elucidated by Mass Spectrometry

33
1 Max Planck Institute for Polymer Research ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10 Mass Spectrometry Polymer Structure elucidated by Hans Joachim Räder Max Planck Institute for Polymer Research Structure determination of monodisperse macromolecules – Phenylene dendrimers Giant polycyclic aromatic hydrocarbons (PAH’s) Structure determination of polydisperse macromolecules End group determination of homo-polymers in simple cases (Poly(styrene)) in difficult cases (Poly(carbonate) and Poly(fluorene)) Copolymers PPE-b-PEO Diblock-copolymer Random copolymers of amino acids Outline ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10

Transcript of elucidated by Mass Spectrometry

1

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10

Mass Spectrometry

Polymer Structureelucidated by

Hans Joachim Räder

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

• Structure determination of monodisperse macromolecules– Phenylene dendrimers– Giant polycyclic aromatic hydrocarbons (PAH’s)

• Structure determination of polydisperse macromoleculesEnd group determination of homo-polymers– in simple cases (Poly(styrene))– in difficult cases (Poly(carbonate) and Poly(fluorene))

• Copolymers– PPE-b-PEO Diblock-copolymer– Random copolymers of amino acids

Outline

ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10

2

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Analysis of a well defined phenylene dendrimer by MALDI-TOF MS

C474H318

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

MALDI-TOF Analysis of a soluble C474 Dendrimer

a.u.

C474H318

3000 4000 5000 6000 7000 8000 9000m/z

6013

3

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

6000 6005 6010 6015 6020 6025

3000 4500 6000 7500 9000

a.u

.

m/z

simulated

6013 experimental

Measured and Simulated Isotopes of C474H318 -Dendrimer

13 Isotopes(mainly 13C)

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

- 106 H

Synthesis of a C222 - PAH - disc

Reaction Scheme

soluble dendritic precursor insoluble PAH product

Lewis acidin CH2Cl2

oxidative cyclodehydrogenation

4

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

2700 2705 2710 2715 2720 2725 2730

1000

2000

3000

4000

5000

6000

2711

.46

2710

.45

2709

.45

2708

.53

2707

.44

2706

.52

m/z

MALDI-TOF-Mass Spectrum with TCNQ as Matrix

C222H42

2706.33 Characterization Method for Insoluble Samples

Simulated Isotopes

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

matrix solution

analytesolution

homogenous solution homogenous crystal formation

crucial step 1: crucial step 2:(risk of phase separation)

MALDI sample preparation

Commonly mixing dissolved samples and matrix in molar ratios of 1 : 1000

5

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

solid matrix

solidanalyte

mechanical homogenization!?

Solvent-free sample preparation

crucial step 1:crucial step 2 is overcome!No risk of phase separation

Mechanical mixing of solid samples in e.g. a ball mill

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

a

bCyclization

1,2-Phenyl shift

Cyclization

109 C114H30M=1398

Structure Defects

Incomplete Cyclodehydrogenation?

Product mixture with different numbers of hydrogens

6

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1390 1395 1400 1405 1410 1415

e

d

c

b

a

m/z

Structure Defects

crude powder (product)

product dispersion in TCE

simulation of mixture with

C114H30 : C114H34 : C114H36

1 : 1 : 0.54

simulation of mixture withC114H30 : C114H34 : C114H381 : 1 : 1

simulation of C114H30

measured

best fit

isotopes of pure compound

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

HH

a) b) c)

C114H34(m=1402m/z) C114H36(m=1404m/z) C114H38(m=1406m/z)

Figure 7

Possible side reactions (but unlikely)

Incomplete cyclodehydrogenation reaction

7

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1340 1360 1380 1400

m=1328

-76 m/z

-74 m/z

-70 m/z

C114H36

C114H34

C114H30

m/z

Fragmentation by In-Source-Decay (ISD)

No selectionof precursorIon possible

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

(a)

