schönbacher, “Compilation of radiation damage test data, pt.2: Thermoset and

thermoplastic resins, composite materials”, CERN-98-01, Geneva : CERN, 1998. - 173 p.

2526/02/2013 E. Fornasiere

Page 26: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

References15. International Electrotechnical Commission, Geneva, Publication No. 544: Guide for determining the effects of

ionizing radiation on insulating materials, Part I: Radiation interaction, Ref. 544–1 (1977); Part 2: Procedures for irradiation, Ref. 544–2 (1979); Part 3: Test procedures for permanent effects, Ref. 544–3 (1979); Part 4: Classification system for service in radiation environments, Ref. 544–4 (1985).

16. D.C. Phillips et al., The selection and properties of epoxide resins used for the insulation of magnet systems in radiation enviroments, CERN 81–05 (1981).

17. H. Schönbacher, B. Szeless and M. Tavlet, “Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC”, CERN 96-05, Geneva, 1996

18. G. Lipták et al., “Radiation tests on selected electrical insulating materials for high-power and highvoltage application”, CERN 85–02, Geneva, 1985.

19. H. W. Weber et al., “Low temperature neutron and gamma irradiation of glass fiber reinforced epoxies”, Journal of Nuclear Materials 115 (1983) 11-15

20. K. Humer et al., “Radiation effects on insulators for superconducting fusion magnets”, Cryogenics 35 (1995) 871-882

21. René Flükiger, Gijs de Rijk, “Review of WAMSDO 2011 Workshop: Superconductors in LHC Upgrade (HiLumi LHC)”, RESMM’12, Fermilab, 13-15.02.2012

22. Ezio Todesco, “ High Luminosity LHC: Magnets”, Applied Superconductivity Conference, Portland, 9th October 2012

23. P. Ferracin, “MQXF coil cross-section status”, HiLumi WP3 Video-meeting, 28 August, 201224. P. Fessia, “The CERN magnet program and the conductor needs”, LTHFS Worhshop, Napa Valley – 5th to 7th

November 2012

2625/02/2013 E. Fornasiere

Page 27: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

References25. K. Humer et al., “Tensile and shear fracture behavior of fiber reinforced plastics at 77 K irradiated by various

radiation sources”, Adv. Cryog. Eng. 40 (1993)26. K. Humer et al., “Low temperature tensile and fracture mechanical strength in mode I and mode II of fiber

reinforced plastics following various irradiation conditions”, Fusion Technology 199427. K. Humer et al., “Tensile and fracture behavior in mode I and mode II of fiber reinforced plastics following

reactor irradiation”, Advances in Cryogenic Engineering (1996), Vol. 4228. K. Humer et al., “Low-temperature interlaminar shear strength of reactor irradiated glass-fibre-reinforced

laminates”, Cryogenics 36 (1996) 611-617 29. Composite Technology Development, Inc. “CTD-101 and CTD-101K Epoxy Resin System”, Datasheet, 2003.30. Composite Technology Development, Inc. “CTD-101K Epoxy Resin System”, Datasheet, 2003.31. Composite Technology Development, Inc. “CTD-101K Epoxy Resin System”, Datasheet, 2012.32. N. A. Munshi, J. K. Walsh, M. W. Hooker, H. K. Babcock, “Radiation Resistant Electrical Insulation Qualified for

ITER TF Coils”, Applied Supeconductivity Conference, Portland (OR), October 2012.33. Composite Technology Development, Inc. “CTD-400 Series Cyanate Ester Resins for RTM High Performance,

Eady Processing”, Datasheet, 2002.34. Composite Technology Development, Inc. “Cyanate Ester-based Insulations Summary Data Sheet”, Datasheet.35. R. Prokopec, “Mechanical tests on radiation resistant insulation materials”, PPT Presentation, 19.12.201236. D.H. Pahr, F.G. Rammerstorfer, P. Rosenkranz, K. Humer, H.W. Weber, “A study of short-beam-shear and double-

lap-shear specimens of glass fabric/epoxy composites”, Composites: Part B 33 (2002) 125-132.37. D.H. Pahr, H.J. Böhm, K. Humer, H. W. Weber, “Analytical and finite element investigations of shear/compression

test fixtures”, Cryogenics 45 (2005), 606-616.

2726/02/2013 E. Fornasiere

Page 28: Elvis Fornasiere | CERN, 26 th February 2013 TE-MSC-MDT Acknowledgments: G. Ambrosio, F. Cerutti, S. Clément, L. S. Esposito, P. Ferracin, P. Fessia,

References38. P.E. Fabian, J. B. Schutz, C. S. Hazelton, R. P. Reed, “Properties of candidate ITER Vacuum Impregnation

Insulation Systems”, Advances in Cryogenic Engineering, Vol. 40, New York, 199439. P.E. Fabian, R.P. Reed, J.B. Schutz, T.S. Bauer-McDaniel, “Shear/compressive properties of candidate ITER

inuslation systems at low temperatures”, Cryogenics 35 (1995) 689-69240. R. P. Reed, J. B. Darr, J. B. Schutz, “Short-Beam Shear Testing of candidate magnet inulators”, Cryogenics (1992),

Vol. 32 ICMC Supplement41. H. Weber, private communication, Email exchange, 19.02.2013.

2826/02/2013 E. Fornasiere