(1) arrow type

sample 2

660 680 700 720 740 760

-72

m/z

742

(b) sample 3

880 900 920 940 960 980

-72

m/z

962

(a)

(2) bay type

sample 4

740 760 780 800 820

818

-74

m/z

(b) sample 5

900 920 940 960 980

-74

966

m/z

(a)

(3) arrow & bay type

sample 6

600 620 640 660 680

670-74

-72

m/z

Structure Dependent Differences in Fragmentation Pattern

8

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

H

HH

H

HH

H

H

H H

H

H

H

H

H

H

H

H

hν+3H H

HH

∆m=-75+3=-72 m/za

HH

H

HH

H

H HH

HH

H

H

HH

hν +2H ∆m=-76+2=-74 m/zb

H

H HH

HH

HH

HH

H

HH

H

hν +H

H

H

H

c

∆m=-77+1=-76 m/z

Loss of Cyclic C6 Units and Subsequent RehydrogenationM

ax P

lanc

k In

stitu

te fo

rPol

ymer

Res

earc

h

a

b

c

C114H34M=1402

C114H36M=1404

Rotation

Cyclization

Cyclization

1,2-Phenyl shift

Cyclization

109 C114H30M=1398

Plausible Side Products by Rearrangement Reactions

9

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Mol Weight =6013.82C474H318

Mol Weight =5759.81C474H66

MW=5814.24C474H120

- 252 H

- 198 H

Cyclodehydrogenation Products of C474 PrecursorM

ax P

lanc

k In

stitu

te fo

rPol

ymer

Res

earc

h

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

13a2

b)

c)

a)

m/z

a.u.

Spectra of different synthetic cyclodehydrogenation attempts

Multiple chlorination

Best result

Incomplete reaction

Dendrimer (educt)Planarized Disk

Molecular Propeller

10

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

C474H120M=5814

Computer generated visualization “C474 trimer“

Molecular propeller

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

400 600 800 1000 1200 1400 1600 1800 20000,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

364

700

574

a.u.

Wavelength [ nm ]

C474H120M=5814

Solid-state UV-vis Spectrum of “C474 trimer“

11

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

- 252 H

1 2

4a

3b

4b

3a

- 198 H

- 186 H

(fragmentation)

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

400 600 800 1000 1200 1400 1600 1800 2000

700

560

a.u.

λ / nm

565

12

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

• Structure determination of monodisperse macromolecules– Phenylene dendrimers– Giant polycyclic aromatic hydrocarbons (PAH’s)

• Structure determination of polydisperse macromoleculesEnd group determination of homo-polymers– in simple cases (Poly(styrene))– in difficult cases (Poly(carbonate) and Poly(fluorene))

• Copolymers– PPE-b-PEO Diblock-copolymer– Random copolymers of amino acids

Outline

ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

100000 200000 300000

0

100

200

300

400

500

Poly(styrene)

M3+=70 000

M 2+=105 000

M +=210 000

a.i.

m /z

MALDI-TOF Spectrum of Poly(styrene) 210,000 Da

Unresolved polymer distribution- No structural information!

13

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

a.

i.

m/z

n

MALDI-TOF Spectrum of Poly(styrene) 9,000 Da

Resolved chain length distribution

Representative analysis of individualsignals

Ionized by attachment of Ag+

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Mass of Repeat Units for Recognition of Polymer Type

8500 8600 8700 88002000

4000

6000

8000

10000

12000

n=83n=81n=80 n=82

104.15104.15104.15

8810870686028498

a.i.

m/z

n

C8H8 = 104.15Styrene unit

14

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1104.1557

n

Butyl

H

+ 1 (Hydrogen)+ 108 (Ag+)

= 82 (n) * 104.15 (Styrene)+ 57 (Butyl)

8706

Calculation of End Group Molecular Weight

Mass contributions:

End group calculation: 8706 - 108 (Ag+) = 8598 (corrected polymer mass)8598 : 104.15 (styrene unit) = 82.554 (repeat units)82.554 82 styrene repeat units (n)

and decimal place bears end group mass:0.554 * 104.15 = 57.7 (mass of both end groups)

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch Anionic Polymerization of Styrene

Butyl Li + n

Butyl

n-1

+ H

H

Butyl

n

Li

- Li

Cationisation with Ag MALDI-TOFMass Spectrum

Sample History: Way of Synthesis

15

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

34 36 38 40 42 44 46

0,0

0,2

0,4

0,6

0,8

1,0

40.96

K38.96

a.i.

m/z

102 104 106 108 110 112 114

0,0

0,2

0,4

0,6

0,8

1,0 Ag108.90106.90

1650 1655 1660 1665 16700,00,20,40,60,81,0

1657.98

[PS15 + K]+

a.i.

m/z

1720 1725 1730 17350,00,20,40,60,81,0

1725.92

[PS15 + Ag]+

Isotopic Distributions of a Polystyrene Chain ofn = 15 (1619,02 Da) Ionized with Different Cations

Isotopic Pattern

Important for unambiguous interpretation: Knowledge of attached cation!

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Field Desorption Spectrum of Polystyrene 5 kDa

ionization mechanism:radical cation formation

direct measurement of polymer mass

M.+M2+

M.3+

M4+

16

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Principle of Field Desorption

+ 8 kV

-5 kV

0,5 – 2 mm

Ion BeamAnalyzer

Activated Tungsten Wirewith Carbon Micro Needles

FD Emitter

Extraction Rods

Field Strength: 108 V/cmIonization by Tunneling Processes

at Needle Tips

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

2 or even 3 unknowns interpretation not straightforward

Expectations from fragmentation analysis: differentiation of chain ends

deduction of MEnd1, MEnd2, n

Investigated system: Polycarbonate - Elucidation of a spectrum with 7 superposed distributions

End group determination of homopolymers in difficult cases

End1 repeat unit End2-[- -]n-

17

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

7 compositions !

End group determination of a polycarbonate sample

n

O O C

OCH3

CH3

C

PCA

0 1000 2000 3000 4000 5000 6000 70000

250

500

750

1000

a.i.

m/z

1400 1500 1600 1700 1800 1900

S2

S1S6

S5S4

S3

S2

S1

S7

S3

S7

S6

S5S4

S3

S2

S1

m/z

Conventional MALDI-TOF mass spectrum of a PCA sample

PCA repeat unit

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch Interpretation of conventional

MALDI-TOF mass spectrum:

MX , n , M Y ????

M=177.2+nx254.29+149.2

O C O C

CH3

CH3

CH3

OO

H3CCH3

CH3

C

CH3

CH3

O C O C

n

O C YOCH3

CH3

X O C

n

M=1.0+nx254.29+149.2

M=1.0+nx254.29+227.3

O C O C

CH3

CH3

O

OHH

CH3

CH3

O C

n

M=nx254.29

CO

CH3

CH3 O

CO

n

O C YOCH3

CH3

X O C

n

O C YOCH3

CH3

X O C

n

O C O C

CH3

CH3

CH3

OCH3

CH3

H O C

n

S1

S2

S3

S4

S5

S6

S7

MX , n , M Y ????

MX , n , M Y ????

End group determination of a polycarbonate sample

1400 1500 1600 1700 1800 1900

S2

S1S6

S5S4

S3

S2

S1

S7

S3

S7

S6

S5S4

S3

S2

S1

m/z

18

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Vacc

Source

Vgate

Detector

Reflector

Drift regionVref

gate off

gate on

400 600 800 1000 1200 14000

2000

4000

6000

8000

10000

a.i.

m/z

400 600 800 1000 1200 14000

2000

4000

6000

8000

10000

a.i.

m/z

Vgate

t(m/z)

Selection of a defined signal for fragment ion analysisM

ax P

lanc

k In

stitu

te fo

rPol

ymer

Res

earc

h

Vgate

Detector

Reflector

Drift region Vref

+ +

5 6 0 5 8 0 6 0 0 6 2 0 6 4 0 6 6 0 6 8 0 7 0 00

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

a .i.

m /z

Parent ion

PSD fragments

Vacc

Source

Post-source decay

+++

19

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch Main fragmentation of PCA:

0 200 400 600 800 1000

0

2500

5000

7500

10000

12500

∆Mrepeating unit

repeating unit

repeating unit

[M+Li]+

1096.2

904.3

649.6395.5141.1

a.i.

m/z

∆M = MCH3 + MEnd= 15 + MEnd

n

OCO

H3CCH3

CH3

C O O C O C

CH3

CH3

CH3

OCH3

CH3

C

Fragment mass spectrum

C

CH3

CH3

O C

O

O

Li+

Li+

CH3

O

analogue to mechanismdescribed for EI, SSIMS (Literature)C

O

O

- CH3

and -

Polycarbonate: fragmentation mechanism?

MEnd deduced !

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Result: Complete elucidation of the end group composition

0 1000 2000 3000 4000 5000 6000 70000

250

500

750

1000

a.i.

m/zConventional MALDI-TOF mass spectrum of a PCA sample

1400 1500 1600 1700 1800 1900

S2

S1S6

S5S4

S3

S2

S1

S7

S3

S7

S6

S5S4

S3

S2

S1

m/z

M=59.0+nx254.29+31.0

M=177.2+nx254.29+149.2

O C O CCH3

CH3

CH3

OO

H3CCH3

CH3

C

CH3

CH3

O C O C

n

O C OO

CH3H3CO CH3

CH3

O C O C

n

M=1.0+nx254.29+149.2

O C O C

CH3

CH3

CH3

OCH3

CH3

H O C

n

M=177.2+nx254.29+31.0

M=1.0+nx254.29+227.3

O C O C

CH3

CH3

O

OHH

CH3

CH3

O C

n

O C O CH3

OOH3C

CH3

CH3

C

CH3

CH3

O C O C

n

M=nx254.29

COCH3

CH3 OCO

n

M=1.0+nx254.29+31.0

O C O CH3

OCH3

CH3

H O C

n

S1

S2

S3

S4

S5

S6

S7

20

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Synthesis of Polyfluorene (PF)

2a: R1=Br; R2=Br2b: R1=Br; R2=H or R1=H; R2=Br2c: R1=H; R2=H2d: R1=R2=no atom (cyclic structure)

2,7-dibromo-9,9-diphenylfluorene

Yamamoto couplingin toluol-DMFBr Br

Poly(9,9-diphenyl-2,7-fluorene)repeating unit: 316 Da

R1 R2

n

1 2

Dr. A. C. Grimsdale

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

(a)

[H-( )4-H]+.

[H-( )12-H]+.

[H-( )8-H]+.

[H-( )10-H]+.

[H-( )6-H]+.

a.i.

m/z

800 1000 1200 1400 1600 1800 2000

500

1000

1500

2000

2500

3000

3500

4000

(b)

[Br-( )5-Br]+.

[Br-( )4-Br]+.

[Br-( )3-Br]+.

[H-( )4-H]+. [H-( )5-H]+.

[H-( )3-H]+.

[H-( )6-H]+.

a.i.

m/z

- dithranol- THF

end group analysis!

Solvent-Based MALDI MS of the Soluble Fraction (< 10%) of PF

oligomerization degree ~ n = 15

21

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

end group analysis?

Solvent-Free MALDI MS of Insoluble Polymer Fraction (> 90%) of PF

2000 4000 6000 8000 10000

0

100

200

300

400

500

600

700

800

(a)

[H-( )20-H]+.

[H-( )15-H]+.

[H-( )10-H]+.

[H-( )7-H]+.

a.i.

m/z

1800 1900 2000 2100 2200 2300 2400 2500 2600

0

100

200

300

400

500

600

700

800

(b)

-69

-69-69

[H-( )8-H]+.

[H-( )6-H]+.[H-( )7-H]+.

a.i.

m/z

dithranol matrix

?

oligomerization degree ~ n = 25

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1500 2000 2500 3000 3500

200

400

600

800

a.i.

m/z

[H-( )5-H]+.

[H-( )7-H]+.

[H-( )9-H]+.

[H-( )11-H]+.

(b)

(a)

0

200

400

600

800

[H-( )5-H]+.

-69-69-69-69-69-69-69

[H-( )11

-H]+.

[H-( )9-H]+.

[H-( )7-H]+.

successful suppression of fragmentation& independence of matrix choice!

- insoluble fraction- solvent-free- minimum

laser power- TCNQ

- insoluble fraction- solvent-free- minimum

laser power- dithranol

Influence of the MALDI Matrix

22

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

2000 4000 6000 8000 10000

0

500

1000

1500

2000

2500

3000

3500

(a)

[H-( )25-H]+.[H-( )

20-H]+.

[H-( )15-H]+.

[H-( )10

-H]+.

[H-( )7-H]+.

a.i.

m/z

1800 1900 2000 2100 2200 2300 2400 2500 2600

0

500

1000

1500

2000

2500

3000

3500

-77-77-77

-69 -69 -69

-77-77

(b)

-77

-69-69-69

[H-( )8-H]+.[H-( )7-H]+.[H-( )6-H]+.

a.i.

m/z

- TCNQ- solvent-free

fragmentation of the phenyl side-chain:ISD - 77 DaPSD - 69 Da ?

Insoluble Fraction of PF at High Laser PowerM

ax P

lanc

k In

stitu

te fo

rPol

ymer

Res

earc

h

Unequivocal Determination of ISD- and PSD-Fragmentation

500 1000 1500 20000

2000

4000

6000

8000

10000

m/z

(a) [H-( )7-H]+.

a.i.

1900 2000 2100 22000

2000

4000

6000

8000

10000

a.i.

m/z

-77-77

-77

(b)[H-( )7-H]+.

- insoluble fraction - TCNQ- solvent-free- high laser power

PSD-fragmentation of the phenyl side-chain:-77 Da (calibrated) & -69 Da (not calibrated)!

PSD-MALDI MS:

23

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

• Structure determination of monodisperse macromolecules– Phenylene dendrimers– Giant polycyclic aromatic hydrocarbons (PAH’s)

• Structure determination of polydisperse macromoleculesEnd group determination of homo-polymers– in simple cases (Poly(styrene))– in difficult cases (Poly(carbonate) and Poly(fluorene))

• Copolymers– PPE-b-PEO Diblock-copolymer– Random copolymers of amino acids

Outline

ASMS Fall Workshop 2004 Polymer Structure Baltimore Dec. 9-10

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

MALDI-Fragmentation MS?

combinations of analytical methods (reactivity ratios, NMR)

averaged properties of different chain lengths

Traditional Copolymer Characterization:

Allows direct information of

Copolymer distribution and composition

MALDI-MS Copolymer Characterization:

„random“- and „block“-polymer sequenz determination

Information about the primary structure?

Structural Elucidation of Synthetic Copolymers

24

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Compositional information of resolved molecular weight distributions are not unequivocal

Interpretation of mass spectra often uncleardue to signal overlapping caused by :

- unfavorable monomer masses e.g. MMonomer1 ~ k x MMonomer2

- low resolution due to high mass range or instrumental limitation

Composition of a diblock copolymer

End1 Monomer1 Spacer-[- -]n- -[- Monomer2 -]m- End2

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

n

mH3C O CH2 CH2 O

O

Hexyl

Hexyl

Poly(ethylene oxide) = PEO

Poly(para-phenyleneethynylene) = PPE

PEO-b-PPE

+

n

Hexyl

Hexyl

O

HOH3C O CH2 CH2 OHm

diblock copolymer synthesis

Mcopo = MEnd1 + m x MMonomer1 + MSpacer + n x MMonomer2 + MEnd2

= 15 + m x 44 + 120 + n x 268 + 101

Formation of a PPE-b-PEO diblock copolymer

25

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch Investigation of each block, before reaction:

Agreement with expected PEO and PPE blocks

400 600 800 1000 1200 14000

2000

4000

6000

8000

10000

m=2

2

m=1

0

m=2

0

m=2

5

m=1

2

m=1

8

m=1

5

a.i.

m/z

MALDI-TOF mass spectrum of PEO block

H3C O CH2 CH2 OHm

1000 1500 2000 2500 30000

2000

4000

6000

8000

n=8n=

7n=6

n=5

n=3

n=4

a.i.

m/z

n

Hexyl

Hexyl

O

HO

MALDI-TOF mass spectrum of PPE block

Composition of a PPE-b-PEO diblock copolymer

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

500

1000

1500

2000

2500

268=MMonomer2MMonomer1=44a.i.

m/z2100 2200 2300 2400

500

1000

1500

2000

2500

2231=Mcopo(n=5;m=14) + K+

2227=Mcopo(n=4;m=20) + K+

4444

∆M=8

a.i.

m/z

Mcopo = MEnd1 + m x MMonomer1 + MSpacer + n x MMonomer2 + MEnd2

= 15 + m x 44 + 120 + n x 268 + 101

Need of additional data fragmentation of copolymer

Composition of a PPE-b-PEO diblock copolymer

MALDI-TOF mass spectrum of PPE-b-PEO (low resolution)

1900 2000 2100 2200

500

1000

1500

2000

2500

2007=Mcopo(n=4;m=15) + K+

4444

∆M=5a.i.

m/z

pure signal

overlapping signals

26

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Most intense fragment peak Deduction of m, n

0 500 1000 1500 20000

2000

4000

6000

8000

Loss of alkyl side chains

Fragmentation of PEO block

PPE-b-PEO (n=4;m=15)

[M+Li]+

CH

3-[-O

-CH

2-CH

2-]15

a.i.

m/z

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

500

1000

1500

2000

2500

a.i.

m/z

MALDI-TOF mass spectrum of PPE-b-PEO

Fragment mass spectrum

selection and fragmentation

Composition of a PPE-b-PEO diblock copolymer

pure signal

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch Information in case of superposition

Proof of 2 different structures !

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

500

1000

1500

2000

2500

a.i.

m/z

0 500 1000 1500 20000

2000

4000

6000

8000

PPE-b-PEO(n=4;m=20

andn=5;m=14)

CH

3-[-O

-CH

2-CH

2-]14

CH

3-[-O

-CH

2-CH

2-]20

a.i.

m/z

Fragment mass spectrum

MALDI-TOF mass spectrum of PPE-b-PEO

Composition of a PPE-b-PEO diblock copolymer

2100 2200 2300 2400

500

1000

1500

2000

2500

2231=Mcopo(n=5;m=14) + K+

2227=Mcopo(n=4;m=20) + K+

4444

∆M=8

a.i.

m/z

Selection andFragmentation

overlapping signals

27

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1500 2000 2500 30000

1000

2000

3000

4000

5000

n=7n=6

n=5

n=4

n=3

a.i.

m/z

Reconstruction of complete copolymer composition

Copolymer Composition of PPE-b-PEO diblock copolymer

n

mH3C O CH2 CH2 O

O

Hexyl

Hexyl

Poly(ethylene oxide) = PEO

Poly(para-phenyleneethynylene) = PPE

PEO-b-PPE

+

n

Hexyl

Hexyl

O

HOH3C O CH2 CH2 OHm

diblock copolymer synthesis

m = 17

m = 19

m = 18

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Allows direct information on copolymer distribution and compositionby direct measurement of individual copolymer amounts due to resolved isotopic distributions

2100 2150 2200 2250 2300 2350 24000

1000

2000

3000

4000

5000

n=5

; m=1

7

n=5

; m=1

6

n=5

; m=1

5

n=5

; m=1

4

n=5

; m=1

3

n=4

; m=2

3

n=4

; m=2

2

n=4

; m=2

1

n=4

; m=2

0

n=4

; m=1

9

n=5

; m=1

2n=

4 ; m

=18

a.i.

m/z

1500 2000 2500 30000

1000

2000

3000

4000

5000

n=7n=6

n=5

n=4

n=3

a.i.

m/z

MALDI-TOF mass spectrum of PPE-b-PEO

Determination of Copolymer Composition at High Resolution

28

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Sequence Determination of Synthetic Polymers

amino acid monomer units

no given primary structure

polydisperse

protected side-chains

NH

HN

O

R1 ONH

R2

x y

H

Monomer Units: 2

Copolymer Types:

A B A B B A “random”

A A A B B B “block”

“Copolymer”:

Characteristical structural elements of natural polypeptides and industrial polymers

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Synthetic Polypeptides

NH

HN

O

ONH

NH

O

O

OO

x y

H

n-C6H13NH2DMF, RT-CO2

HNO

O

O

BnO

O

HNO

O

O

ZHN

+x y

Reactivity: Glu ≅ Lys

„Random“ Copolymers: n-Hex-NH-(Glu)x-st-(Lys)y-H

n-Hex-NH-(Glu)x-bl-(Lys)y-H

n-Hex-NH-(Lys)y-bl-(Glu)x-H

Block-Copolymers:

Glu Lys

29

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

MALDI-TOF of „Random“ n-Hex-NH-(Glu)x-st-(Lys)y-H

1000 1200 1400 1600 1800 2000 2200 2400

m/z

Inte

nsity

(a.i.

) n=x+y

m/z

X = Y = 0.50

n=4

n=5n=6

n=7n=8

n=9

1200 1250 1300 1350 1400

n=5

(Glu)4(Lys)1

(Glu)3(Lys)2

(Glu)2(Lys)3

(Glu)1(Lys)4

Copolymer composition:

Degree of oligomerization:

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Theory of Probabilities: Monitoring with MALDI MS?

75:25

50:50

25:75

Identical Reactivitiesof the Monomer Units:

1 : 5 : 10 : 10 : 5 : 1

(Glu)5

(Glu)4(Lys)1

(Glu)3(Lys)2

(Glu)2(Lys)3(Glu)1(Lys)4 (Lys)5

1 : 15 : 90 : 270 : 405 : 243

243 : 405 : 270 : 90 : 15 : 1

M = 219 M = 262

30

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

MALDI-TOF of „Random“ Pentamers

1200 1250 1300 1350 1400

(Glu)5

(Glu)4(Lys)1(Glu)3(Lys)2

(Glu)2(Lys)3(Glu)1(Lys)4 (Lys)5

m/z

Inte

nsity

(a.i.

)Feed-

composition:Glu : Lys

75:25

50:50

25:75

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Theory of Probabilities for Sequenz Composition

Fragment Spectra

5 Equal Probabilities for Sequenz Composition of

n-Hex-NH-(Glu)4-st-(Lys)1-H!

n-Hex-NH-Glu-Glu-Glu-Glu-Lys-Hn-Hex-NH-Glu-Glu-Glu-Lys-Glu-Hn-Hex-NH-Glu-Glu-Lys-Glu-Glu-Hn-Hex-NH-Glu-Lys-Glu-Glu-Glu-Hn-Hex-NH-Lys-Glu-Glu-Glu-Glu-H

n-Hex-NH-Glu4n-Hex-NH-Glu3Lys

Lys-HGlu-H

n-Hex-NH-Glu3n-Hex-NH-Glu2Lys

Lys-Glu-HGlu2-H

n-Hex-NH-Glu2n-Hex-NH-Glu1Lys

Lys-Glu2-HGlu3-H

n-Hex-NH-Glu1n-Hex-NH-Lys1

Lys-Glu3-HGlu4-H

n-Hex-NH Lys-Glu4-H243 : 405 : 270 : 90 : 15 : 1

5:0

4:1

3:2

2:3

1:4

0:5

10 Equal Probabilities

31

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Inte

nsity

(a.i.

)

(Glu)4H(Glu)3(Lys)H(Glu)2(Lys)H

(Glu)3H(Glu)(Lys)H

(Glu)2H

n-Hex-NH-(Glu)4(Lys)-H

(Glu)4(Lys)H

0 200 400 600 800 1000 1200 m/z

n-Hex-NH-(Glu)4-st-(Lys)1-H

(Glu)H

(Lys)H

PSD Fragment Ion-Analysis of a „Random“ Pentamer

n-Hex-NH-Glu4n-Hex-NH-Glu3Lys

Lys-HGlu-H

n-Hex-NH-Glu3n-Hex-NH-Glu2Lys

Lys-Glu-HGlu2-H

n-Hex-NH-Glu2n-Hex-NH-Glu1Lys

Lys-Glu2-HGlu3-H

n-Hex-NH-Glu1n-Hex-NH-Lys1

Lys-Glu3-HGlu4-H

n-Hex-NH Lys-Glu4-H- 44

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Sequenz analysis of a Block-Copeptid

n-Hex-NH-Lys-Lys-Lys-Lys-Glu-Hn-Hex-NH-Lys-Lys-Lys-Glu-Lys-Hn-Hex-NH-Lys-Lys-Glu-Lys-Lys-Hn-Hex-NH-Lys-Glu-Lys-Lys-Lys-Hn-Hex-NH-Glu-Lys-Lys-Lys-Lys-H

n-Hex-NH-(Glu)1-st-(Lys)4-HTheory of Probabilities:

n-Hex-NH-Lys-Lys-Lys-Lys-Glu-H

n-Hex-NH-(Lys)4-bl-(Glu)1-HPre-determined Sequenz:

Glu-H

Lys-Glu-H

Lys2-Glu-H

Lys3-Glu-H

Lys4-Glu-H

Glu-H Lys-HLys-Glu-H Lys2-H

Lys2-Glu-H Lys3-HLys3-Glu-H Lys4-H

Lys4-Glu-H

Characteristical differences!

32

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

Sequenz Analysis of a “Block”-Copolymer

Lys4H

Lys3H

LysHLys2H

“random”

“block”

n-Hex-NH-Lys-Lys-Lys-Lys-Glu-H

n-Hex-NH-Lys2n-Hex-NH-Lys3

n-Hex-NH-Lys

Lys4GluH

Inte

nsity

(a.i.

)

m/z

Characteristical differences for the „block“ peptide: lack of N-terminated Glu and Lysn!

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

NH

HN

O

ONH

NH

O

O

OO

x y

H

RN

O

OH

RN

CH 2

HCO 2H

RNH

CH 3

R'H 2C

O

O//

ONH

OO

HR'' ONH

R'' O

Qualitative Interpretation of Fragmentation

- CO2- 44

- 44 fragments: Lys: McLafferty rearrangement-108 fragments: Lys, Glu: AminolysisC-terminated fragments: Lys- 28 fragments: Glu: different backbone cleveage

Lys Glu - BnOH- 108

Glu

Lys, Glu

Lys

Glu

33

Max

Pla

nck

Inst

itute

forP

olym

er R

esea

rch

Acknowledgement

Laurence Przybilla 1

Sarah Trimpin

Sabine Kummer

Kai Martin

Kimihiro Yoshimura

Jochen Spickermann

Ali Pouhanipour

Stefan Türk

Coworkers